Red Fox: An Execution Environment for Relational Query Processing on GPUs

Size: px
Start display at page:

Download "Red Fox: An Execution Environment for Relational Query Processing on GPUs"

Transcription

1 Red Fox: An Execution Environment for Relational Query Processing on GPUs Georgia Institute of Technology: Haicheng Wu, Ifrah Saeed, Sudhakar Yalamanchili LogicBlox Inc.: Daniel Zinn, Martin Bravenboer, Molham Aref NVIDIA: Gregory Diamos, Sean Baxter, Michael Garland Portland State University: Tim Sheard NEC Laboratories America: Srihari Cadambi, Srimat Chakradhar 1

2 System Diversity Today Amazon EC2 GPU Instances Mobile Platforms (DSP, GPUs) Hardware Diversity is Mainstream Keeneland System (GPUs) Cray Titan (GPUs) 2

3 New Accelerator Architectures New Applications and Software Stacks The Challenge Candidate Application Domains LargeQty(p) <- Qty(q), q > Large Graphs Relational Computations Over Massive Unstructured Data Sets: Sustain 10X 100X Throughput Over Multicore 3

4 Opportunities and Problems The Opportunity Significant potential data parallelism The Problems Need to process 1-50 TBs of data * Small Mem Capacity & Small PCIe bandwidth Fine grained computation * Independent Oracle Users Group. A New Dimension to Data Warehousing: IOUG Data Warehousing Survey. 4

5 Goal and Strategy GOAL Build a compilation chain to bridge the semantic gap between Relational Queries and GPU execution models 10x-100X speedup for relational queries over multicore Strategy 1. Optimized Primitive Design Fast GPU RA primitive implementations (PPoPP2013) 2. Minimize Data Movement Cost (MICRO2012) Between CPU and GPU Between GPU Cores and GPU Memory 3. Query level compilation and optimizations (CGO2014) 5

6 The Big Picture LogiQLQueries LogicBlox RT parcels out work units and manages out-of-core data. RT Red Fox extends LogicBlox environment to support GPUs. CPUs GPU CPU Cores 6

7 LogicBlox Domain Decomposition Policy Sand, Not Boxes Fitting boxes into a shipping container => hard (NP-Complete) Pouring sand into a dump truck => dead easy Large query is partitioned into very fine grained work units Work unit size should fit GPU memory GPU work unit size will be larger than CPU size Still many problems ahead, e.g. caching data in GPU Red Fox: Make the GPU(s) look like very high performance cores! 7

8 Domain Specific Compilation: Red Fox 1 First thing first, mapping the computation to GPU RA Primitives LogiQL Queries Query Plan Harmony IR LogiQL-to-RA Frontend RA-to-GPU Compiler (nvcc + RA-Lib) Harmony Runtime 2 Kernel Weaver Language Front-End Translation Layer Machine Back-End 1. H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, S. Yalamanchili. Red Fox: An Execution Environment for Relational Query Processing on GPUs. In CGO, G. Diamos, and S. Yalamanchili. Harmony: An Execution Model and Runtime for Heterogeneous Many-Core Processors. In HPDC,

9 Source Language: LogiQL LogiQL is based on Datalog A declarative programming language Extended Datalog with aggregations, arithmetic, etc. Find more about LogiQL in Example ancestor(x,y)<-parent(x,y). ancestor(x,y)<-ancestor(x,t),ancestor(t,y). recursive definition Executed by LogicBlox Platform. Find more about LogicBlox: 9

10 Language Front-end Front-End Compilation Flow LogiQL Queries LogicBlox Parser Parsing Type Checking AST Optimization Red Fox Compilation Flow: Translating LogiQL Queries to Relational Algebra (RA) AST RA Translation LogicBlox Flow Industry strength optimization Query Plan Pass Manager Red Fox common (sub)expression elimination dead code elimination more optimizations are needed 10

11 Structure of the Two IRs: Query Plan Module RA Primitives Harmony IR Module Variable Types Data RA-to-GPU Compiler (nvcc + RA-Lib) Variable Types Data Basic Block Operator Basic Block Operator Input Output Input Output CUDA 11

12 Two IRs Enable More Choices LogiQLQueries LogiQL-to-RA Frontend Query Plan RA-to-GPU (nvcc + RA-Lib) Harmony IR SQL Queries SQL-to-RA Frontend CUDA Library OpenCL Library Synthesized RA operators Design Supports Extensions to Other Language Front-Ends Other Back-ends 12

13 Primitive Library: Data Structures Key-Value Store Arrays of densely packed tuples Support for up to 1024 bit tuples Support int, float, string, date id price tax 4 bytes 8 bytes 16 bytes Key Value 13

14 Primitive Library: Performance Stores the GPU implementation of following primitives Relational Algebra PROJECT PRODUCT SELECT JOIN SET Math Arithmetic: + - * / Aggregation Built-in String Datetime Others Sort Unique RA performance on GPU (PPoPP 2013)* Measured on Tesla C2050 Random Integers as inputs * G. Diamos, H. Wu, J. Wang, A. Lele, and S. Yalamanchili. Relational Algorithms for Multi-Bulk-Synchronous Processors. In PPoPP,

15 Forward Compatibility: Primitive Library Today Use best implementations from the state of the art Easily integrate improved algorithms designed by 3 rd parties Relational Algebra PROJECT PRODUCT SELECT JOIN SET Math Arithmetic: + - * / Aggregation Built-in String Datetime Others Merge Sort Radix Sort Unique Red: Thrust library Green: ModernGPU library 1 Merge Sort Sort-Merge Join Purple: Back40Computing 2 Black: Red Fox Library 1 S. Baxter. Modern GPU, 2 D. Merrill. Back40Computing, 15

16 Kernel Weaver * : Automatically Fusing Kernels A1: A2: A1: A2: A3: Kernel A A3: Kernel B Fused Kernel *H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU Computation. In MICRO, / Inspired by loop fusion Increase the granularity of kernel computation Reduce data movement throughout the hierarchy Compile-time automation Input is an optimized query plan 16

17 Harmony Runtime Managing Data Movements Schedule GPU Commands on available GPUs Harmony IR Scheduler... Runtime GPU Driver APIs Current scheduling method attempts to minimize memory footprint j_1:= p_1:= PROJECT j_1 Allocate j_1 Allocate p_1 Free j_1 Complex Scheduling such as speculative execution* is also possible *G. Diamos, and S. Yalamanchili. Speculative Execution On Multi-GPU Systems. In IPDPS,

18 Benchmarks: TPC-H Queries A popular decision making benchmark suite Comprised of 22 queries analyzing data from 6 big tables and 2 small tables Scale Factor parameter to control database size SF=1 corresponds to a 1GB database Courtesy: O Neil, O Neil, Chen. Star Schema Benchmark. 18

19 Experimental Environment Red Fox CPU GPU PCIe 3.0 x 16 Intel 3.50GHz Geforce GTX Titan (2688 cores, $1000 USD) OS Ubuntu G++/GCC 4.6 NVCC 5.5 Thrust 1.7 LogicBlox 4.0 Amazon EC2 instance cr1.8xlarge 32 threads run on 16 cores CPU cost - $3000 USD 19

20 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Ave Speedup Red Fox TPC-H (SF=1) Comparison with CPU w/ PCIe w/o PCIe >10x Faster with 1/3 Price On average (geo mean) GPU w/ PCIe : Parallel CPU = 11x GPU w/o PCIe : Parallel CPU = 15x This performance is viewed as lower bound - more improvements are coming Find latest performance and query plans in 20

21 Speedup Performance of Kernel Weaver Fused vs. Not Fused (both on GPU) a b c d e Measured on Tesla C2075 Random Integers as inputs Average additional 2.89x speedup over without fusion 21

22 Next Steps: Running Faster, Smarter, Bigger.. Running Faster Additional query optimizations Improved RA algorithms Improved run-time load distribution Running Smarter: Extension to single node multi-gpu Extension to multi-node multi-gpu Running Bigger From in-core to out-of-core processing 22

23 Current Work: Implementing Leapfrog Triejoin* in GPU Leapfrog Triejoin: A Simple Worst-Case Optimal Join Algorithm in CPU A Multiple-predicate Join Algorithm Benefits: No sort Less temporary result storage Testing Rules: Triangles(a,b,c) <- Edge(a,b),Edge(b,c),Edge(a,c). Searching triangles in a large graph 30M random edges (Edge nodes are 64-bit int) Current Performance: 1.5x faster than Red Fox using pairwise joins *T. Veldhuizen. Leapfrog Triejoin: A Simple Worst-Case Optimal Join Algorithm. In ICDT,

24 The Future is Acceleration topnews.net.tz Waterexchange.com Large Graphs Thank You 24

Red Fox: An Execution Environment for Relational Query Processing on GPUs

Red Fox: An Execution Environment for Relational Query Processing on GPUs Red Fox: An Execution Environment for Relational Query Processing on GPUs Haicheng Wu 1, Gregory Diamos 2, Tim Sheard 3, Molham Aref 4, Sean Baxter 2, Michael Garland 2, Sudhakar Yalamanchili 1 1. Georgia

More information

Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs

Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs Haicheng Wu 1, Daniel Zinn 2, Molham Aref 2, Sudhakar Yalamanchili 1 1. Georgia Institute of Technology 2. LogicBlox

More information

Scaling Data Warehousing Applications using GPUs

Scaling Data Warehousing Applications using GPUs Scaling Data Warehousing Applications using GPUs Sudhakar Yalamanchili School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA. 30332 Sponsors: National Science Foundation,

More information

Accelerating Data Warehousing Applications Using General Purpose GPUs

Accelerating Data Warehousing Applications Using General Purpose GPUs Accelerating Data Warehousing Applications Using General Purpose s Sponsors: Na%onal Science Founda%on, LogicBlox Inc., IBM, and NVIDIA The General Purpose is a many core co-processor 10s to 100s of cores

More information

Rela*onal Processing Accelerators: From Clouds to Memory Systems

Rela*onal Processing Accelerators: From Clouds to Memory Systems Rela*onal Processing Accelerators: From Clouds to Memory Systems Sudhakar Yalamanchili School of Electrical and Computer Engineering Georgia Institute of Technology Collaborators: M. Gupta, C. Kersey,

More information

ACCELERATION AND EXECUTION OF RELATIONAL QUERIES USING GENERAL PURPOSE GRAPHICS PROCESSING UNIT (GPGPU)

ACCELERATION AND EXECUTION OF RELATIONAL QUERIES USING GENERAL PURPOSE GRAPHICS PROCESSING UNIT (GPGPU) ACCELERATION AND EXECUTION OF RELATIONAL QUERIES USING GENERAL PURPOSE GRAPHICS PROCESSING UNIT (GPGPU) A Dissertation Presented to The Academic Faculty By Haicheng Wu In Partial Fulfillment of the Requirements

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

The Era of Heterogeneous Compute: Challenges and Opportunities

The Era of Heterogeneous Compute: Challenges and Opportunities The Era of Heterogeneous Compute: Challenges and Opportunities Sudhakar Yalamanchili Computer Architecture and Systems Laboratory Center for Experimental Research in Computer Systems School of Electrical

More information

Re-architecting Virtualization in Heterogeneous Multicore Systems

Re-architecting Virtualization in Heterogeneous Multicore Systems Re-architecting Virtualization in Heterogeneous Multicore Systems Himanshu Raj, Sanjay Kumar, Vishakha Gupta, Gregory Diamos, Nawaf Alamoosa, Ada Gavrilovska, Karsten Schwan, Sudhakar Yalamanchili College

More information

SDA: Software-Defined Accelerator for general-purpose big data analysis system

SDA: Software-Defined Accelerator for general-purpose big data analysis system SDA: Software-Defined Accelerator for general-purpose big data analysis system Jian Ouyang(ouyangjian@baidu.com), Wei Qi, Yong Wang, Yichen Tu, Jing Wang, Bowen Jia Baidu is beyond a search engine Search

More information

Ocelot: An Open Source Debugging and Compilation Framework for CUDA

Ocelot: An Open Source Debugging and Compilation Framework for CUDA Ocelot: An Open Source Debugging and Compilation Framework for CUDA Gregory Diamos*, Andrew Kerr*, Sudhakar Yalamanchili Computer Architecture and Systems Laboratory School of Electrical and Computer Engineering

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Accelerating RDBMS Operations Using GPUs

Accelerating RDBMS Operations Using GPUs Ryerson University From the SelectedWorks of Jason V Ma Fall 2013 Accelerating RDBMS Operations Using GPUs Jason V Ma, Ryerson University Available at: https://works.bepress.com/jason_ma/1/ Accelerating

More information

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni CUDA Optimizations WS 2014-15 Intelligent Robotics Seminar 1 Table of content 1 Background information 2 Optimizations 3 Summary 2 Table of content 1 Background information 2 Optimizations 3 Summary 3

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Introduction to GPU computing

Introduction to GPU computing Introduction to GPU computing Nagasaki Advanced Computing Center Nagasaki, Japan The GPU evolution The Graphic Processing Unit (GPU) is a processor that was specialized for processing graphics. The GPU

More information

Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies

Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies Alexander Merritt, Vishakha Gupta, Abhishek Verma, Ada Gavrilovska, Karsten Schwan {merritt.alex,abhishek.verma}@gatech.edu {vishakha,ada,schwan}@cc.gtaech.edu

More information

The Case for Heterogeneous HTAP

The Case for Heterogeneous HTAP The Case for Heterogeneous HTAP Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab EPFL 1 HTAP the contract with the hardware Hybrid

More information

Oncilla: A GAS Runtime for Efficient Resource Allocation and Data Movement in Accelerated Clusters

Oncilla: A GAS Runtime for Efficient Resource Allocation and Data Movement in Accelerated Clusters Oncilla: A GAS Runtime for Efficient Resource Allocation and Data Movement in Accelerated Clusters Jeff Young, Se Hoon Shon, Sudhakar Yalamanchili, Alex Merritt, Karsten Schwan School of Electrical and

More information

CUB. collective software primitives. Duane Merrill. NVIDIA Research

CUB. collective software primitives. Duane Merrill. NVIDIA Research CUB collective software primitives Duane Merrill NVIDIA Research What is CUB?. A design model for collective primitives How to make reusable SIMT software constructs. A library of collective primitives

More information

Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference

Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference The 2017 IEEE International Symposium on Workload Characterization Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference Shin-Ying Lee

More information

When MPPDB Meets GPU:

When MPPDB Meets GPU: When MPPDB Meets GPU: An Extendible Framework for Acceleration Laura Chen, Le Cai, Yongyan Wang Background: Heterogeneous Computing Hardware Trend stops growing with Moore s Law Fast development of GPU

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Commodity Converged Fabrics for Global Address Spaces in Accelerator Clouds

Commodity Converged Fabrics for Global Address Spaces in Accelerator Clouds Commodity Converged Fabrics for Global Address Spaces in Accelerator Clouds Jeffrey Young, Sudhakar Yalamanchili School of Electrical and Computer Engineering, Georgia Institute of Technology Motivation

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Gernot Ziegler, Developer Technology (Compute) (Material by Thomas Bradley) Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

Concurrent execution of an analytical workload on a POWER8 server with K40 GPUs A Technology Demonstration

Concurrent execution of an analytical workload on a POWER8 server with K40 GPUs A Technology Demonstration Concurrent execution of an analytical workload on a POWER8 server with K40 GPUs A Technology Demonstration Sina Meraji sinamera@ca.ibm.com Berni Schiefer schiefer@ca.ibm.com Tuesday March 17th at 12:00

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

GPU Programming with Ateji PX June 8 th Ateji All rights reserved.

GPU Programming with Ateji PX June 8 th Ateji All rights reserved. GPU Programming with Ateji PX June 8 th 2010 Ateji All rights reserved. Goals Write once, run everywhere, even on a GPU Target heterogeneous architectures from Java GPU accelerators OpenCL standard Get

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

ECE 8823: GPU Architectures. Objectives

ECE 8823: GPU Architectures. Objectives ECE 8823: GPU Architectures Introduction 1 Objectives Distinguishing features of GPUs vs. CPUs Major drivers in the evolution of general purpose GPUs (GPGPUs) 2 1 Chapter 1 Chapter 2: 2.2, 2.3 Reading

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Advanced CUDA Optimization 1. Introduction

Advanced CUDA Optimization 1. Introduction Advanced CUDA Optimization 1. Introduction Thomas Bradley Agenda CUDA Review Review of CUDA Architecture Programming & Memory Models Programming Environment Execution Performance Optimization Guidelines

More information

Recent Advances in Heterogeneous Computing using Charm++

Recent Advances in Heterogeneous Computing using Charm++ Recent Advances in Heterogeneous Computing using Charm++ Jaemin Choi, Michael Robson Parallel Programming Laboratory University of Illinois Urbana-Champaign April 12, 2018 1 / 24 Heterogeneous Computing

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Real-Time Support for GPU. GPU Management Heechul Yun

Real-Time Support for GPU. GPU Management Heechul Yun Real-Time Support for GPU GPU Management Heechul Yun 1 This Week Topic: Real-Time Support for General Purpose Graphic Processing Unit (GPGPU) Today Background Challenges Real-Time GPU Management Frameworks

More information

Introduction. L25: Modern Compiler Design

Introduction. L25: Modern Compiler Design Introduction L25: Modern Compiler Design Course Aims Understand the performance characteristics of modern processors Be familiar with strategies for optimising dynamic dispatch for languages like JavaScript

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors

ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors Weifeng Liu and Brian Vinter Niels Bohr Institute University of Copenhagen Denmark {weifeng, vinter}@nbi.dk March 1, 2014 Weifeng

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU

Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU The myth 10x-1000x speed up on GPU vs CPU Papers supporting the myth: Microsoft: N. K. Govindaraju, B. Lloyd, Y.

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

LDetector: A low overhead data race detector for GPU programs

LDetector: A low overhead data race detector for GPU programs LDetector: A low overhead data race detector for GPU programs 1 PENGCHENG LI CHEN DING XIAOYU HU TOLGA SOYATA UNIVERSITY OF ROCHESTER 1 Data races in GPU Introduction & Contribution Impact correctness

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten GPU Computing: Development and Analysis Part 1 Anton Wijs Muhammad Osama Marieke Huisman Sebastiaan Joosten NLeSC GPU Course Rob van Nieuwpoort & Ben van Werkhoven Who are we? Anton Wijs Assistant professor,

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Traditional System Architecture Applications OS CPU

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Research Faculty Summit Systems Fueling future disruptions

Research Faculty Summit Systems Fueling future disruptions Research Faculty Summit 2018 Systems Fueling future disruptions Wolong: A Back-end Optimizer for Deep Learning Computation Jilong Xue Researcher, Microsoft Research Asia System Challenge in Deep Learning

More information

GViM: GPU-accelerated Virtual Machines

GViM: GPU-accelerated Virtual Machines GViM: GPU-accelerated Virtual Machines Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche @ Georgia Tech Niraj Tolia, Vanish Talwar, Partha Ranganathan @ HP Labs Trends in Processor

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Juan C. Pichel Centro de Investigación en Tecnoloxías da Información (CITIUS) Universidade de Santiago de Compostela, Spain

More information

QR Decomposition on GPUs

QR Decomposition on GPUs QR Decomposition QR Algorithms Block Householder QR Andrew Kerr* 1 Dan Campbell 1 Mark Richards 2 1 Georgia Tech Research Institute 2 School of Electrical and Computer Engineering Georgia Institute of

More information

Supporting Data Parallelism in Matcloud: Final Report

Supporting Data Parallelism in Matcloud: Final Report Supporting Data Parallelism in Matcloud: Final Report Yongpeng Zhang, Xing Wu 1 Overview Matcloud is an on-line service to run Matlab-like script on client s web browser. Internally it is accelerated by

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

Pegasus: Coordinated Scheduling for Virtualized Accelerator-based Systems

Pegasus: Coordinated Scheduling for Virtualized Accelerator-based Systems Pegasus: Coordinated Scheduling for Virtualized Accelerator-based Systems Vishakha Gupta, Karsten Schwan @ Georgia Tech Niraj Tolia @ Maginatics Vanish Talwar, Parthasarathy Ranganathan @ HP Labs USENIX

More information

Introduction to Parallel Computing with CUDA. Oswald Haan

Introduction to Parallel Computing with CUDA. Oswald Haan Introduction to Parallel Computing with CUDA Oswald Haan ohaan@gwdg.de Schedule Introduction to Parallel Computing with CUDA Using CUDA CUDA Application Examples Using Multiple GPUs CUDA Application Libraries

More information

Native Offload of Haskell Repa Programs to Integrated GPUs

Native Offload of Haskell Repa Programs to Integrated GPUs Native Offload of Haskell Repa Programs to Integrated GPUs Hai (Paul) Liu with Laurence Day, Neal Glew, Todd Anderson, Rajkishore Barik Intel Labs. September 28, 2016 General purpose computing on integrated

More information

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli High performance 2D Discrete Fourier Transform on Heterogeneous Platforms Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli Motivation Fourier Transform widely used in Physics, Astronomy, Engineering

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Samuel Cremer 1,2, Michel Bagein 1, Saïd Mahmoudi 1, Pierre Manneback 1 1 UMONS, University of Mons Computer Science

More information

Profiling of Data-Parallel Processors

Profiling of Data-Parallel Processors Profiling of Data-Parallel Processors Daniel Kruck 09/02/2014 09/02/2014 Profiling Daniel Kruck 1 / 41 Outline 1 Motivation 2 Background - GPUs 3 Profiler NVIDIA Tools Lynx 4 Optimizations 5 Conclusion

More information

Improving the Performance of OLAP Queries Using Families of Statistics Trees

Improving the Performance of OLAP Queries Using Families of Statistics Trees Improving the Performance of OLAP Queries Using Families of Statistics Trees Joachim Hammer Dept. of Computer and Information Science University of Florida Lixin Fu Dept. of Mathematical Sciences University

More information

Towards a Performance- Portable FFT Library for Heterogeneous Computing

Towards a Performance- Portable FFT Library for Heterogeneous Computing Towards a Performance- Portable FFT Library for Heterogeneous Computing Carlo C. del Mundo*, Wu- chun Feng* *Dept. of ECE, Dept. of CS Virginia Tech Slides Updated: 5/19/2014 Forecast (Problem) AMD Radeon

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

Higher Level Programming Abstractions for FPGAs using OpenCL

Higher Level Programming Abstractions for FPGAs using OpenCL Higher Level Programming Abstractions for FPGAs using OpenCL Desh Singh Supervising Principal Engineer Altera Corporation Toronto Technology Center ! Technology scaling favors programmability CPUs."#/0$*12'$-*

More information

Document downloaded from:

Document downloaded from: Document downloaded from: http://hdl.handle.net/10251/70225 This paper must be cited as: Reaño González, C.; Silla Jiménez, F. (2015). On the Deployment and Characterization of CUDA Teaching Laboratories.

More information

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka USE OF FOR Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Mini workshop on advanced numerical methods

More information

TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT

TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT Eric Kelmelis 28 March 2018 OVERVIEW BACKGROUND Evolution of processing hardware CROSS-PLATFORM KERNEL DEVELOPMENT Write once, target multiple hardware

More information

Multi-threaded Queries. Intra-Query Parallelism in LLVM

Multi-threaded Queries. Intra-Query Parallelism in LLVM Multi-threaded Queries Intra-Query Parallelism in LLVM Multithreaded Queries Intra-Query Parallelism in LLVM Yang Liu Tianqi Wu Hao Li Interpreted vs Compiled (LLVM) Interpreted vs Compiled (LLVM) Interpreted

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Building systems with GPUs is hard. Why? 2 Goal of

More information

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing Adnan Agbaria David Minor Natan Peterfreund Eyal Rozenberg Ofer Rosenberg - now at Intel - now at GE Research - now a post-doc at CWI

More information

GPU Implementation of a Multiobjective Search Algorithm

GPU Implementation of a Multiobjective Search Algorithm Department Informatik Technical Reports / ISSN 29-58 Steffen Limmer, Dietmar Fey, Johannes Jahn GPU Implementation of a Multiobjective Search Algorithm Technical Report CS-2-3 April 2 Please cite as: Steffen

More information

HARMONY: AN EXECUTION MODEL FOR HETEROGENEOUS SYSTEMS

HARMONY: AN EXECUTION MODEL FOR HETEROGENEOUS SYSTEMS HARMONY: AN EXECUTION MODEL FOR HETEROGENEOUS SYSTEMS A Thesis Presented to The Academic Faculty by Gregory Frederick Diamos In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Accelerating Analytical Workloads

Accelerating Analytical Workloads Accelerating Analytical Workloads Thomas Neumann Technische Universität München April 15, 2014 Scale Out in Big Data Analytics Big Data usually means data is distributed Scale out to process very large

More information

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package High Performance Machine Learning Workshop Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package Matheus Souza, Lucas Maciel, Pedro Penna, Henrique Freitas 24/09/2018 Agenda Introduction

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Jianting Zhang 1,2 Simin You 2, Le Gruenwald 3 1 Depart of Computer Science, CUNY City College (CCNY) 2 Department of Computer

More information

Jignesh M. Patel. Blog:

Jignesh M. Patel. Blog: Jignesh M. Patel Blog: http://bigfastdata.blogspot.com Go back to the design Query Cache from Processing for Conscious 98s Modern (at Algorithms Hardware least for Hash Joins) 995 24 2 Processor Processor

More information

A GPU Implementation of Tiled Belief Propagation on Markov Random Fields. Hassan Eslami Theodoros Kasampalis Maria Kotsifakou

A GPU Implementation of Tiled Belief Propagation on Markov Random Fields. Hassan Eslami Theodoros Kasampalis Maria Kotsifakou A GPU Implementation of Tiled Belief Propagation on Markov Random Fields Hassan Eslami Theodoros Kasampalis Maria Kotsifakou BP-M AND TILED-BP 2 BP-M 3 Tiled BP T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 4 Tiled

More information

A PERFORMANCE COMPARISON OF SORT AND SCAN LIBRARIES FOR GPUS

A PERFORMANCE COMPARISON OF SORT AND SCAN LIBRARIES FOR GPUS October 9, 215 9:46 WSPC/INSTRUCTION FILE ssbench Parallel Processing Letters c World Scientific Publishing Company A PERFORMANCE COMPARISON OF SORT AND SCAN LIBRARIES FOR GPUS BRUCE MERRY SKA South Africa,

More information

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU GPGPU opens the door for co-design HPC, moreover middleware-support embedded system designs to harness the power of GPUaccelerated

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References This set of slides is mainly based on: CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory Slide of Applied

More information

PARALLEL PROGRAMMING MANY-CORE COMPUTING: INTRO (1/5) Rob van Nieuwpoort

PARALLEL PROGRAMMING MANY-CORE COMPUTING: INTRO (1/5) Rob van Nieuwpoort PARALLEL PROGRAMMING MANY-CORE COMPUTING: INTRO (1/5) Rob van Nieuwpoort rob@cs.vu.nl Schedule 2 1. Introduction, performance metrics & analysis 2. Many-core hardware 3. Cuda class 1: basics 4. Cuda class

More information

CUDA Performance Optimization. Patrick Legresley

CUDA Performance Optimization. Patrick Legresley CUDA Performance Optimization Patrick Legresley Optimizations Kernel optimizations Maximizing global memory throughput Efficient use of shared memory Minimizing divergent warps Intrinsic instructions Optimizations

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

88X + PERFORMANCE GAINS USING IBM DB2 WITH BLU ACCELERATION ON INTEL TECHNOLOGY

88X + PERFORMANCE GAINS USING IBM DB2 WITH BLU ACCELERATION ON INTEL TECHNOLOGY 05.11.2013 Thomas Kalb 88X + PERFORMANCE GAINS USING IBM DB2 WITH BLU ACCELERATION ON INTEL TECHNOLOGY Copyright 2013 ITGAIN GmbH 1 About ITGAIN Founded as a DB2 Consulting Company into 2001 DB2 Monitor

More information