Graphs and Orders Cours MPRI

Size: px
Start display at page:

Download "Graphs and Orders Cours MPRI"

Transcription

1 Graphs and Orders Cours MPRI Michel Habib Chevaleret novembre 2012

2 Table des Matières Introduction Definitions Dilworth theorem Applications Comparability invariants Permutation graphs Transitive Orientation Some conjectures

3 Introduction Modelisations using partial orders are very important in applications : distributed systems, logics, physics, biology...

4 Introduction Examples

5 Introduction Examples

6 Introduction Examples

7 Introduction Examples

8 Introduction If the data is not acurate enough, the natural generalization is to consider paths on a rooted directed tree, which leads to directed path graphs. But we could also deal with subtrees but then we found another subclass of chordal graphs. In some particular cases we can only use the size of the intersection of intervals this leads to tolerance graphs and orders.

9 Introduction 3 simple paradigms to solve an algorithmic problem Play with the definition of the problem (ex : compute factoring permutation instead of modular decomposition tree) Play with the representations (ex : use various geometric representations of particular classes of graphs) Play with dualities, if any (ex : G versus G, or in case of planarity use the dual) Of course this often is clear, only afterwards!

10 Introduction Playing with the representations : common intervals Let τ and σ be two permutations on [1, n]. wlog τ is supposed to be the identity 2 permutations τ= σ= Definition Two intervals I, J [1, n] are common intervals of τ and σ if τ(i ) = σ(j) as subsets of [1, n].

11 Introduction example τ= σ= The ordering of the elements may differ. [3, 4, 5, 6] and [4, 6, 3, 5] are the unique non trivial maximal common intervals of τ and σ.

12 Introduction Problems The size of the data is in O(n). 1. Propose an algorithm which computes all non trivial maximal common intervals 2. Propose an algorithm which computes all common intervals 3. Same problems for k permutations 4. Same problems with some fixed number of errors

13 Definitions Graphs and orders Definitions P = (X, ) is an order if the relation is reflexive, transitive and antisymmetric. Q = (X, ) is a quasi order if the relation is reflexive and transitive. If either x P y or y P x, then x, y are said to be comparable, else they are incomparable (denoted by x y). We say that y covers x denoted by x < y, if there no z X, z x, y such that x P z P y.

14 Definitions Definitions An antichain (resp. chain) is a set of pairwise incomparable (resp. comparable) elements. N.B. a chain is a directed path A linear extension τ of P is a total order compatible with P, i.e. x P y implies x τ y.

15 Definitions A partial order can be represented by an acyclic directed graph G = (X, U) satisfying x P y iff a path from x to y in G. If xy U and it exists a path of length 2 from x to y in G, then xy is called a transitivity arc, else it is a covering arc. Among the lattice of these acyclic graphs, they are two extremal ones : G t = (X, U t ) the transitive closure of P, for which x P y iff x, y U t. G r = (X, U r ) the transitive reduction of P, having no transivity arcs. Other names : Hasse diagram, directed covering graph. G t has all possible transitivity arcs, while G r has none.

16 Definitions Unfortunately these two representations of an order have not the same complexity or size. Since for a chain order, G t = (X, U t ) can be quadratic in size of G r = (X, U r ). The transitive closure-reduction gap It is not known if it is possible to extract G t = (X, U t ) or G r = (X, U r ) from a given representation G of P in linear time.

17 Definitions Best known algorithms require either O(n.m) or O(n α ), with α > 2. Best complexity for boolean matrix multiplication. Graal for algorithms on partial orders A linear-time algorithm accepting any given representation G of P.

18 Definitions Other representations : planar diagrams.

19 Definitions Undirected graphs associated with an order Comparability graphs An undirected graph G = (X, E) is a comparability graph if it can be directed as a partial order (more precisely as the graph of the transitive closure) Covering graph An undirected graph G = (X, E) is a covering graph if it can be directed as the directed covering graph of a partial order (more precisely as the graph of the transitive reduction of the partial order)

20 Definitions Examples

21 Definitions These two notions are very different It is polynomial to recognize a comparability graph, while it is NP-hard for a covering graph (Nesestril, Rödl 89). There exists a nice characterization of comparability graphs, while there exist only necessary conditions for covering graphs.

22 Definitions Examples of comparability graphs Tree are comparability graphs, but C 5 a cycle with 5 vertices is not a comparability graph. Interval graphs are complement of comparability graphs (cocomparability graphs). Chordal are not always comparability graphs (cf. the 3-sun or its complement)

23 Definitions Counterexamples a b c f d e Figure: A chordal graph which is not a comparability graph

24 Definitions The duality between graphs and orders Co-comparability graphs The complement of a comparability graph is called a co-comparability graph. There is a kind of duality between a co-comparability graph and the partial orders associated with its complement. Examples cographs and series-parallel orders Interval graphs and interval orders Permutation graphs and permutation orders also called 2-dimensional orders. Trapezoid graphs and trapezoid orders...

25 Definitions Using this duality can help to solve a problem (many examples of that). Two examples follow

26 Dilworth theorem Dilworth theorem Dilworth 1950 For every finite order P, The maximum size of an antichain (denoted by width(p)) is equal to the minimum size of a chain partition of P (denoted by θ(p)). Consequences Comparability and co-comparability graphs are perfect

27 Dilworth theorem Applications Another min-max polynomial theorem similar to max flow min cut. Computation of width(p) can be done in O(n 5/2 ) using a maximum matching algorithm.

28 Dilworth theorem Applications Erdös, Szekeres 1935 From every sequence of pq + 1 integers one can always extract a decreasing subsequence of size p + 1 or an increasing one of size q + 1.

29 Dilworth theorem Applications Application for computing a maximum independent set in a comparability graph G 1. Transitively orient G as a partial order P 2. Compute a minimal path partition of P via a matching algorithm on a bipartite graph 3. Extract an independent set form this set of paths

30 Dilworth theorem Comparability invariants Comparability invariants For an invariant f defined on partial orders : f : P f (P) N f is a comparability invariant if for every partial orders P, Q having the same comparability graphs : f (P) = f (Q).

31 Dilworth theorem Comparability invariants Examples of comparability invariants f = being an interval order (resp. a permutation ordering) The minimum size of a chain decomposition of P (using Dilworth s theorem). The dimension of a partial order dim(p) (i.e. the minimum number of linear extensions whose intersection is P) The total number of linear extensions of P, denoted by Ext(P). #P-complete to compute Ext(P) Brightwell, Winkler

32 Dilworth theorem Comparability invariants As the duality operation on planar graphs, we can use this duality between undirected graphs (co-comparability graphs) and orders to solve some optimization problems which can be easier on the dual, if the optimization problem corresponds to a comparability invariant. This can produce efficient algorithms in particular when using partition refinement tools which can be applied within the same complexity on the graph or its complement. Examples : Recognition of permutation graphs and generalization to trapezoid graphs. Computation of a minimum path covering of a comparability graph (Corneil, Dalton, Habib 2011)...

33 Dilworth theorem Comparability invariants Characterization theorem : MH 84, Dresen, Pogunke, Winkler 85 For an invariant f defined on partial orders : f : P f (P) N f is a comparability invariant iff it satisfies : P, f(p)=f (P ) P, Q partial orders and x P, f (P Q x ) = f (P Q x )

34 Dilworth theorem Comparability invariants Partial order dimension Spiljzran Lemma Let P = (X, ) be a partial order, and a, b X with a b. Then Q = (P + {a < b}) t is a partial order extension of P. Using repeatedly this lemma with will reach a linear extension of P, moreover any linear extension of P can be obtained that way.

35 Dilworth theorem Comparability invariants Definition dim(p) = min k s.t. P = 1 i k L i where L i is a linear extension of P dim(p) n dim(p Q x ) = max(2, dim(p), dim(q)) (Consequences permutation graphs are closed under substitution)

36 Dilworth theorem Comparability invariants Geometric representation Every co-comparability graph can be represented as the intersection graph of k-polylines Application : a way to randomly generate co-comparability graphs.

37 Permutation graphs Permutation graphs

38 Permutation graphs

39 Permutation graphs

40 Permutation graphs

41 Permutation graphs Characterization theorem The 3 following statements are equivalent : 1. G is a permutation graph 2. G and G are comparability graphs

42 Permutation graphs Being a permutation graph is a comparability invariant. Dushnik-Miller s theorem (1940) 1. P is a two dimensional order 2. P admits a non-separating linear extension Nice lemma Let P (resp. Q) be a transitive orientation of a comparability graph G (resp. G). Then P + Q is a total ordering.

43 Transitive Orientation Original problem Find for each edge in G a unique orientation, such that the resulting graph is acyclic and transitive. Little Variation Find a linear extension of P which is an acyclic orientation of G.

44 Transitive Orientation Transitive orientation Strong relationship with modular decomposition Lemma MacConnell, Spinrad The last vertex of a LBFS on G can be taken as a source in G. Lemma Let M be a module, the restriction of a LBFS to M is a legitimate LBFS. Consequence An O(n + mlogn) algorithm for transitive orientation using LBFS.

45 Transitive Orientation Transitive Orientation Algorithm 1. Compute σ a LBFS ordering of G 2. Take x = σ(n) as a source and propagate using generic partition refinement Initial partition : {x, N(x), N(x)} Insertion rule : N(x) close to pivot.

46 Transitive Orientation Main Invariant It exists a transitive orientation of G compatible with the current ordered partition. Checking Transitivity Checking the result requires boolean matrix multiplication. Not yet linear? Computing is easier than checking!

47 Transitive Orientation Application to recognize permutation graphs 1. Compute a LBFS on G 2. Compute a linear extension τ of P 3. Compute an orientation H G of G 4. Replay the 3 previous steps for G 5. Compute : σ = H G + H G σ = H G + H G 6. Check if σ and σ provide a good representation of G

48 Graphs and Orders Cours MPRI Transitive Orientation

49 Transitive Orientation

50 Transitive Orientation

51 Transitive Orientation Why this algorithm is Fantastic? 1. The whole complexity is linear (a little tricky for the step 5, since it seems necessary to pay O(n 2 )) 2. Apply dually on G and G using partition refinement 3. Avoids the checking of transitivity.

52 Some conjectures To finish with two nice and old conjectures The 1/3-2/3 Conjecture This conjecture asserts that every finite partially ordered set that is not a chain contains an incomparable pair (x,y) so that 1/3 Prob[x < y] 2/ shows that the bound is tight. Kahn and Saks proved that there is always a pair for which 3/11 Prob[x < y] 8/11

53 Some conjectures Seymour s second neighbourhood conjecture Directed graphs (digraphs) are orientations of graphs, so they do not contain loops, parallel arcs, or digons (directed cycles of length 2). N + (x) = successors of x (at distance exactly one). N ++ (x) =vertices at distance exactly 2 from x Conjecture For every directed graph G there exists at least one vertex x such that : N ++ (x) N + (x)

Chordal graphs MPRI

Chordal graphs MPRI Chordal graphs MPRI 2017 2018 Michel Habib habib@irif.fr http://www.irif.fr/~habib Sophie Germain, septembre 2017 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural

More information

Last course. Last course. Michel Habib 28 octobre 2016

Last course. Last course. Michel Habib  28 octobre 2016 Last course Michel Habib habib@irif.fr http://www.irif.fr/~habib 28 octobre 2016 Schedule Introduction More structural insights on chordal graphs Properties of reduced clique graphs Exercises Interval

More information

Graphes: Manipulations de base et parcours

Graphes: Manipulations de base et parcours Graphes: Manipulations de base et parcours Michel Habib habib@liafa.univ-paris-diderot.fr http://www.liafa.univ-paris-diderot.fr/~habib Cachan, décembre 2013 Notations Here we deal with finite loopless

More information

Tolerance Graphs and Orders. 1 Introduction and Overview. Stefan Felsner

Tolerance Graphs and Orders. 1 Introduction and Overview. Stefan Felsner Tolerance Graphs and Orders Stefan Felsner Freie Universität Berlin, Fachbereich Mathematik und Informatik, Takustr. 9, 14195 Berlin, Germany E-mail: felsner@inf.fu-berlin.de Abstract. We show that if

More information

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes J.-F. Couturier 1 P. Heggernes 2 D. Kratsch 1 P. van t Hof 2 1 LITA Université de Lorraine F-57045 Metz France 2 University

More information

Diameter computations

Diameter computations Diameter computations Michel Habib habib@liafa.univ-paris-diderot.fr http://www.liafa.univ-paris-diderot.fr/~habib November 2013 Schedule C est un sujet au centre de mes recherches actuelles. Joint work

More information

Vertical decomposition of a lattice using clique separators

Vertical decomposition of a lattice using clique separators Vertical decomposition of a lattice using clique separators Anne Berry, Romain Pogorelcnik, Alain Sigayret LIMOS UMR CNRS 6158 Ensemble Scientifique des Cézeaux Université Blaise Pascal, F-63 173 Aubière,

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

Necessary edges in k-chordalizations of graphs

Necessary edges in k-chordalizations of graphs Necessary edges in k-chordalizations of graphs Hans L. Bodlaender Abstract In this note, we look at which edges must always be added to a given graph G = (V, E), when we want to make it a chordal graph

More information

arxiv: v1 [cs.ds] 14 Dec 2018

arxiv: v1 [cs.ds] 14 Dec 2018 Graph classes and forbidden patterns on three vertices Laurent Feuilloley 1,2,3 and Michel Habib 1,3 arxiv:1812.05913v1 [cs.ds] 14 Dec 2018 1 IRIF, UMR 8243 CNRS & Paris Diderot University, Paris, France

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Recognizing Interval Bigraphs by Forbidden Patterns

Recognizing Interval Bigraphs by Forbidden Patterns Recognizing Interval Bigraphs by Forbidden Patterns Arash Rafiey Simon Fraser University, Vancouver, Canada, and Indiana State University, IN, USA arashr@sfu.ca, arash.rafiey@indstate.edu Abstract Let

More information

COMP260 Spring 2014 Notes: February 4th

COMP260 Spring 2014 Notes: February 4th COMP260 Spring 2014 Notes: February 4th Andrew Winslow In these notes, all graphs are undirected. We consider matching, covering, and packing in bipartite graphs, general graphs, and hypergraphs. We also

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

A Decomposition for Chordal graphs and Applications

A Decomposition for Chordal graphs and Applications A Decomposition for Chordal graphs and Applications Michel Habib Joint work with Vincent Limouzy and Juraj Stacho Pretty Structure, Existencial Polytime Jack Edmonds Birthday, 7-9 april 2009 Schedule Chordal

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach.

Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach. Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach. S. Bessy, Projet Mascotte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

THE LEAFAGE OF A CHORDAL GRAPH

THE LEAFAGE OF A CHORDAL GRAPH Discussiones Mathematicae Graph Theory 18 (1998 ) 23 48 THE LEAFAGE OF A CHORDAL GRAPH In-Jen Lin National Ocean University, Taipei, Taiwan Terry A. McKee 1 Wright State University, Dayton, OH 45435-0001,

More information

Simpler, Linear-time Transitive Orientation via Lexicographic Breadth-First Search

Simpler, Linear-time Transitive Orientation via Lexicographic Breadth-First Search Simpler, Linear-time Transitive Orientation via Lexicographic Breadth-First Search Marc Tedder University of Toronto arxiv:1503.02773v1 [cs.ds] 10 Mar 2015 Abstract Comparability graphs are the undirected

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

4 Fractional Dimension of Posets from Trees

4 Fractional Dimension of Posets from Trees 57 4 Fractional Dimension of Posets from Trees In this last chapter, we switch gears a little bit, and fractionalize the dimension of posets We start with a few simple definitions to develop the language

More information

THE DIMENSION OF POSETS WITH PLANAR COVER GRAPHS

THE DIMENSION OF POSETS WITH PLANAR COVER GRAPHS THE DIMENSION OF POSETS WITH PLANAR COVER GRAPHS STEFAN FELSNER, WILLIAM T. TROTTER, AND VEIT WIECHERT Abstract. Kelly showed that there exist planar posets of arbitrarily large dimension, and Streib and

More information

Interaction Between Input and Output-Sensitive

Interaction Between Input and Output-Sensitive Interaction Between Input and Output-Sensitive Really? Mamadou M. Kanté Université Blaise Pascal - LIMOS, CNRS Enumeration Algorithms Using Structure, Lorentz Institute, August 26 th, 2015 1 Introduction

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

Jörgen Bang-Jensen and Gregory Gutin. Digraphs. Theory, Algorithms and Applications. Springer

Jörgen Bang-Jensen and Gregory Gutin. Digraphs. Theory, Algorithms and Applications. Springer Jörgen Bang-Jensen and Gregory Gutin Digraphs Theory, Algorithms and Applications Springer Contents 1. Basic Terminology, Notation and Results 1 1.1 Sets, Subsets, Matrices and Vectors 1 1.2 Digraphs,

More information

Fully dynamic algorithm for recognition and modular decomposition of permutation graphs

Fully dynamic algorithm for recognition and modular decomposition of permutation graphs Fully dynamic algorithm for recognition and modular decomposition of permutation graphs Christophe Crespelle Christophe Paul CNRS - Département Informatique, LIRMM, Montpellier {crespell,paul}@lirmm.fr

More information

Colourings, Homomorphisms, and Partitions of Transitive Digraphs

Colourings, Homomorphisms, and Partitions of Transitive Digraphs Colourings, Homomorphisms, and Partitions of Transitive Digraphs Tomás Feder 268 Waverley St., Palo Alto, CA 94301, USA tomas@theory.stanford.edu Pavol Hell School of Computing Science Simon Fraser University

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Minimal Classes of Bipartite Graphs of Unbounded Clique-width

Minimal Classes of Bipartite Graphs of Unbounded Clique-width Minimal Classes of Bipartite Graphs of Unbounded Clique-width A. Atminas, R. Brignall, N. Korpelainen, V. Lozin, J. Stacho Abstract The celebrated result of Robertson and Seymour states that in the family

More information

Partial Characterizations of Circular-Arc Graphs

Partial Characterizations of Circular-Arc Graphs Partial Characterizations of Circular-Arc Graphs F. Bonomo a,1,3, G. Durán b,2,4, L.N. Grippo a,5, M.D. Safe a,6 a CONICET and Departamento de Computación, FCEyN, UBA, Buenos Aires, Argentina b Departamento

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

Integer Partition Poset

Integer Partition Poset Integer Partition Poset Teena Carroll St. Norbert College Presented at the Clemson REU Summer 2010 Integer Partitions Given an integer, how can we break it down into the sum of positive integers? ex: n=5

More information

Some new results on circle graphs. Guillermo Durán 1

Some new results on circle graphs. Guillermo Durán 1 Some new results on circle graphs Guillermo Durán 1 Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile gduran@dii.uchile.cl Departamento

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

Lex-BFS and partition renement, with applications to transitive orientation, interval graph recognition and consecutive ones testing

Lex-BFS and partition renement, with applications to transitive orientation, interval graph recognition and consecutive ones testing Theoretical Computer Science 234 (2000) 59 84 www.elsevier.com/locate/tcs Lex-BFS and partition renement, with applications to transitive orientation, interval graph recognition and consecutive ones testing

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

On 2-Subcolourings of Chordal Graphs

On 2-Subcolourings of Chordal Graphs On 2-Subcolourings of Chordal Graphs Juraj Stacho School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby, B.C., Canada V5A 1S6 jstacho@cs.sfu.ca Abstract. A 2-subcolouring

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

Important separators and parameterized algorithms

Important separators and parameterized algorithms Important separators and parameterized algorithms Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary PCSS 2017 Vienna, Austria September

More information

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Linear Extensions of Directed Acyclic Graphs Kyle Gettig Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Motivation Individuals can be modeled as vertices of a graph, with edges

More information

Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs

Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs Ryuhei Uehara a Seinosuke Toda b Takayuki Nagoya c a Natural Science Faculty, Komazawa University. 1 b Department

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

Linear Time Split Decomposition Revisited

Linear Time Split Decomposition Revisited Linear Time Split Decomposition Revisited Pierre Charbit Fabien de Montgoler Mathieu Ranot LIAFA, Univ. Paris Diderot - CNRS, ANR Project Graal {charbit,fm,raffinot}@liafa.jussieu.fr Abstract Given a family

More information

Approximating minimum cocolorings

Approximating minimum cocolorings Information Processing Letters 84 (2002) 285 290 www.elsevier.com/locate/ipl Approximating minimum cocolorings Fedor V. Fomin a,, Dieter Kratsch b, Jean-Christophe Novelli c a Heinz Nixdorf Institute,

More information

Certifying Algorithms and Forbidden Induced Subgraphs

Certifying Algorithms and Forbidden Induced Subgraphs /32 and P. Heggernes 1 D. Kratsch 2 1 Institutt for Informatikk Universitetet i Bergen Norway 2 Laboratoire d Informatique Théorique et Appliquée Université Paul Verlaine - Metz France Dagstuhl - Germany

More information

Graph labeling schemes

Graph labeling schemes Graph labeling schemes Antoine Amarilli Abstract We present the problem of finding efficient labeling schemes to encode the reachability relation represented by a DAG. We focus on the wellstudied cases

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Introduction to Randomized Algorithms

Introduction to Randomized Algorithms Introduction to Randomized Algorithms Gopinath Mishra Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Organization 1 Introduction 2 Some basic ideas from

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

Unrestricted and Complete Breadth-First Search of Trapezoid Graphs in O(n) Time

Unrestricted and Complete Breadth-First Search of Trapezoid Graphs in O(n) Time Unrestricted and Complete Breadth-First Search of Trapezoid Graphs in O(n) Time Christophe Crespelle and Philippe Gambette Abstract We present an O(n) Breadth-First Search algorithm for trapezoid graphs,

More information

How many colors are needed to color a map?

How many colors are needed to color a map? How many colors are needed to color a map? Is 4 always enough? Two relevant concepts How many colors do we need to color a map so neighboring countries get different colors? Simplifying assumption (not

More information

SAMPLING AND THE MOMENT TECHNIQUE. By Sveta Oksen

SAMPLING AND THE MOMENT TECHNIQUE. By Sveta Oksen SAMPLING AND THE MOMENT TECHNIQUE By Sveta Oksen Overview - Vertical decomposition - Construction - Running time analysis - The bounded moments theorem - General settings - The sampling model - The exponential

More information

A NEW TEST FOR INTERVAL GRAPHS. Wen-Lian Hsu 1

A NEW TEST FOR INTERVAL GRAPHS. Wen-Lian Hsu 1 A NEW TEST FOR INTERVAL GRAPHS Wen-Lian Hsu 1 Institute of Information Science, Academia Sinica Taipei, Taiwan, Republic of China hsu@iis.sinica.edu.tw Abstract An interval graph is the intersection graph

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

by conservation of flow, hence the cancelation. Similarly, we have

by conservation of flow, hence the cancelation. Similarly, we have Chapter 13: Network Flows and Applications Network: directed graph with source S and target T. Non-negative edge weights represent capacities. Assume no edges into S or out of T. (If necessary, we can

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Computing a Clique Tree with the Algorithm Maximal Label Search

Computing a Clique Tree with the Algorithm Maximal Label Search algorithms Article Computing a Clique Tree with the Algorithm Maximal Label Search Anne Berry 1 and eneviève Simonet 2, * 1 LIMOS (Laboratoire d Informatique, d Optimisation et de Modélisation des Systèmes)

More information

The Parameterized Complexity of Finding Point Sets with Hereditary Properties

The Parameterized Complexity of Finding Point Sets with Hereditary Properties The Parameterized Complexity of Finding Point Sets with Hereditary Properties David Eppstein University of California, Irvine Daniel Lokshtanov University of Bergen University of California, Santa Barbara

More information

5. Lecture notes on matroid intersection

5. Lecture notes on matroid intersection Massachusetts Institute of Technology Handout 14 18.433: Combinatorial Optimization April 1st, 2009 Michel X. Goemans 5. Lecture notes on matroid intersection One nice feature about matroids is that a

More information

ADJACENCY POSETS OF PLANAR GRAPHS

ADJACENCY POSETS OF PLANAR GRAPHS ADJACENCY POSETS OF PLANAR GRAPHS STEFAN FELSNER, CHING MAN LI, AND WILLIAM T. TROTTER Abstract. In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below,

More information

V8 Molecular decomposition of graphs

V8 Molecular decomposition of graphs V8 Molecular decomposition of graphs - Most cellular processes result from a cascade of events mediated by proteins that act in a cooperative manner. - Protein complexes can share components: proteins

More information

Bipartite Coverings and the Chromatic Number

Bipartite Coverings and the Chromatic Number Bipartite Coverings and the Chromatic Number Dhruv Mubayi Sundar Vishwanathan Department of Mathematics, Department of Computer Science Statistics, and Computer Science Indian Institute of Technology University

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

arxiv: v1 [cs.dm] 5 Apr 2017

arxiv: v1 [cs.dm] 5 Apr 2017 arxiv:1704.01389v1 [cs.dm] 5 Apr 2017 Seymour s second neighbourhood conjecture for quasi-transitive oriented graphs Gregory Gutin 1 and Ruijuan Li 2 1 Department of Computer Science, Royal Holloway, University

More information

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

arxiv: v5 [cs.dm] 9 May 2016

arxiv: v5 [cs.dm] 9 May 2016 Tree spanners of bounded degree graphs Ioannis Papoutsakis Kastelli Pediados, Heraklion, Crete, reece, 700 06 October 21, 2018 arxiv:1503.06822v5 [cs.dm] 9 May 2016 Abstract A tree t-spanner of a graph

More information

Minimal dominating sets in graph classes: combinatorial bounds and enumeration

Minimal dominating sets in graph classes: combinatorial bounds and enumeration Minimal dominating sets in graph classes: combinatorial bounds and enumeration Jean-François Couturier 1, Pinar Heggernes 2, Pim van t Hof 2, and Dieter Kratsch 1 1 LITA, Université Paul Verlaine - Metz,

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

The Structure of Bull-Free Perfect Graphs

The Structure of Bull-Free Perfect Graphs The Structure of Bull-Free Perfect Graphs Maria Chudnovsky and Irena Penev Columbia University, New York, NY 10027 USA May 18, 2012 Abstract The bull is a graph consisting of a triangle and two vertex-disjoint

More information

arxiv:submit/ [math.co] 9 May 2011

arxiv:submit/ [math.co] 9 May 2011 arxiv:submit/0243374 [math.co] 9 May 2011 Connectivity and tree structure in finite graphs J. Carmesin R. Diestel F. Hundertmark M. Stein 6 May, 2011 Abstract We prove that, for every integer k 0, every

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis Contents Chapter 1. Relations 8 1. Relations and Their Properties 8 1.1. Definition of a Relation 8 1.2. Directed Graphs 9 1.3. Representing Relations with Matrices 10 1.4. Example 1.4.1 10 1.5. Inverse

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

On Seese s Conjecture. Bruno Courcelle. Université Bordeaux 1, LaBRI

On Seese s Conjecture. Bruno Courcelle. Université Bordeaux 1, LaBRI On Seese s Conjecture Bruno Courcelle Université Bordeaux 1, LaBRI Summary 1. Graphs, Languages, Theories 2. MS-compatible structure transformations and MS-transductions 3. Seese s Conjecture 4. Tree-width

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Minimal Universal Bipartite Graphs

Minimal Universal Bipartite Graphs Minimal Universal Bipartite Graphs Vadim V. Lozin, Gábor Rudolf Abstract A graph U is (induced)-universal for a class of graphs X if every member of X is contained in U as an induced subgraph. We study

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

arxiv: v3 [cs.dm] 17 Jun 2016

arxiv: v3 [cs.dm] 17 Jun 2016 Partitioning Perfect Graphs into Stars arxiv:1402.2589v3 [cs.dm] 17 Jun 2016 René van Bevern 1,2, Robert Bredereck 2, Laurent Bulteau 3, Jiehua Chen 2, Vincent Froese 2, Rolf Niedermeier 2, and Gerhard

More information

arxiv: v3 [cs.dm] 15 Feb 2016

arxiv: v3 [cs.dm] 15 Feb 2016 Clique-Stable Set Separation in Perfect Graphs with no Balanced Skew-Partitions Aurélie Lagoutte a,, Théophile Trunck a a LIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon, 46, allée de

More information

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

Mutual exclusion scheduling with interval graphs or related classes. Part II.

Mutual exclusion scheduling with interval graphs or related classes. Part II. Mutual exclusion scheduling with interval graphs or related classes. Part II. Frédéric Gardi 1 Bouygues SA / DGITN / e-lab, 32 avenue Hoche, 75008 Paris, France Abstract This paper is the second part of

More information

Lecture Notes on Graph Theory

Lecture Notes on Graph Theory Lecture Notes on Graph Theory Vadim Lozin 1 Introductory concepts A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

The following is a summary, hand-waving certain things which actually should be proven.

The following is a summary, hand-waving certain things which actually should be proven. 1 Basics of Planar Graphs The following is a summary, hand-waving certain things which actually should be proven. 1.1 Plane Graphs A plane graph is a graph embedded in the plane such that no pair of lines

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

The Dimension of Posets with Planar Cover Graphs. Stefan Felsner, William T. Trotter & Veit Wiechert. Graphs and Combinatorics

The Dimension of Posets with Planar Cover Graphs. Stefan Felsner, William T. Trotter & Veit Wiechert. Graphs and Combinatorics The Dimension of Posets with Planar Cover Graphs Stefan Felsner, William T. Trotter & Veit Wiechert Graphs and Combinatorics ISSN 0911-0119 Volume 31 Number 4 Graphs and Combinatorics (2015) 31:927-939

More information