EE 210 Lab Assignment #2: Intro to PSPICE

Size: px
Start display at page:

Download "EE 210 Lab Assignment #2: Intro to PSPICE"

Transcription

1 EE 210 Lab Assignment #2: Intro to PSPICE ITEMS REQUIRED None Non-formal Report due at the ASSIGNMENT beginning of the next lab no conclusion required Answers and results from all of the numbered, bolded material in the procedure sections must be included and clearly indicated in the lab write-up Introduction This tutorial provides an overview of the Windows version 9.2 of OrCAD Capture/PSPICE A/D. This software package uses an interactive schematics editor to draw circuits (Capture) that can be simulated and analyzed (PSPICE). This software has many useful functions for analyzing all types and aspects of electronic circuitry. It is very important to become familiar with the standard functions because the software be used in most of the subsequent labs as a supplement and circuit verification tool. Exercise 1. Using Orcad Capture Part 1. Calculations 1. (1) For the circuit shown in Figure 1, analytically determine the voltages at each node, the voltage across R1, the current flowing through the resistors, and the power across each component including the source. Part 2. Getting into Capture 1. Log onto the EE network computer. 2. From the start menu in Windows, click on start, then drag the mouse to the right on programs. Go to Cadence PSD 14.0 and finally click on Capture. Part 3. Creating a schematic for simulation 1. From the File menu at the top of the screen select New and then Project Note: Project must be selected in order to run simulations. 1

2 2. In the new project window, enter Lab2ex1 in the name blank, select the Analog or Mixed A/D, specify the location as the personal drive (P:\). Select OK. 3. The Create Pspice project window should appear. Select Create a blank project and OK. 4. The schematic and project manager windows should now appear on the screen. The project manager window contains all of the resources for the current project. The schematic window is where the circuits are to be constructed. 5. To begin placing parts in the schematic window select the part button on the vertical toolbar at the right of the screen or by selecting Place then Part from the menu at the top of the screen. From the Place Part window, select R from the Analog library. Notice that the symbol for a resistor appears in the lower right hand corner. Select OK and place the resistor on the schematic window by left clicking once. Place another resistor by left clicking again. Right click and select End mode to finish placing resistors. Note: Libraries containing other parts may be added to the project in the place part window. 6. Using the same procedure, place a voltage source (VDC) from the Source library in the schematic window. Note: Current sources can also be found in the Source library. They are manipulated in a similar manner as the voltage sources. 7. Select ground from the ground button from the toolbar on the left or in the CAPSYM library. In the place part menu, rename the part 0. Important: This renaming is a necessary step for simulation and must be performed in the place part window before the part is placed in the circuit to avoid errors! Select OK to place the ground in the schematic window. Note: a ground (reference 0 ) must be placed in every circuit as a reference point for analysis. Note: all parts currently used in the schematic may can be selected from the pull down menu at the top of the screen. 8. Arrange the parts to roughly match Figure 1 by left clicking on the part to select it (turns pink) and holding the button down to drag it into the desired position. Once the part is in desired position, it can be rotated or mirrored horizontally or vertically by right clicking on the part and selecting the desired orientation. Note: Groups of parts may be selected and moved together by drawing a box around the desired parts with the cursor and clicking on the group to drag. 9. To connect the parts wires to form the circuit in Figure 1, select the place wire icon from the vertical toolbar to the right of the screen or by selecting Place then Wire from the menu. 10. Position the pointer at the top end of the source and click to drag a wire from the source. A solid line should connect the pointer with the source, right angles can be made in the wire by clicking and changing direction during this step. When the pointer is over the connection terminals of one of the other devices on the screen (i.e. resistor or earth ground), a red dot 2

3 should appear indicating a terminal connection. Click, then right click and select end wire. Follow this pattern until the source-resistor-resistor loop similar to Figure 1 is complete. Note: Placing parts end to end without using a wire is a common source of error because the parts may not properly connect. Note: Holding shift while dragging parts retains connections. Figure 1: Circuit with independent voltage sources and resistors. 11. The value of each component must be defined. The same procedure is used for each component. Double click on the resistor value. A dialogue box should appear. Enter the desired value in the dialog box labeled Value:. Click on the OK button. Repeat the above procedure for the other resistor. Note: The scale factor abbreviations in PSPICE are standard except that milli is represented by m and mega is represented by meg. 12. The voltage source may be corrected in a similar manner. Double click on the voltage source to bring up the dialogue box. Select the DC= line. Move the cursor to the Value input box and type in 10, since it is a 10V source. Click on the OK button. Part 4. DC Analysis 1. Place the voltage and voltage differential markers on the circuit as shown in Figure 2. This is done by selecting the respective icons (left) from the upper tool bar and placing them in contact with the point on the circuit to be analyzed and displayed in PSPICE. The voltage markers display the voltage at the node and the voltage differential markers compute the difference in voltage between two points with the positive and negative markers. Note: The voltage markers must be connected to a wire or node. The current makers must be placed to the pin of a specific device. The polarity of the resulting current determines if it is flowing into (+) or out of (-) the device at that pin. The power markers must be connected directly to a part. (see Figure 3) 3

4 Figure 2: Circuit with voltage markers. Figure 3: Example of current and power marker placement. 2. From the upper toolbar select the new simulation profile icon or by selecting PSPICE from the main menu and then new simulation profile. The new simulation window should open. Name the simulation Lab2ex1. 3. The simulation settings window should now appear. Check the Analysis tab to make sure that the Time Domain (Transient) analysis type is selected. 4. To simulate the circuit, select the run button from the upper toolbar, or by selecting PSPICE from the main menu then Run. 5. The PSPICE window should open, with the simulation progress reading at the lower part of the window. The simulation profile left hand side of the window will read simulation complete when it is finished simulating. 6. A plot should appear in the upper portion of the PSPICE window with all of the measurements color-coded corresponding to the markers from step 1. This plot is with respect to time (hence Time analysis) and the plots should not vary with time since the simulation is a simple DC circuit. Note: The simulations can be edited and executed from the PSPICE window by selecting the Edit simulation settings button and the Run button. 7. Add two additional plots by selecting the Plot menu at the top of the screen and selecting Add plot to window (window must be maximized!). Select the first new plot and used the add trace button. Add the currents I(R1) and I(R2). This displays the current through R1 and R2 on the new plot. Select the second new plot and ad the power values W(R1), W(R2), and W(V1). This displays the power dissipation of R1, R2, and the source. Doing this makes it easier to view voltages, currents, and powers separately with common units. For the remainder of the semester, traces of voltage, current, and power must be contained on separate plots unless directed otherwise! Note: Different functions can be performed on the traces by selecting the desired function from the list on the right of the add trace window. 4

5 Note: These currents and powers can also be displayed on a plot by repeating step 1 with the current and power markers. The simulations must be completed separately in order for the traces to appear on different plots as desired. 7. Place markers on each trace to display the exact value on the plot at any point in time by enabling the cursor display icon on the menu and positioning the cursor on the desired point on the plot. Select the mark icon to display the value on the screen. Select another trace by highlighting its name at the bottom of the screen. Always use marks when plotting DC values so that the exact value is always visible! Note: Other cursor functions such as finding the peak and slope can be performed using the buttons on the cursor menu. 8. Add your name and a title to the plots by selecting the text icon and placing the text on the desired plot. Always make sure the plots are clearly labeled with text! 9. (2) Print the plots by selecting File Print and specifying the desired printer. 10. Return the Capture window and the voltages, currents, and powers should be labeled on the schematic. Note : The simulation results can be viewed at any time by pressing the view simulation results button. 11. All of the circuits voltages, currents, and power measurements may be enabled or disabled for display by selecting the respective buttons from the menu at the top of the screen (left). Note : these values displayed on the schematic are the value of the node at the last simulation point. This is consistent for simple DC circuits but can be misleading for AC circuits. 11. Enable all of the measurements and verify that the match the calculations from Part 1. Also, and your name and a title to the schematic by selecting the place text icon from the menu to the right of the screen. 12. (3) Print the schematic by selecting File Print. Part 5: AC Time Domain Analysis 1. Replace the source from Figure 2 with the part VSIN from the Source library. This produces a sinusoid of variable frequency, amplitude, and dc offset just as the waveform generator does. 2. Set the frequency to 100Hz, the dc offset to 2V, and the amplitude to 6V, similar to adjusting the function generator. Remember that the amplitude is the peak value of the waveform no the peak-to-peak value. 3. Choose the edit simulation profile button from the upper toolbar, or by selecting PSPICE from the main menu then Edit simulation profile. 5

6 4. Setup the transient simulation as before except, set Run to time under the Analysis tab such that 2 cycles of the waveform are simulated and displayed. This is similar to the adjusting the oscilloscope display in Lab 1. Adjust the Maximum step size when necessary to provide an adequate number of data points from the simulation. When considering the step size, remember that the smaller the step size, the longer the simulation run time. 5. Following the same procedure described previously, simulate the circuit. 6. Remember that the values displayed on the schematic represent the values at the last simulation point. Since they do not provide much insight to the AC analysis, turn the display off. For the same reasons, the cursor values do not need to be added to the plots (4) Label and print schematic and the plots, including all of the traces specified in Exercise 4. Exercise 2. Circuit with Dependent Voltage Sources and Resistors Dependent source symbols used in PSPICE are shown in Figure 4. The source enclosed in the circle produces the current or voltage. The symbols in the source (not inside the circle) provide the reference. For the current sources, the reference is connected in series with the reference nodes as would done with the DMM. For the voltage source, the reference wires are connected in parallel with the device used as the reference, also as would be done with the DMM. Figure 4: Dependent source icons. The top row indicates the PSPICE part corresponding to the circuit symbol below. 1. Begin a new schematic for the circuit in Figure 5. The dependent sources are found in the ANALOG library. 2. Look at the dependent sources. The small independent source acts as the dependent source (the diamond shape in Figure 4). The second port is used to indicate the reference voltage or current. Place the sources in the schematic window, noting the polarity of the ports. Double 6

7 clicking on the dependent source will bring up a dialogue box as with all of the other components. The gain of the dependent source is the only parameter that is needed to describe the part, adjust the gain accordingly. 3. Once all of the components are in place and connected, follow the same procedure for the analysis as specified in Exercise (5) Print out the schematic of the circuit and the probe plots for the current through the 1W resistor and the voltage across the 3W resistor. Be sure to label the requested traces in the probe. Also, make sure that only the requested voltages and currents are displayed on the schematic. 5. Replace the 12A dc current source with a 10kHz, 6A peak AC sinusoidal current source with a DC offset of 6A. Repeat the simulation (remember to adjust for the proper end time). (6) Print out the schematic of the circuit and the probe plots for the current through the 1W resistor and the voltage across the 3 W resistor. Be sure to label the requested traces in the probe. Figure 5: Circuit with independent and dependent sources and resistors. 7

SOUTHERN POLYTECHNIC S. U.

SOUTHERN POLYTECHNIC S. U. SOUTHERN POLYTECHNIC S. U. ECET 1012 Laboratory Exercise #4 ELECTRICAL & COMPUTER ENGINEERING TECHNOLOGY Introduction to PSpice Name Lab Section Date Overview: This laboratory experiment introduces the

More information

Lab 1: Analysis of DC and AC circuits using PSPICE

Lab 1: Analysis of DC and AC circuits using PSPICE Lab 1: Analysis of DC and AC circuits using PSPICE 1. Objectives. 1) Familiarize yourself with PSPICE simulation software environment. 2) Obtain confidence in performing DC and AC circuit simulation. 2.

More information

PSpice with Orcad 10

PSpice with Orcad 10 PSpice with Orcad 10 1. Creating Circuits Using PSpice Tutorial 2. AC Analysis 3. Step Response 4. Dependent Sources 5. Variable Phase VSin Source Page 1 of 29 Creating Circuits using PSpice Start Orcad

More information

1. Working with PSpice:

1. Working with PSpice: Applied Electronics, Southwest Texas State University, 1, 13 1. Working with PSpice: PSpice is a circuit simulator. It uses the Kirchhoff s laws and the iv-relation of the used components to calculate

More information

Simulation examples Chapter overview

Simulation examples Chapter overview Simulation examples 2 Chapter overview The examples in this chapter provide an introduction to the methods and tools for creating circuit designs, running simulations, and analyzing simulation results.

More information

Orcad Tutorial: Oscillator design and Simulation Schematic Design and Simulation in Orcad Capture CIS Full Version

Orcad Tutorial: Oscillator design and Simulation Schematic Design and Simulation in Orcad Capture CIS Full Version Orcad Tutorial: Oscillator design and Simulation Prof. Law Schematic Design and Simulation in Orcad Capture CIS Full Version Notation: To simplify what one should click to perform a task, the following

More information

Copyright 2008 Linear Technology. All rights reserved. Getting Started

Copyright 2008 Linear Technology. All rights reserved. Getting Started Copyright. All rights reserved. Getting Started Copyright. All rights reserved. Draft a Design Using the Schematic Editor 14 Start with a New Schematic New Schematic Left click on the New Schematic symbol

More information

How to Get Started. Figure 3

How to Get Started. Figure 3 Tutorial PSpice How to Get Started To start a simulation, begin by going to the Start button on the Windows toolbar, then select Engineering Tools, then OrCAD Demo. From now on the document menu selection

More information

Tutorial 3: Using the Waveform Viewer Introduces the basics of using the waveform viewer. Read Tutorial SIMPLIS Tutorials SIMPLIS provide a range of t

Tutorial 3: Using the Waveform Viewer Introduces the basics of using the waveform viewer. Read Tutorial SIMPLIS Tutorials SIMPLIS provide a range of t Tutorials Introductory Tutorials These tutorials are designed to give new users a basic understanding of how to use SIMetrix and SIMetrix/SIMPLIS. Tutorial 1: Getting Started Guides you through getting

More information

1. INTRODUCTION. PSpice with OrCAD Capture (release 16.6 edition)

1. INTRODUCTION. PSpice with OrCAD Capture (release 16.6 edition) 1. INTRODUCTION SPICE (Simulation Program for Integrated Circuits Emphasis.) is a powerful general purpose analog and mixed-mode circuit simulator that is used to verify circuit designs and to predict

More information

Using PSpice to Simulate Transmission Lines K. A. Connor Summer 2000 Fields and Waves I

Using PSpice to Simulate Transmission Lines K. A. Connor Summer 2000 Fields and Waves I Using PSpice to Simulate Transmission Lines K. A. Connor Summer 2000 Fields and Waves I We want to produce the image shown above as a screen capture or below as the schematic of this circuit. R1 V1 25

More information

Getting Started with Orcad Lite, Release 9.2

Getting Started with Orcad Lite, Release 9.2 Getting Started with Orcad Lite, Release 9.2 Professor Robert Hofinger Purdue University - Columbus You start a new project (program) by going to the File menu in the upper left corner, then New, and then

More information

Getting started. Starting Capture. To start Capture. This chapter describes how to start OrCAD Capture.

Getting started. Starting Capture. To start Capture. This chapter describes how to start OrCAD Capture. Getting started 1 This chapter describes how to start OrCAD Capture. Starting Capture The OrCAD Release 9 installation process puts Capture in the \PROGRAM FILES\ORCAD\CAPTURE folder, and adds Pspice Student

More information

Lesson 5: Creating Heterogeneous Parts

Lesson 5: Creating Heterogeneous Parts Lesson 5: Creating Heterogeneous Parts Lesson Objectives After you complete this lesson you will be able to: Create a Heterogeneous part Annotate a Heterogeneous part (Optional) Heterogeneous Parts A heterogeneous

More information

There are three windows that are opened. The screen that you will probably spend the most time in is the SCHEMATIC page.

There are three windows that are opened. The screen that you will probably spend the most time in is the SCHEMATIC page. Pspice Tutorial Create a new project and select Analog or Mixed A/D. Choose an appropriate project name and a path. A new window pop up with the Pspice project type, select Create a blank project and click

More information

Click on the SwCAD III shortcut created by the software installation.

Click on the SwCAD III shortcut created by the software installation. LTSpice Guide Click on the SwCAD III shortcut created by the software installation. Select File and New Schematic. Add a component Add a resistor Press R or click the resistor button to insert a resistor.

More information

Instructions for EE 42 PSpice Assignment

Instructions for EE 42 PSpice Assignment Instructions for EE 42 PSpice Assignment This assignment gives you an introduction to the SPICE circuit simulator. You will use the PSpice version of it to analyze a few problems from previous homework

More information

SCHEMATIC1 SCHEMATIC2 SCHEMATIC1 SCHEMATIC2 SCHEMATIC3 PAGE1 PAGE2 PAGE3 PAGE1 PAGE1 PAGE2 PAGE1 PAGE1 PAGE2

SCHEMATIC1 SCHEMATIC2 SCHEMATIC1 SCHEMATIC2 SCHEMATIC3 PAGE1 PAGE2 PAGE3 PAGE1 PAGE1 PAGE2 PAGE1 PAGE1 PAGE2 An OrCAD Tutorial Dr. S.S.Limaye 1. Introduction OrCAD is a suite of tools from Cadence company for the design and layout of printed circuit boards (PCBs). This is the most popular tool in the industry.

More information

GETTING STARTED WITH ADS

GETTING STARTED WITH ADS ADS Startup Tutorial v2 Page 1 of 17 GETTING STARTED WITH ADS Advanced Design System (ADS) from Agilent Technologies is an extremely powerful design tool for many aspects of electrical and computer engineering

More information

TUTORIAL SESSION Technical Group Hoda Najafi & Sunita Bhide

TUTORIAL SESSION Technical Group Hoda Najafi & Sunita Bhide TUTORIAL SESSION 2014 Technical Group Hoda Najafi & Sunita Bhide SETUP PROCEDURE Start the Altium Designer Software. (Figure 1) Ensure that the Files and Projects tabs are located somewhere on the screen.

More information

2 Lab 2: LabVIEW and Control System Building Blocks

2 Lab 2: LabVIEW and Control System Building Blocks 2 Lab 2: LabVIEW and Control System Building Blocks 2.1 Introduction Controllers are built from mechanical or electrical building blocks. Most controllers are implemented in a program using sensors to

More information

DC Circuit Simulation

DC Circuit Simulation Chapter 2 DC Circuit Simulation 2.1 Starting the Project Manager 1. Select Project Manager from the Start All Program Cadence Release 16.5 Project Manager. 2. Select Allegro PCB Designer (Schematic) from

More information

One possible window configuration preferences for debug cycles

One possible window configuration preferences for debug cycles NEW USER S TUTORIAL Welcome to ICAP/4, Intusoft s suite of analog and mixed-signal simulation products. There is also a New User s Tutorial 2 as follow-on to this tutorial for non-icap/4rx products. Let

More information

Introduction to Electronics Workbench

Introduction to Electronics Workbench Introduction to Electronics Workbench Electronics Workbench (EWB) is a design tool that provides you with all the components and instruments to create board-level designs on your PC. The user interface

More information

Experiment 1 Electrical Circuits Simulation using Multisim Electronics Workbench: An Introduction

Experiment 1 Electrical Circuits Simulation using Multisim Electronics Workbench: An Introduction Experiment 1 Electrical Circuits Simulation using Multisim Electronics Workbench: An Introduction Simulation is a mathematical way of emulating the behavior of a circuit. With simulation, you can determine

More information

Lesson 18: Creating a Hierarchical Block

Lesson 18: Creating a Hierarchical Block Lesson 18: Creating a Hierarchical Block Lesson Objectives After you complete this lesson you will be able to: Create hierarchical blocks Copying Schematics between Projects You can copy and paste between

More information

PSpice Tutorial. Physics 160 Spring 2006

PSpice Tutorial. Physics 160 Spring 2006 PSpice Tutorial This is a tutorial designed to guide you through the simulation assignment included in the first homework set. You may either use the program as installed in the lab, or you may install

More information

Introduction to FCE1

Introduction to FCE1 Universität Duisburg-Essen PRACTICAL TRAINING TO THE LECTURE Introduction to FCE1 Introduction to computer-aided design with OrCAD Name: First Name: Tutor: Matriculation-Number: Group-Number: Date: Prof.

More information

TINA-TI Simulation Software. Application Note

TINA-TI Simulation Software. Application Note TINA-TI Simulation Software Application Note Phil Jaworski Design Team 6 11/16/2012 Abstract TINA-TI is a circuit design and simulation tool created by both Texas Instruments and DesignSoft that has helped

More information

Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter

Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter Introduction This tutorial describes the steps involved in the design and simulation of a CMOS inverter using the Cadence Virtuoso

More information

EECS 211 CAD Tutorial. 1. Introduction

EECS 211 CAD Tutorial. 1. Introduction EECS 211 CAD Tutorial 1. Introduction This tutorial has been devised to run through all the steps involved in the design and simulation of an audio tone control amplifier using the Mentor Graphics CAD

More information

Lesson 2: DC Bias Point Analysis

Lesson 2: DC Bias Point Analysis 2 Lesson 2: DC Bias Point Analysis Lesson Objectives After you complete this lesson you will be able to: Create a simulation profile for DC Bias analysis Netlist the design for simulation Run a DC Bias

More information

University of Kansas EECS Circuit Board Fabrication Tutorial for 212 Lab

University of Kansas EECS Circuit Board Fabrication Tutorial for 212 Lab University of Kansas EECS Circuit Board Fabrication Tutorial for 212 Lab Preparing For Export... 1 Assigning Footprints... 1 Recommended Footprints... 2 No Connects... 3 Design Rules Check... 3 Create

More information

Setting up an initial ".tcshrc" file

Setting up an initial .tcshrc file ECE445 Fall 2005 Introduction to SaberSketch The SABER simulator is a tool for computer simulation of analog systems, digital systems and mixed signal systems. SaberDesigner consists of the three tools,

More information

Cadence Capture and PSpice Tutorial

Cadence Capture and PSpice Tutorial Cadence Capture and PSpice Tutorial This tutorial is intended to give you needed elements for using Cadence Capture and PSpice to design and simulate the digital logic circuit in Homework 2A, Problem 2.

More information

Revision Notes: July2004 Generate tutorial for single transistor analysis. Based on existing schematic entry tutorial developed for ECE410

Revision Notes: July2004 Generate tutorial for single transistor analysis. Based on existing schematic entry tutorial developed for ECE410 Cadence Analog Tutorial 1: Schematic Entry and Transistor Characterization Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revision Notes: July2004 Generate tutorial for

More information

Start ADS and Create an Empty Project

Start ADS and Create an Empty Project Start ADS and Create an Empty Project Look for a desktop icon or start menu item entitled Advanced Design System 2011 ADS will start up and you will see ultimately: ADS Session 1 click for new project

More information

Fundamentos de Electrónica Lab Guide

Fundamentos de Electrónica Lab Guide Fundamentos de Electrónica Lab Guide PSPICE IST-2016/2017 IST-2017/2018 21º nd Semester PSpice-Guide 1. Introduction SPICE is a simulator program for the project of electronic circuits. SPICE is the acronym

More information

SCHEMATIC DESIGN IN QUARTUS

SCHEMATIC DESIGN IN QUARTUS SCHEMATIC DESIGN IN QUARTUS Consider the design of a three-bit prime number detector. Figure 1 shows the block diagram and truth table. The inputs are binary signals A, B, and C while the output is binary

More information

Experiment 0: Introduction to Cadence

Experiment 0: Introduction to Cadence UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 0: Introduction to Cadence Contents 1. Introduction...

More information

S Exercise 1C Testing the Ring Oscillator

S Exercise 1C Testing the Ring Oscillator S-87.3148 Exercise 1C Testing the Ring Oscillator Aalto University School of Electrical Engineering Department of Micro- and Nanosciences (ECDL) 10.9.2014 1 1 Building the test bench In this exercise,

More information

VLSI Lab Tutorial 1. Cadence Virtuoso Schematic Composer Introduction

VLSI Lab Tutorial 1. Cadence Virtuoso Schematic Composer Introduction VLSI Lab Tutorial 1 Cadence Virtuoso Schematic Composer Introduction 1.0 Introduction The purpose of the first lab tutorial is to help you become familiar with the schematic editor, Virtuoso Schematic

More information

OrCad & Spice Tutorial By, Ronak Gandhi Syracuse University

OrCad & Spice Tutorial By, Ronak Gandhi Syracuse University OrCad & Spice Tutorial By, Ronak Gandhi Syracuse University Brief overview: OrCad is a suite of tools from Cadence for the design and layout of circuit design and PCB design. We are currently using version

More information

Analog IC Simulation. Mentor Graphics 2006

Analog IC Simulation. Mentor Graphics 2006 Analog IC Simulation Mentor Graphics 2006 Santa Clara University Department of Electrical Engineering Date of Last Revision: March 29, 2007 Table of Contents 1. Objective... 3 2. Basic Test Circuit Creation...

More information

Complete Tutorial (Includes Schematic & Layout)

Complete Tutorial (Includes Schematic & Layout) Complete Tutorial (Includes Schematic & Layout) Download 1. Go to the "Download Free PCB123 Software" button or click here. 2. Enter your e-mail address and for your primary interest in the product. (Your

More information

Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine

Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine A. Launch PuTTY. 1. Load the Saved Session that has Enable X11 forwarding and the Host Name is cvl.ece.vt.edu.

More information

Introduction to PSpice

Introduction to PSpice Introduction to PSpice Simulation Software 1 The Origins of SPICE In the 1960 s, simulation software begins CANCER Computer Analysis of Nonlinear Circuits, Excluding Radiation Developed at the University

More information

Exercise 1. Section 2. Working in Capture

Exercise 1. Section 2. Working in Capture Exercise 1 Section 1. Introduction In this exercise, a simple circuit will be drawn in OrCAD Capture and a netlist file will be generated. Then the netlist file will be read into OrCAD Layout. In Layout,

More information

Small rectangles (and sometimes squares like this

Small rectangles (and sometimes squares like this Lab exercise 1: Introduction to LabView LabView is software for the real time acquisition, processing and visualization of measured data. A LabView program is called a Virtual Instrument (VI) because it,

More information

Figure 1: ADE Test Editor

Figure 1: ADE Test Editor Due to some issues that ADE GXL simulation environment has (probably because of inappropriate setup), we will run simulations in the ADE L design environment, which includes all the necessary tools that

More information

SystemVue 2011 Fundamentals (version ) LAB EXERCISE 1. SystemVue Basics

SystemVue 2011 Fundamentals (version ) LAB EXERCISE 1. SystemVue Basics SystemVue 2011 Fundamentals (version 1-2012) LAB EXERCISE 1 SystemVue Basics This lab exercise introduces the basic use model of SystemVue, including using the built-in templates, running analyses and

More information

KiCad Example Schematic ( ) Wien Bridge Oscillator

KiCad Example Schematic ( ) Wien Bridge Oscillator KiCad Example Schematic (2010-05-05) Wien Bridge Oscillator University of Hartford College of Engineering, Technology, and Architecture The following tutorial in that it walks you through steps to use

More information

Homework Assignment 9 LabVIEW tutorial

Homework Assignment 9 LabVIEW tutorial Homework Assignment 9 LabVIEW tutorial Due date: Wednesday, December 8 (midnight) For this homework assignment, you will complete a tutorial on the LabVIEW data acquistion software. This can be done on

More information

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group.

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group. Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group. Revision Notes: Aug. 2003 update and edit A. Mason add intro/revision/contents

More information

Section 1 Establishing an Instrument Connection

Section 1 Establishing an Instrument Connection Manual for Sweep VI Fall 2011 DO NOT FORGET TO SAVE YOUR DATA TO A NEW LOCATION, OTHER THAN THE TEMP FOLDER ON YOUR LAB STATION COMPUTER! FAILURE TO DO SO WILL RESULT IN LOST DATA WHEN YOU LOG OUT! 1.1.

More information

LTSPICE MANUAL. For Teaching Module EE4415 ZHENG HAUN QUN. December 2016

LTSPICE MANUAL. For Teaching Module EE4415 ZHENG HAUN QUN. December 2016 LTSPICE MANUAL For Teaching Module EE4415 ZHENG HAUN QUN December 2016 DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINNERING NATIONAL UNIVERSITY OF SINGAPORE Contents 1. Introduction... 2 1.1 Installation...

More information

EXPERIMENT 1 INTRODUCTION TO MEMS Pro v5.1: DESIGNING a PIEZO- RESISTIVE PRESSURE SENSOR

EXPERIMENT 1 INTRODUCTION TO MEMS Pro v5.1: DESIGNING a PIEZO- RESISTIVE PRESSURE SENSOR EXPERIMENT 1 INTRODUCTION TO MEMS Pro v5.1: DESIGNING a PIEZO- RESISTIVE PRESSURE SENSOR 1. OBJECTIVE: 1.1 To learn and get familiar with the MEMS Pro environment and tools 1.2 To learn the basis of process

More information

Introduction to NI Multisim & Ultiboard

Introduction to NI Multisim & Ultiboard George Washington University School of Engineering and Applied Science Electrical and Computer Engineering Department Introduction to NI Multisim & Ultiboard Dr. Amir Aslani 8/20/2017 2 Outline Design

More information

Lab 4 - Data Acquisition

Lab 4 - Data Acquisition Lab 4 - Data Acquisition 1/13 Lab 4 - Data Acquisition Report A short report is due at 8:00 AM on the Thursday of the next week of classes after you complete this lab. This short report does NOT need to

More information

Altera Quartus II Tutorial ECE 552

Altera Quartus II Tutorial ECE 552 Altera Quartus II Tutorial ECE 552 Quartus II by Altera is a PLD Design Software which is suitable for high-density Field-Programmable Gate Array (FPGA) designs, low-cost FPGA designs, and Complex Programmable

More information

EE261 Computer Project 1: Using Mentor Graphics for Digital Simulation

EE261 Computer Project 1: Using Mentor Graphics for Digital Simulation EE261 Computer Project 1: Using Mentor Graphics for Digital Simulation Introduction In this project, you will begin to explore the digital simulation tools of the Mentor Graphics package available on the

More information

Defining & Running Circuit Simulation Analyses

Defining & Running Circuit Simulation Analyses Defining & Running Circuit Simulation Analyses Summary Tutorial TU0106 (v1.6) April 20, 2008 This tutorial looks at creating a schematic of an analog filter design that is set up for circuit simulation.

More information

Getting Started with LabVIEW Virtual Instruments

Getting Started with LabVIEW Virtual Instruments Getting Started with LabVIEW Virtual Instruments Approximate Time You can complete this exercise in approximately 30 minutes. Background LabVIEW programs are called virtual instruments, or VIs, because

More information

Lesson 17: Building a Hierarchical Design

Lesson 17: Building a Hierarchical Design Lesson 17: Building a Hierarchical Design Lesson Objectives After you complete this lesson you will be able to: Explore the structure of a hierarchical design Editing the Training Root Schematic Making

More information

EECE 285 VLSI Design. Cadence Tutorial EECE 285 VLSI. By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski

EECE 285 VLSI Design. Cadence Tutorial EECE 285 VLSI. By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski Cadence Tutorial EECE 285 VLSI By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski 1 Table of Contents Purpose of Cadence 1) The Purpose of Cadence pg. 4 Linux 1) The Purpose of Linux

More information

LTspice Getting Started Guide. Copyright 2007 Linear Technology. All rights reserved.

LTspice Getting Started Guide. Copyright 2007 Linear Technology. All rights reserved. Copyright 2007 Linear Technology. All rights reserved. Why Use LTspice? Stable SPICE circuit simulation with Unlimited number of nodes Schematic/symbol editor Waveform viewer Library of passive devices

More information

Boise State University Digital Systems Laboratory

Boise State University Digital Systems Laboratory by S. M. Loo, Arlen Planting Department of Electrical and Computer Engineering Boise State University First Released: Spring 2005 with ISE 6.3i Updated: Fall 2006 with ISE 8.1i Updated: Spring 2009 with

More information

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction VLSI Lab Tutorial 3 Virtuoso Layout Editing Introduction 1.0 Introduction The purpose of this lab tutorial is to guide you through the design process in creating a custom IC layout for your CMOS inverter

More information

PSpice Simulation Using isppac SPICE Models and PAC-Designer

PSpice Simulation Using isppac SPICE Models and PAC-Designer PSpice Simulation Using isppac SPICE Models Introduction PAC-Designer software, a Windows-based design tool from Lattice Semiconductor gives users the capability to graphically design analog filters and

More information

Training Kit for HP 1660/70 Series Logic Analyzers

Training Kit for HP 1660/70 Series Logic Analyzers Training Guide Publication Number E2433-97034 First Edition, November 1997 For Safety information, Warranties, and Regulatory information, see the pages behind the Index. Copyright Hewlett-Packard Company

More information

Piping Design. Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index

Piping Design. Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index Piping Design Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index Dassault Systèmes 1994-2001. All rights reserved. Site Map Piping Design member member

More information

University of Florida EEL 3701 Dr. Eric M. Schwartz Department of Electrical & Computer Engineering Revision 0 12-Jun-16

University of Florida EEL 3701 Dr. Eric M. Schwartz Department of Electrical & Computer Engineering Revision 0 12-Jun-16 Page 1/14 Quartus Tutorial with Basic Graphical Gate Entry and Simulation Example Problem Given the logic equation Y = A*/B + /C, implement this equation using a two input AND gate, a two input OR gate

More information

CS Multimedia and Communications REMEMBER TO BRING YOUR MEMORY STICK TO EVERY LAB! Lab 02: Introduction to Photoshop Part 1

CS Multimedia and Communications REMEMBER TO BRING YOUR MEMORY STICK TO EVERY LAB! Lab 02: Introduction to Photoshop Part 1 CS 1033 Multimedia and Communications REMEMBER TO BRING YOUR MEMORY STICK TO EVERY LAB! Lab 02: Introduction to Photoshop Part 1 Upon completion of this lab, you should be able to: Open, create new, save

More information

Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation

Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation Brittany Duffy EE 330- Integrated Electronics Lab Section B Professor Randy Geiger 1/24/13 Introduction The main goal of this

More information

Word 3 Microsoft Word 2013

Word 3 Microsoft Word 2013 Word 3 Microsoft Word 2013 Mercer County Library System Brian M. Hughes, County Executive Action Technique 1. Insert a Text Box 1. Click the Insert tab on the Ribbon. 2. Then click on Text Box in the Text

More information

APPENDIX-A INTRODUCTION TO OrCAD PSPICE

APPENDIX-A INTRODUCTION TO OrCAD PSPICE 220 APPENDIX-A INTRODUCTION TO OrCAD PSPICE 221 APPENDIX-A INTRODUCTION TO OrCAD PSPICE 1.0 INTRODUCTION Computer aided circuit analysis provides additional information about the circuit performance that

More information

Lesson 14: Property Editor

Lesson 14: Property Editor Lesson 14: Property Editor Lesson Objectives After completing this lesson, you will be able to: Work with Property Filters in the Property Editor Add part and net properties using the Property Editor Using

More information

Introduction to Computer Engineering (E114)

Introduction to Computer Engineering (E114) Introduction to Computer Engineering (E114) Lab 1: Full Adder Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for

More information

Laboratory Exercise 2. Power Distribution w/autocad Electrical

Laboratory Exercise 2. Power Distribution w/autocad Electrical Laboratory Exercise 2 Power Distribution w/autocad Electrical Procedure 1. Use the One Line and Three Line Example Drawings to create two drawings with at least 20 one-line elements and two three-line

More information

MapleSim User's Guide

MapleSim User's Guide MapleSim User's Guide Copyright Maplesoft, a division of Waterloo Maple Inc. 2001-2009 MapleSim User's Guide Copyright Maplesoft, MapleSim, and Maple are all trademarks of Waterloo Maple Inc. Maplesoft,

More information

EE115C Digital Electronic Circuits. Tutorial 2: Hierarchical Schematic and Simulation

EE115C Digital Electronic Circuits. Tutorial 2: Hierarchical Schematic and Simulation EE115C Digital Electronic Circuits Tutorial 2: Hierarchical Schematic and Simulation The objectives are to become familiar with Virtuoso schematic editor, learn how to create the symbol view of basic primitives,

More information

Lab 2: Functional Simulation Using. Affirma Analog Simulator

Lab 2: Functional Simulation Using. Affirma Analog Simulator Lab 2: Functional Simulation Using Affirma Analog Simulator This Lab will go over: 1. Creating a test bench 2. Simulation in Spectre Spice using the Analog Design environment 1. Creating a test bench:

More information

Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies

Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies Tim Varner - 2004 The Inventor User Interface Command Panel Lists the commands that are currently

More information

Vensim PLE Quick Reference and Tutorial

Vensim PLE Quick Reference and Tutorial Vensim PLE Quick Reference and Tutorial Main Toolbar Sketch Tools Menu Title Bar Analysis Tools Build (Sketch)Window Status Bar General Points 1. File operations and cutting/pasting work in the standard

More information

DesignWorks- CrystalWork Skillbuilder

DesignWorks- CrystalWork Skillbuilder DesignWorks- CrystalWork Skillbuilder Crystal Shapes & Fills The following exercise will cover the basics of filling and editing a Crystal shape. For detailed CrystalWork software instructions, review

More information

Dash HF Family High Speed Data Acquisition Recorder

Dash HF Family High Speed Data Acquisition Recorder Dash HF Family High Speed Data Acquisition Recorder QUICK START GUIDE (1) Introduction (2) Getting Started (3) Hardware Overview (4) Menus & Icons (5) Using the Dash HF (6) Setting Up the Display Appearance

More information

DTP with MS Publisher

DTP with MS Publisher DTP with MS Publisher ICT Curriculum Team 2004 Getting Going Basics desktop publishing a system for producing printed materials that consists of a PERSONAL COMPUTER or COMPUTER workstation, a high-resolution

More information

Scottish Improvement Skills

Scottish Improvement Skills Scottish Improvement Skills Creating a run chart on MS Excel 2007 Create and save a new Excel worksheet. Some of the details of steps given below may vary slightly depending on how Excel has been used

More information

BioFuel Graphing instructions using Microsoft Excel 2003 (Microsoft Excel 2007 instructions start on page mei-7)

BioFuel Graphing instructions using Microsoft Excel 2003 (Microsoft Excel 2007 instructions start on page mei-7) BioFuel Graphing instructions using Microsoft Excel 2003 (Microsoft Excel 2007 instructions start on page mei-7) Graph as a XY Scatter Chart, add titles for chart and axes, remove gridlines. A. Select

More information

1 In the Mini Window Editor, double-click phase 1 (GF-Wall-External) to make it current:

1 In the Mini Window Editor, double-click phase 1 (GF-Wall-External) to make it current: 1 This Quick Start tutorial introduces you to the basics of creating an intelligent drawing using the BIM components supplied with MicroGDS 2010. Here we demonstrate how to construct the external walls

More information

Chapter 5. Inserting Objects. Highlights

Chapter 5. Inserting Objects. Highlights Chapter 5 Inserting Objects Highlights 5. Inserting AutoShapes, WordArts and ClipArts 5. Changing Object Position, Size and Colour 5. Drawing Lines 5.4 Inserting Pictures and Text Boxes 5.5 Inserting Movies

More information

Welcome to MicroStation

Welcome to MicroStation Welcome to MicroStation Module Overview This module will help a new user become familiar with the tools and features found in the MicroStation design environment. Module Prerequisites Fundamental knowledge

More information

Fading Music into Voice

Fading Music into Voice Fading Music into Voice The process of fading music into voice involves several steps. First, both the music file and the voice file must be in Audacity. Second, we fade out the music over 10 seconds or

More information

1. Concepts and What s New Concepts What's New in E Getting Started Starting Electra Page Scale

1. Concepts and What s New Concepts What's New in E Getting Started Starting Electra Page Scale 1 1. Concepts and What s New... 6 1.1 Concepts... 6 1.2 What's New in E6... 7 2. Getting Started... 8 2.1 Starting Electra... 8 2.2 Page Scale... 8 2.3 Page Measurement Units... 9 2.4 Stencils and Drawing

More information

Using Microsoft Word. Paragraph Formatting. Displaying Hidden Characters

Using Microsoft Word. Paragraph Formatting. Displaying Hidden Characters Using Microsoft Word Paragraph Formatting Every time you press the full-stop key in a document, you are telling Word that you are finishing one sentence and starting a new one. Similarly, if you press

More information

ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW

ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW Objectives: The goal of this exercise is to introduce the Laboratory Virtual Instrument Engineering Workbench, or LabVIEW software. LabVIEW is the primary software

More information

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL)

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL) EE115C Digital Electronic Circuits Tutorial 4: Schematic-driven Layout (Virtuoso XL) This tutorial will demonstrate schematic-driven layout on the example of a 2-input NAND gate. Simple Layout (that won

More information

Quick Crash Scene Tutorial

Quick Crash Scene Tutorial Quick Crash Scene Tutorial With Crash Zone or Crime Zone, even new users can create a quick crash scene diagram in less than 10 minutes! In this tutorial we ll show how to use Crash Zone s unique features

More information

Chapter 4 Determining Cell Size

Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size The third tutorial is designed to give you a demonstration in using the Cell Size Calculator to obtain the optimal cell size for your circuit

More information

Lesson 5: Board Design Files

Lesson 5: Board Design Files 5 Lesson 5: Board Design Files Learning Objectives In this lesson you will: Use the Mechanical Symbol Editor to create a mechanical board symbol Use the PCB Design Editor to create a master board design

More information