Techniques for Dealing with Missing Values in Feedforward Networks

Size: px
Start display at page:

Download "Techniques for Dealing with Missing Values in Feedforward Networks"

Transcription

1 Techniques for Dealing with Missing Values in Feedforward Networks Peter Vamplew, David Clark*, Anthony Adams, Jason Muench Artificial Neural Networks Research Group, Department of Computer Science, University of Tasmania * permanent address: Department of Information Science and Engineering, University of Canberra Abstract: Missing or incomplete data, a common reality, causes problems for artificial neural networks. In this paper we investigate several methods for dealing with missing values in feedforward networks. Reduced networks, substitution, estimation and expanded networks are applied to three data sets. We find that data sets vary in their sensitivity to missing values, and that reduced networks and estimation are the most effective ways of dealing with them. Introduction Artificial neural networks trained using backpropagation have been used for a wide variety of classification problems. In many real world problems, however, some of the data may be missing or incomplete. This causes particular problems for artificial neural networks as the distributed nature of the processing makes it very difficult to isolate effects due to one variable. The aim of this study is to compare different techniques for dealing with missing data. We assume a complete set of training data is available and a single hidden layer backpropagation network. This work builds on and extends earlier work of Vamplew and Adams 1. Terminology In this paper we will adopt the following terminology: V = number of variables; N, H, M = number of input, hidden, output nodes; and µ, σ = mean, standard deviation (of the training data) Description of the data We have applied the techniques to three data sets, the Iris, the Weedseed and the Handshape data set. All data are normalised to the range ±1. The Iris data set 2 has been used widely as a testbed for statistical analysis techniques. The sepal length, sepal width, petal length, and petal width were measured on 50 iris specimens from each of 3 species, Iris setosa, Iris versicolor, and Iris virginica. There are thus 150 pieces of data, of which 100 are used for training and 50 for testing. The proportion of data which is correctly classified is high. In the Weedseed data set 3, weed seeds are classified into one of ten types, based on seven measurements of dimensions of the seeds. The seed data consists of measurements of 398 different seeds, giving 40 examples of each seed type, apart from two types which have only 39 examples. A test set consisting of ten examples of each seed type is extracted from these data, and the remaining 298 examples are used as the training set. The proportion of data which is correctly classified is only moderate. The Handshape data set 4 was developed by measuring the values returned by 16 sensors on various hand and finger joints when the hand was positioned in 20 different hand shapes used in the Auslan sign language. A training set of 2000 examples and a test set of 200 examples were created by adding noise to the 20 original examples. This data set contains many redundant inputs and a high proportion of the data can be classified correctly even with high levels of added noise. Thus for the purposes of this study, we used only 7 variables for each data point. Experimental details The networks are trained using the standard pattern presentation backpropagation algorithm which updates the weights after each

2 (randomly-chosen) presentation of the data. We use a fixed number of presentations and a fixed number of hidden nodes for each data set. In each trial, there are 10 runs, each with different starting weights. For all training the training rate was 0.1 and the momentum 0.

3 Data set Presentatio ns Architecture (N H M) # training points # testing points Iris 50, Weedseed 100, Handshape 100, Methods We investigated four general approaches for dealing with missing values: Reduced network - A separate network is trained for each missing value, each having V-1 nodes in the input layer; Substitution - Another value is substituted for the missing value; Estimation - A value for the missing value is estimated from the remaining data. This is substituted for the missing value; Expanded network - The standard network architecture is modified by the addition of extra input nodes in such a manner as to allow the network to distinguish between missing and complete data. Reduced networks V networks are trained, each with one variable absent (N = V-1). As each network is trained on all of the data available, and is of the right size for the data, it is expected to perform as well as possible. It should give an upper bound on what is possible and provide a baseline for judging other methods. A major disadvantage of this approach is that it requires N+1 networks to cater for all possible cases of one missing value. If it is to be applied to data points with two missing values, it will require an additional N 2 / 2 networks. Substitution Here a constant value for substitution is found for each variable that might be missing. This is then substituted in the complete network (ie. the network trained on complete data). We report on substituting the mean, median and zero (the mid-range). Other substitutions including the minimum, the maximum, committeeing the results from a series of values, and a random value were tried, but all gave poorer results and are not further reported. The mean is calculated for each variable over all examples in the training set. It is fixed for all data points, that is the mean of the variable in the training set is used whenever that variable is missing. It is a very simple approach, easy to understand and requires no extra networks or training. The median and mid-ranges are treated similarly. Estimation The best estimate is derived by using a separate network to estimate the missing value from the values that are present. Thus there is only one classification network, supported by V estimating networks (each with N = V-1). Unlike the classifier networks, the supporting networks have a single analogue output. This approach relies on the input values being correlated, which is true for most real data sets. Expanded networks The aim here is to try to let the network know whether data is complete or has missing values. This is achieved by using two input nodes for each input variable. Three types of expanded networks are investigated, flagged, high/low and shadow weight networks. In flagged networks, each data value is associated with a value node and a flag node. If the value is known, it is input to the value node and 0 is input to the flag node. If the value is missing, that attribute s mean is input to the value node and 1 is input to the flag node.

4 In high/low networks, each data value is associated with a high node and a low node. If the value is known, it is input to both the low and high nodes. If the value is missing, predetermined constants are input to the low and high nodes. Thus this technique essentially treats missing data as fuzzy. Three sets of constants are tried: low = minimum value, high = maximum value; low = µ σ, high = µ + σ ; and low = µ 2 σ, high = µ +2 σ. In the shadow weight networks, each data value is associated with a standard node and a shadow node. If the value is known, it is input to the standard node and 0 is input to the shadow node. If the value is missing, 0 is input to the standard node, and 1 is input to the shadow node. The main difference between the shadowed network and other expanded networks is in the training. This occurs in two phases. Firstly, a complete network (with no weights from shadow nodes to hidden layer nodes) is trained using complete data. Then the weights of the links between the shadow nodes and nodes in the hidden layer are trained. The aim is to create a network in which the performance of complete data is not degraded. The performance improves when several shadow hidden nodes are added to the hidden layer. These nodes are completely connected to the input layer, but are only trained during the second phase of training and only used when the input data has missing values. All of the expanded networks require extra training data. The training data is augmented with data where there have been substitutions for (single) values (that is, one value per data point). This means that there will be (V+1) times as much training data. Figure 1: A shadow weights network. The bold lines indicate standard weights, the dashed lines and shaded circle represent shadow weights and node (in this case, the lowest input value is unknown) Results Results are set out in the tables below, shaded cells indicating a significant reduction in performance (using the reduced networks as a baseline). They show that only reduced networks and estimation are effective on all data sets. The results also show a significant difference between data sets. For the Iris data, all techniques work well. For the Weedseed data, only reduced networks and estimation work well. For the Handshape data, all techniques worked well except substitution. A tentative conclusion here is that data which is hard to classify is more susceptible to missing values and needs more work if data points with missing values are to be useful. Iris data Variable missing none Reduced network Substitute mean Substitute median Substitute zero Estimation

5 Flagged (min max) ( µ ± σ ) ( µ ±2 σ ) Shadow weights Weedseed data Variable missing none Reduced network Substitute (mean) Substitute (median) Substitute (zero) Estimation Flagged (min max) ( µ ± σ ) ( µ ±2 σ ) Shadowed weights Handshape data Variable missing none Reduced network Substitute (mean) Substitute (median) Substitute (zero) Estimation Flagged

6 (min max) ( µ ± σ ) ( µ ±2 σ ) Shadowed weights Equivalence of networks Several of the networks described above are topographically equivalent, a simple transformation turning a network into another of different type which will give exactly the same output for equivalent data. There exist 1-1 mappings between all expanded networks, except for the shadow network with additional hidden layer nodes. Moreover, there is a mapping (not 1-1) from the complete network to each expanded network. Thus all expanded networks should perform equivalently, and they should all perform at least as well as substitution. The results are in broad agreement with this analysis. Multiple Missing Values The different missing values techniques vary in terms of the ease with which they can be scaled to handle examples with multiple missing inputs. Substitution and expanded networks cope readily with this situation as all that is required is to input the appropriate value(s) for each missing input value. The main issue is whether these networks can generalise from the examples with single missing values seen during training, or whether it is necessary to also train the networks on examples with multiple missing values. Estimation and reduced networks do not scale well to multiple missing values as they suffer from a combinatorial expansion in the number of networks to be trained. It is possible to adapt estimation to the case of multiple missing values however, by combining it with the substitution techniques. The estimate networks are trained and used to produce an estimate of each missing input as before, with the exception that substitution is performed for any missing values which are required as inputs to these estimate networks. The estimates produced in this way can then be used as inputs for the main classification network. Vamplew 5 has shown that expanded networks and substitution generalise poorly with multiple missing values if trained using single missing values. He has also shown that the combines substitution/estimation technique is effective even when training is performed on single missing values. Conclusions 1. All techniques perform well on complete data. Thus techniques such as shadow networks which are designed specifically to ensure that the performance on complete data does not degrade are not necessary. 2. Techniques involving fixed valued substitution for missing values do not perform as well as ones which estimate the missing values from the non-missing values for that data point. 3. Data sets vary in their sensitivity to missing values. If the data set is insensitive to missing values, all techniques are effective, but if it is sensitive to missing values, the choice of technique is important. References 1 Vamplew, P and Adams, T., Missing Values in a Backpropogation Neural Net, in Leong, S and Jabri, M (eds)

7 Proceedings of the Third Australian Conference on Neural Networks, Sydney, Feb, 1992, Fisher, R.A., The use of multiple measurements in Taxonomic Problems, Annals of Eugenics, 7, 1936, Weedseed data, obtained from University of Stirling, in private communication, Collier, P.A., Department of Computer Science, University of Tasmamia. 4 Vamplew, P. and Adams, A, The SLARTI System: Applying Artificial Neural Networks to Sign Language Recognition in Proceedings of the Conference on Technology and Persons with Disabilities, California State University, Northridge, March, Vamplew, P., Computer Recognition of Hand Gestures, Ph. D. thesis, Department of Computer Science, University of Tasmania, forthcoming.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence COMP307 Machine Learning 2: 3-K Techniques Yi Mei yi.mei@ecs.vuw.ac.nz 1 Outline K-Nearest Neighbour method Classification (Supervised learning) Basic NN (1-NN)

More information

Neural Networks Laboratory EE 329 A

Neural Networks Laboratory EE 329 A Neural Networks Laboratory EE 329 A Introduction: Artificial Neural Networks (ANN) are widely used to approximate complex systems that are difficult to model using conventional modeling techniques such

More information

Simulation of Back Propagation Neural Network for Iris Flower Classification

Simulation of Back Propagation Neural Network for Iris Flower Classification American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-1, pp-200-205 www.ajer.org Research Paper Open Access Simulation of Back Propagation Neural Network

More information

KTH ROYAL INSTITUTE OF TECHNOLOGY. Lecture 14 Machine Learning. K-means, knn

KTH ROYAL INSTITUTE OF TECHNOLOGY. Lecture 14 Machine Learning. K-means, knn KTH ROYAL INSTITUTE OF TECHNOLOGY Lecture 14 Machine Learning. K-means, knn Contents K-means clustering K-Nearest Neighbour Power Systems Analysis An automated learning approach Understanding states in

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3

Data Mining: Exploring Data. Lecture Notes for Chapter 3 Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web site. Topics Exploratory Data Analysis

More information

An Efficient Method for Extracting Fuzzy Classification Rules from High Dimensional Data

An Efficient Method for Extracting Fuzzy Classification Rules from High Dimensional Data Published in J. Advanced Computational Intelligence, Vol., No., 997 An Efficient Method for Extracting Fuzzy Classification Rules from High Dimensional Data Stephen L. Chiu Rockwell Science Center 049

More information

Cluster Analysis using Spherical SOM

Cluster Analysis using Spherical SOM Cluster Analysis using Spherical SOM H. Tokutaka 1, P.K. Kihato 2, K. Fujimura 2 and M. Ohkita 2 1) SOM Japan Co-LTD, 2) Electrical and Electronic Department, Tottori University Email: {tokutaka@somj.com,

More information

Classification with Diffuse or Incomplete Information

Classification with Diffuse or Incomplete Information Classification with Diffuse or Incomplete Information AMAURY CABALLERO, KANG YEN Florida International University Abstract. In many different fields like finance, business, pattern recognition, communication

More information

A New Approach for Handling the Iris Data Classification Problem

A New Approach for Handling the Iris Data Classification Problem International Journal of Applied Science and Engineering 2005. 3, : 37-49 A New Approach for Handling the Iris Data Classification Problem Shyi-Ming Chen a and Yao-De Fang b a Department of Computer Science

More information

Input: Concepts, Instances, Attributes

Input: Concepts, Instances, Attributes Input: Concepts, Instances, Attributes 1 Terminology Components of the input: Concepts: kinds of things that can be learned aim: intelligible and operational concept description Instances: the individual,

More information

MATH5745 Multivariate Methods Lecture 13

MATH5745 Multivariate Methods Lecture 13 MATH5745 Multivariate Methods Lecture 13 April 24, 2018 MATH5745 Multivariate Methods Lecture 13 April 24, 2018 1 / 33 Cluster analysis. Example: Fisher iris data Fisher (1936) 1 iris data consists of

More information

An Introduction to Cluster Analysis. Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs

An Introduction to Cluster Analysis. Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs An Introduction to Cluster Analysis Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs zhaoxia@ics.uci.edu 1 What can you say about the figure? signal C 0.0 0.5 1.0 1500 subjects Two

More information

Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR)

Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR) Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR) Yaobin Qin qinxx143@umn.edu Supervisor: Pro.lilja Department of Electrical and Computer Engineering Abstract

More information

COMPARISON OF DENSITY-BASED CLUSTERING ALGORITHMS

COMPARISON OF DENSITY-BASED CLUSTERING ALGORITHMS COMPARISON OF DENSITY-BASED CLUSTERING ALGORITHMS Mariam Rehman Lahore College for Women University Lahore, Pakistan mariam.rehman321@gmail.com Syed Atif Mehdi University of Management and Technology Lahore,

More information

Stats 170A: Project in Data Science Exploratory Data Analysis: Clustering Algorithms

Stats 170A: Project in Data Science Exploratory Data Analysis: Clustering Algorithms Stats 170A: Project in Data Science Exploratory Data Analysis: Clustering Algorithms Padhraic Smyth Department of Computer Science Bren School of Information and Computer Sciences University of California,

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3

Data Mining: Exploring Data. Lecture Notes for Chapter 3 Data Mining: Exploring Data Lecture Notes for Chapter 3 1 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include

More information

Experimental Design + k- Nearest Neighbors

Experimental Design + k- Nearest Neighbors 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Experimental Design + k- Nearest Neighbors KNN Readings: Mitchell 8.2 HTF 13.3

More information

Application of Fuzzy Logic Akira Imada Brest State Technical University

Application of Fuzzy Logic Akira Imada Brest State Technical University A slide show of our Lecture Note Application of Fuzzy Logic Akira Imada Brest State Technical University Last modified on 29 October 2016 (Contemporary Intelligent Information Techniques) 2 I. Fuzzy Basic

More information

Nearest Neighbor Classification

Nearest Neighbor Classification Nearest Neighbor Classification Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 11, 2017 1 / 48 Outline 1 Administration 2 First learning algorithm: Nearest

More information

Classification with Diffuse or Incomplete Information

Classification with Diffuse or Incomplete Information Classification with Diffuse or Incomplete Information AMAURY CABALLERO, KANG YEN, YECHANG FANG Department of Electrical & Computer Engineering Florida International University 10555 W. Flagler Street,

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.

More information

Performance Analysis of Data Mining Classification Techniques

Performance Analysis of Data Mining Classification Techniques Performance Analysis of Data Mining Classification Techniques Tejas Mehta 1, Dr. Dhaval Kathiriya 2 Ph.D. Student, School of Computer Science, Dr. Babasaheb Ambedkar Open University, Gujarat, India 1 Principal

More information

IN recent years, neural networks have attracted considerable attention

IN recent years, neural networks have attracted considerable attention Multilayer Perceptron: Architecture Optimization and Training Hassan Ramchoun, Mohammed Amine Janati Idrissi, Youssef Ghanou, Mohamed Ettaouil Modeling and Scientific Computing Laboratory, Faculty of Science

More information

Chuck Cartledge, PhD. 20 January 2018

Chuck Cartledge, PhD. 20 January 2018 Big Data: Data Analysis Boot Camp Visualizing the Iris Dataset Chuck Cartledge, PhD 20 January 2018 1/31 Table of contents (1 of 1) 1 Intro. 2 Histograms Background 3 Scatter plots 4 Box plots 5 Outliers

More information

ANN exercise session

ANN exercise session ANN exercise session In this exercise session, you will read an external file with Iris flowers and create an internal database in Java as it was done in previous exercise session. A new file contains

More information

Application of Or-based Rule Antecedent Fuzzy Neural Networks to Iris Data Classification Problem

Application of Or-based Rule Antecedent Fuzzy Neural Networks to Iris Data Classification Problem Vol.1 (DTA 016, pp.17-1 http://dx.doi.org/10.157/astl.016.1.03 Application of Or-based Rule Antecedent Fuzzy eural etworks to Iris Data Classification roblem Chang-Wook Han Department of Electrical Engineering,

More information

Data Mining - Data. Dr. Jean-Michel RICHER Dr. Jean-Michel RICHER Data Mining - Data 1 / 47

Data Mining - Data. Dr. Jean-Michel RICHER Dr. Jean-Michel RICHER Data Mining - Data 1 / 47 Data Mining - Data Dr. Jean-Michel RICHER 2018 jean-michel.richer@univ-angers.fr Dr. Jean-Michel RICHER Data Mining - Data 1 / 47 Outline 1. Introduction 2. Data preprocessing 3. CPA with R 4. Exercise

More information

Why MultiLayer Perceptron/Neural Network? Objective: Attributes:

Why MultiLayer Perceptron/Neural Network? Objective: Attributes: Why MultiLayer Perceptron/Neural Network? Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are

More information

FINDING PATTERN BEHAVIOR IN TEMPORAL DATA USING FUZZY CLUSTERING

FINDING PATTERN BEHAVIOR IN TEMPORAL DATA USING FUZZY CLUSTERING 1 FINDING PATTERN BEHAVIOR IN TEMPORAL DATA USING FUZZY CLUSTERING RICHARD E. HASKELL Oaland University PING LI Oaland University DARRIN M. HANNA Oaland University KA C. CHEOK Oaland University GREG HUDAS

More information

CROSS-CORRELATION NEURAL NETWORK: A NEW NEURAL NETWORK CLASSIFIER

CROSS-CORRELATION NEURAL NETWORK: A NEW NEURAL NETWORK CLASSIFIER CROSS-CORRELATION NEURAL NETWORK: A NEW NEURAL NETWORK CLASSIFIER ARIT THAMMANO* AND NARODOM KLOMIAM** Faculty of Information Technology King Mongkut s Institute of Technology Ladkrang, Bangkok, 10520

More information

Model Selection Introduction to Machine Learning. Matt Gormley Lecture 4 January 29, 2018

Model Selection Introduction to Machine Learning. Matt Gormley Lecture 4 January 29, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Model Selection Matt Gormley Lecture 4 January 29, 2018 1 Q&A Q: How do we deal

More information

CS 584 Data Mining. Classification 1

CS 584 Data Mining. Classification 1 CS 584 Data Mining Classification 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. Find a model for

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Data Mining: Exploring Data. Lecture Notes for Data Exploration Chapter. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Data Exploration Chapter. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Data Exploration Chapter Introduction to Data Mining by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 What is data exploration?

More information

k Nearest Neighbors Super simple idea! Instance-based learning as opposed to model-based (no pre-processing)

k Nearest Neighbors Super simple idea! Instance-based learning as opposed to model-based (no pre-processing) k Nearest Neighbors k Nearest Neighbors To classify an observation: Look at the labels of some number, say k, of neighboring observations. The observation is then classified based on its nearest neighbors

More information

Instantaneously trained neural networks with complex inputs

Instantaneously trained neural networks with complex inputs Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Instantaneously trained neural networks with complex inputs Pritam Rajagopal Louisiana State University and Agricultural

More information

A Systematic Overview of Data Mining Algorithms. Sargur Srihari University at Buffalo The State University of New York

A Systematic Overview of Data Mining Algorithms. Sargur Srihari University at Buffalo The State University of New York A Systematic Overview of Data Mining Algorithms Sargur Srihari University at Buffalo The State University of New York 1 Topics Data Mining Algorithm Definition Example of CART Classification Iris, Wine

More information

Hands on Datamining & Machine Learning with Weka

Hands on Datamining & Machine Learning with Weka Step1: Click the Experimenter button to launch the Weka Experimenter. The Weka Experimenter allows you to design your own experiments of running algorithms on datasets, run the experiments and analyze

More information

A Class of Instantaneously Trained Neural Networks

A Class of Instantaneously Trained Neural Networks A Class of Instantaneously Trained Neural Networks Subhash Kak Department of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA 70803-5901 May 7, 2002 Abstract This paper presents

More information

A Classifier with the Function-based Decision Tree

A Classifier with the Function-based Decision Tree A Classifier with the Function-based Decision Tree Been-Chian Chien and Jung-Yi Lin Institute of Information Engineering I-Shou University, Kaohsiung 84008, Taiwan, R.O.C E-mail: cbc@isu.edu.tw, m893310m@isu.edu.tw

More information

Neural Network and Adaptive Feature Extraction Technique for Pattern Recognition

Neural Network and Adaptive Feature Extraction Technique for Pattern Recognition Material Science Research India Vol. 8(1), 01-06 (2011) Neural Network and Adaptive Feature Extraction Technique for Pattern Recognition WAEL M. KHEDR and QAMAR A. AWAD Mathematical Department, Faculty

More information

Data Mining: Exploring Data

Data Mining: Exploring Data Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar But we start with a brief discussion of the Friedman article and the relationship between Data

More information

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6 Cluster Analysis and Visualization Workshop on Statistics and Machine Learning 2004/2/6 Outlines Introduction Stages in Clustering Clustering Analysis and Visualization One/two-dimensional Data Histogram,

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999 1271 Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming Bao-Liang Lu, Member, IEEE, Hajime Kita, and Yoshikazu

More information

Statistical Methods in AI

Statistical Methods in AI Statistical Methods in AI Distance Based and Linear Classifiers Shrenik Lad, 200901097 INTRODUCTION : The aim of the project was to understand different types of classification algorithms by implementing

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 9, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 9, 2014 1 / 47

More information

Summary. Machine Learning: Introduction. Marcin Sydow

Summary. Machine Learning: Introduction. Marcin Sydow Outline of this Lecture Data Motivation for Data Mining and Learning Idea of Learning Decision Table: Cases and Attributes Supervised and Unsupervised Learning Classication and Regression Examples Data:

More information

Weight Optimization for a Neural Network using Particle Swarm Optimization (PSO)

Weight Optimization for a Neural Network using Particle Swarm Optimization (PSO) Institute of Integrated Sensor Systems Dept. of Electrical Engineering and Information Technology Weight Optimization for a Neural Network using Particle Swarm Optimization (PSO) Stefanie Peters October

More information

2002 Journal of Software.. (stacking).

2002 Journal of Software.. (stacking). 1000-9825/2002/13(02)0245-05 2002 Journal of Software Vol13, No2,,, (,200433) E-mail: {wyji,ayzhou,zhangl}@fudaneducn http://wwwcsfudaneducn : (GA) (stacking), 2,,, : ; ; ; ; : TP18 :A, [1],,, :,, :,,,,

More information

2. Basic Task of Pattern Classification

2. Basic Task of Pattern Classification 2. Basic Task of Pattern Classification Definition of the Task Informal Definition: Telling things apart 3 Definition: http://www.webopedia.com/term/p/pattern_recognition.html pattern recognition Last

More information

EFFECTIVENESS PREDICTION OF MEMORY BASED CLASSIFIERS FOR THE CLASSIFICATION OF MULTIVARIATE DATA SET

EFFECTIVENESS PREDICTION OF MEMORY BASED CLASSIFIERS FOR THE CLASSIFICATION OF MULTIVARIATE DATA SET EFFECTIVENESS PREDICTION OF MEMORY BASED CLASSIFIERS FOR THE CLASSIFICATION OF MULTIVARIATE DATA SET C. Lakshmi Devasena 1 1 Department of Computer Science and Engineering, Sphoorthy Engineering College,

More information

Representing structural patterns: Reading Material: Chapter 3 of the textbook by Witten

Representing structural patterns: Reading Material: Chapter 3 of the textbook by Witten Representing structural patterns: Plain Classification rules Decision Tree Rules with exceptions Relational solution Tree for Numerical Prediction Instance-based presentation Reading Material: Chapter

More information

A Generalized Method to Solve Text-Based CAPTCHAs

A Generalized Method to Solve Text-Based CAPTCHAs A Generalized Method to Solve Text-Based CAPTCHAs Jason Ma, Bilal Badaoui, Emile Chamoun December 11, 2009 1 Abstract We present work in progress on the automated solving of text-based CAPTCHAs. Our method

More information

k-nearest Neighbors + Model Selection

k-nearest Neighbors + Model Selection 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University k-nearest Neighbors + Model Selection Matt Gormley Lecture 5 Jan. 30, 2019 1 Reminders

More information

Image processing & Computer vision Xử lí ảnh và thị giác máy tính

Image processing & Computer vision Xử lí ảnh và thị giác máy tính Image processing & Computer vision Xử lí ảnh và thị giác máy tính Detection and Recognition 2D et 3D Alain Boucher - IFI Introduction In this chapter, we introduce some techniques for pattern detection

More information

The Potential of Prototype Styles of Generalization. D. Randall Wilson Tony R. Martinez

The Potential of Prototype Styles of Generalization. D. Randall Wilson Tony R. Martinez Proceedings of the 6th Australian Joint Conference on Artificial Intelligence (AI 93), pp. 356-361, Nov. 1993. The Potential of Prototype Styles of Generalization D. Randall Wilson Tony R. Martinez Computer

More information

Hsiaochun Hsu Date: 12/12/15. Support Vector Machine With Data Reduction

Hsiaochun Hsu Date: 12/12/15. Support Vector Machine With Data Reduction Support Vector Machine With Data Reduction 1 Table of Contents Summary... 3 1. Introduction of Support Vector Machines... 3 1.1 Brief Introduction of Support Vector Machines... 3 1.2 SVM Simple Experiment...

More information

Combined Weak Classifiers

Combined Weak Classifiers Combined Weak Classifiers Chuanyi Ji and Sheng Ma Department of Electrical, Computer and System Engineering Rensselaer Polytechnic Institute, Troy, NY 12180 chuanyi@ecse.rpi.edu, shengm@ecse.rpi.edu Abstract

More information

Constructing Hidden Units using Examples and Queries

Constructing Hidden Units using Examples and Queries Constructing Hidden Units using Examples and Queries Eric B. Baum Kevin J. Lang NEC Research Institute 4 Independence Way Princeton, NJ 08540 ABSTRACT While the network loading problem for 2-layer threshold

More information

Artificial Neural Network based Curve Prediction

Artificial Neural Network based Curve Prediction Artificial Neural Network based Curve Prediction LECTURE COURSE: AUSGEWÄHLTE OPTIMIERUNGSVERFAHREN FÜR INGENIEURE SUPERVISOR: PROF. CHRISTIAN HAFNER STUDENTS: ANTHONY HSIAO, MICHAEL BOESCH Abstract We

More information

Performance Measure of Hard c-means,fuzzy c-means and Alternative c-means Algorithms

Performance Measure of Hard c-means,fuzzy c-means and Alternative c-means Algorithms Performance Measure of Hard c-means,fuzzy c-means and Alternative c-means Algorithms Binoda Nand Prasad*, Mohit Rathore**, Geeta Gupta***, Tarandeep Singh**** *Guru Gobind Singh Indraprastha University,

More information

2009 Inderscience Enterprises. Reprinted with permission.

2009 Inderscience Enterprises. Reprinted with permission. Xiaolei Wang, Xiao Zhi Gao, and Seppo J. Ovaska. 29. Fusion of clonal selection algorithm and harmony search method in optimisation of fuzzy classification systems. International Journal of Bio Inspired

More information

Value Difference Metrics for Continuously Valued Attributes

Value Difference Metrics for Continuously Valued Attributes Proceedings of the International Conference on Artificial Intelligence, Expert Systems and Neural Networks (AIE 96), pp. 11-14, 1996. Value Difference Metrics for Continuously Valued Attributes D. Randall

More information

Chapter 4. The Classification of Species and Colors of Finished Wooden Parts Using RBFNs

Chapter 4. The Classification of Species and Colors of Finished Wooden Parts Using RBFNs Chapter 4. The Classification of Species and Colors of Finished Wooden Parts Using RBFNs 4.1 Introduction In Chapter 1, an introduction was given to the species and color classification problem of kitchen

More information

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Tomohiro Tanno, Kazumasa Horie, Jun Izawa, and Masahiko Morita University

More information

3 Virtual attribute subsetting

3 Virtual attribute subsetting 3 Virtual attribute subsetting Portions of this chapter were previously presented at the 19 th Australian Joint Conference on Artificial Intelligence (Horton et al., 2006). Virtual attribute subsetting

More information

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the third chapter of the online book by Michael Nielson: neuralnetworksanddeeplearning.com

More information

Machine Learning for. Artem Lind & Aleskandr Tkachenko

Machine Learning for. Artem Lind & Aleskandr Tkachenko Machine Learning for Object Recognition Artem Lind & Aleskandr Tkachenko Outline Problem overview Classification demo Examples of learning algorithms Probabilistic modeling Bayes classifier Maximum margin

More information

Subgoal Chaining and the Local Minimum Problem

Subgoal Chaining and the Local Minimum Problem Subgoal Chaining and the Local Minimum roblem Jonathan. Lewis (jonl@dcs.st-and.ac.uk), Michael K. Weir (mkw@dcs.st-and.ac.uk) Department of Computer Science, University of St. Andrews, St. Andrews, Fife

More information

Machine Learning Chapter 2. Input

Machine Learning Chapter 2. Input Machine Learning Chapter 2. Input 2 Input: Concepts, instances, attributes Terminology What s a concept? Classification, association, clustering, numeric prediction What s in an example? Relations, flat

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,  ISSN Comparative study of fuzzy logic and neural network methods in modeling of simulated steady-state data M. Järvensivu and V. Kanninen Laboratory of Process Control, Department of Chemical Engineering, Helsinki

More information

Ordering attributes for missing values prediction and data classification

Ordering attributes for missing values prediction and data classification Ordering attributes for missing values prediction and data classification E. R. Hruschka Jr., N. F. F. Ebecken COPPE /Federal University of Rio de Janeiro, Brazil. Abstract This work shows the application

More information

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A.

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Output: Knowledge representation Tables Linear models Trees Rules

More information

Boxplot

Boxplot Boxplot By: Meaghan Petix, Samia Porto & Franco Porto A boxplot is a convenient way of graphically depicting groups of numerical data through their five number summaries: the smallest observation (sample

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees IST557 Data Mining: Techniques and Applications Jessie Li, Penn State University 1 Decision Tree Example Will a pa)ent have high-risk based on the ini)al 24-hour observa)on?

More information

Artificial Neuron Modelling Based on Wave Shape

Artificial Neuron Modelling Based on Wave Shape Artificial Neuron Modelling Based on Wave Shape Kieran Greer, Distributed Computing Systems, Belfast, UK. http://distributedcomputingsystems.co.uk Version 1.2 Abstract This paper describes a new model

More information

Introduction to digital image classification

Introduction to digital image classification Introduction to digital image classification Dr. Norman Kerle, Wan Bakx MSc a.o. INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Purpose of lecture Main lecture topics Review

More information

USING REGRESSION TREES IN PREDICTIVE MODELLING

USING REGRESSION TREES IN PREDICTIVE MODELLING Production Systems and Information Engineering Volume 4 (2006), pp. 115-124 115 USING REGRESSION TREES IN PREDICTIVE MODELLING TAMÁS FEHÉR University of Miskolc, Hungary Department of Information Engineering

More information

An Approach to Identify the Number of Clusters

An Approach to Identify the Number of Clusters An Approach to Identify the Number of Clusters Katelyn Gao Heather Hardeman Edward Lim Cristian Potter Carl Meyer Ralph Abbey July 11, 212 Abstract In this technological age, vast amounts of data are generated.

More information

Linear discriminant analysis and logistic

Linear discriminant analysis and logistic Practical 6: classifiers Linear discriminant analysis and logistic This practical looks at two different methods of fitting linear classifiers. The linear discriminant analysis is implemented in the MASS

More information

Flexibility and Robustness of Hierarchical Fuzzy Signature Structures with Perturbed Input Data

Flexibility and Robustness of Hierarchical Fuzzy Signature Structures with Perturbed Input Data Flexibility and Robustness of Hierarchical Fuzzy Signature Structures with Perturbed Input Data B. Sumudu U. Mendis Department of Computer Science The Australian National University Canberra, ACT 0200,

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Output: Knowledge representation Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter of Data Mining by I. H. Witten and E. Frank Decision tables Decision trees Decision rules

More information

Comparative Analysis of Swarm Intelligence Techniques for Data Classification

Comparative Analysis of Swarm Intelligence Techniques for Data Classification Int'l Conf. Artificial Intelligence ICAI'17 3 Comparative Analysis of Swarm Intelligence Techniques for Data Classification A. Ashray Bhandare and B. Devinder Kaur Department of EECS, The University of

More information

Support Vector Machines - Supplement

Support Vector Machines - Supplement Support Vector Machines - Supplement Prof. Dan A. Simovici UMB 1 / 1 Outline 2 / 1 Building an SVM Classifier for the Iris data set Data Set Description Attribute Information: sepal length in cm sepal

More information

Cyber attack detection using decision tree approach

Cyber attack detection using decision tree approach Cyber attack detection using decision tree approach Amit Shinde Department of Industrial Engineering, Arizona State University,Tempe, AZ, USA {amit.shinde@asu.edu} In this information age, information

More information

BL5229: Data Analysis with Matlab Lab: Learning: Clustering

BL5229: Data Analysis with Matlab Lab: Learning: Clustering BL5229: Data Analysis with Matlab Lab: Learning: Clustering The following hands-on exercises were designed to teach you step by step how to perform and understand various clustering algorithm. We will

More information

Machine Learning: Algorithms and Applications Mockup Examination

Machine Learning: Algorithms and Applications Mockup Examination Machine Learning: Algorithms and Applications Mockup Examination 14 May 2012 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students Write First Name, Last Name, Student Number and Signature

More information

Optimal Clustering and Statistical Identification of Defective ICs using I DDQ Testing

Optimal Clustering and Statistical Identification of Defective ICs using I DDQ Testing Optimal Clustering and Statistical Identification of Defective ICs using I DDQ Testing A. Rao +, A.P. Jayasumana * and Y.K. Malaiya* *Colorado State University, Fort Collins, CO 8523 + PalmChip Corporation,

More information

Basic Concepts Weka Workbench and its terminology

Basic Concepts Weka Workbench and its terminology Changelog: 14 Oct, 30 Oct Basic Concepts Weka Workbench and its terminology Lecture Part Outline Concepts, instances, attributes How to prepare the input: ARFF, attributes, missing values, getting to know

More information

A Neural Network for Real-Time Signal Processing

A Neural Network for Real-Time Signal Processing 248 MalkofT A Neural Network for Real-Time Signal Processing Donald B. Malkoff General Electric / Advanced Technology Laboratories Moorestown Corporate Center Building 145-2, Route 38 Moorestown, NJ 08057

More information

Introduction to R and Statistical Data Analysis

Introduction to R and Statistical Data Analysis Microarray Center Introduction to R and Statistical Data Analysis PART II Petr Nazarov petr.nazarov@crp-sante.lu 22-11-2010 OUTLINE PART II Descriptive statistics in R (8) sum, mean, median, sd, var, cor,

More information

Multiple Classifier Fusion using k-nearest Localized Templates

Multiple Classifier Fusion using k-nearest Localized Templates Multiple Classifier Fusion using k-nearest Localized Templates Jun-Ki Min and Sung-Bae Cho Department of Computer Science, Yonsei University Biometrics Engineering Research Center 134 Shinchon-dong, Sudaemoon-ku,

More information

Back propagation Algorithm:

Back propagation Algorithm: Network Neural: A neural network is a class of computing system. They are created from very simple processing nodes formed into a network. They are inspired by the way that biological systems such as the

More information

A Self-Organizing Binary System*

A Self-Organizing Binary System* 212 1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE A Self-Organizing Binary System* RICHARD L. MATTSONt INTRODUCTION ANY STIMULUS to a system such as described in this paper can be coded into

More information

FUZZY KERNEL K-MEDOIDS ALGORITHM FOR MULTICLASS MULTIDIMENSIONAL DATA CLASSIFICATION

FUZZY KERNEL K-MEDOIDS ALGORITHM FOR MULTICLASS MULTIDIMENSIONAL DATA CLASSIFICATION FUZZY KERNEL K-MEDOIDS ALGORITHM FOR MULTICLASS MULTIDIMENSIONAL DATA CLASSIFICATION 1 ZUHERMAN RUSTAM, 2 AINI SURI TALITA 1 Senior Lecturer, Department of Mathematics, Faculty of Mathematics and Natural

More information

Prototype Selection for Handwritten Connected Digits Classification

Prototype Selection for Handwritten Connected Digits Classification 2009 0th International Conference on Document Analysis and Recognition Prototype Selection for Handwritten Connected Digits Classification Cristiano de Santana Pereira and George D. C. Cavalcanti 2 Federal

More information

The results section of a clinicaltrials.gov file is divided into discrete parts, each of which includes nested series of data entry screens.

The results section of a clinicaltrials.gov file is divided into discrete parts, each of which includes nested series of data entry screens. OVERVIEW The ClinicalTrials.gov Protocol Registration System (PRS) is a web-based tool developed for submitting clinical trials information to ClinicalTrials.gov. This document provides step-by-step instructions

More information

Handwritten Hindi Numerals Recognition System

Handwritten Hindi Numerals Recognition System CS365 Project Report Handwritten Hindi Numerals Recognition System Submitted by: Akarshan Sarkar Kritika Singh Project Mentor: Prof. Amitabha Mukerjee 1 Abstract In this project, we consider the problem

More information

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN ,

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN , Interpretation and Comparison of Multidimensional Data Partitions Esa Alhoniemi and Olli Simula Neural Networks Research Centre Helsinki University of Technology P. O.Box 5400 FIN-02015 HUT, Finland esa.alhoniemi@hut.fi

More information

Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine

Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine M. Vijay Kumar Reddy 1 1 Department of Mechanical Engineering, Annamacharya Institute of Technology and Sciences,

More information