CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1

Size: px
Start display at page:

Download "CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1"

Transcription

1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present in the IP header and TCP header, And given the following frame with an encapsulated IP datagram and TCP segment: F9 B7 3B E7 E3 0C F D A 2F 36 FF A1 2C F 25 A9 5B 0B F2 E4 B8 5F 5C 9A 8D 7C 66 E0 96 3E DB BE AE B E 0A 68 4F 60 2B 8D F6 A3 B C 1B 2C CA 40 6C CF 7F D8 E6 D A F6 AB A8 1A F9 D8 35 EC DC 66 0A D0 4A 18 FE 69 C1 3F 73 B2 84 F9 E6 37 2F 0D F F 3E CB 08 C7 2D 96 A8 90 6C F2 F C 5C 11 6E

2 Version 1 a. Find the source hardware address b. Find the destination hardware address c. What type of frame is this? d. What is the Type Of Service in the IP Header? e. What is the fragment offset? f. What is the TTL count? g. Find the destination IP address h. What class is the destination IP i. What is the network ID in the destination j. What is the host ID in the destination k. Write the destination IP address in dotted l. Find the IP Header Checksum m. Find the source IP address n. What class is the source IP o. What is the network ID in the source p. What is the host ID in the source q. Write the source IP address in dotted r. Find the destination port. s. Find the source port. t. Find the acknowledgment number. u. Find the sequence number. v. What flags are set in the TCP header? w. Find the TCP segment checksum. x. Find the TCP window size. y. What are the first 5 bytes of data encapsulated inside the TCP segment? 2. (25 Points) Each router in the autonomous system shown below starts with a routing table showing the networks that they are directly connected to. The routers exchange routing information using a distance vector protocol. Show the messages that are exchanged and the state of the routing tables after each message. Use the Routing Tables sheet(s).

3 Version 1 3. (20 Points) Consider a fixed subnet partition of the class B network a. (4 Points) How many bits will be necessary to divide the network into 2015 subnets? b. (4 Points) What is the subnet mask in dotted decimal notation? c. (4 Points) What is the maximum number of hosts each subnet can have? d. (8 Points) Write the dotted decimal IP address of subnet 1999, host (15 Points) Given the IP address and the subnet mask of a. (5 Points) What is the network number? b. (5 Points) What is the subnet number? c. (5 Points) What is the host number? 5. (10 Points) Explain Network Address Translation (NAT). What is it? Why do we need it? How does it work? Give examples. Draw diagrams. Be as specific as possible. 6. (10 Points) Explain how IPv4 handles fragmentation as it relates to datagrams. Why is it necessary? What is the maximum MTU in IPv4 Ethernet networks? Where does it occur? When and where are the fragments reassembled? Give examples and be as specific as possible. 7. (10 Points) Explain how IPv6 handles fragmentation as it relates to datagrams. Where does it occur? What is the minimum MTU in IPv6? When and where are the fragments reassembled? Give examples and be as specific as possible.

4 Version 2 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present in the IP header and TCP header, And given the following frame with an encapsulated IP datagram and TCP segment: A4 74 C B8 93 E9 DD B5 49 E A A F2 87 FE F3 9F 53 A1 01 CA 9D CE C6 E5 A6 E3 CD 2F 22 7E BB F8 0C 2A A3 74 CE F4 96 E7 46 9D EE 1F 48 8B F7 15 F0 05 C6 C4 A D 0C 47 A2 C9 CE 65 8F 5C F 2F D B7 E A EC 2D 5A 1B 64 F3 50 3C B9 E4 EB C5 4C 18 C9 D3 E8 B1 F8 FE A B 5B F3 24 C2 C0 C0

5 Version 2 a. Find the source hardware address b. Find the destination hardware address c. What type of frame is this? d. What is the Type Of Service in the IP Header? e. What is the fragment offset? f. What is the TTL count? g. Find the destination IP address h. What class is the destination IP i. What is the network ID in the destination j. What is the host ID in the destination k. Write the destination IP address in dotted l. Find the IP Header Checksum m. Find the source IP address n. What class is the source IP o. What is the network ID in the source p. What is the host ID in the source q. Write the source IP address in dotted r. Find the destination port. s. Find the source port. t. Find the acknowledgment number. u. Find the sequence number. v. What flags are set in the TCP header? w. Find the TCP segment checksum. x. Find the TCP window size. y. What are the first 5 bytes of data encapsulated inside the TCP segment? 2. (25 Points) Each router in the autonomous system shown below starts with a routing table showing the networks that they are directly connected to. The routers exchange routing information using a distance vector protocol. Show the messages that are exchanged and the state of the routing tables after each message. Use the Routing Tables sheet(s).

6 Version 2 3. (20 Points) Consider a fixed subnet partition of the class B network that will accommodate at least 4,050 subnets. a. (4 Points) How many bits will be necessary to divide the network into 2015 subnets? b. (4 Points) What is the subnet mask in dotted decimal notation? c. (4 Points) What is the maximum number of hosts each subnet can have? d. (8 Points) Write the dotted decimal IP address of subnet 2001 host (15 Points) Given the IP address and the subnet mask of a. (5 Points) What is the network number? b. (5 Points) What is the subnet number? c. (5 Points) What is the host number? 5. (10 Points) Explain Network Address Translation (NAT). What is it? Why do we need it? How does it work? Give examples. Draw diagrams. Be as specific as possible. 6. (10 Points) Explain how IPv4 handles fragmentation as it relates to datagrams. Why is it necessary? What is the maximum MTU in IPv4 Ethernet networks? Where does it occur? When and where are the fragments reassembled? Give examples and be as specific as possible. 7. (10 Points) Explain how IPv6 handles fragmentation as it relates to datagrams. Where does it occur? What is the minimum MTU in IPv6? When and where are the fragments reassembled? Give examples and be as specific as possible.

CIS-331 Final Exam Spring 2016 Total of 120 Points. Version 1

CIS-331 Final Exam Spring 2016 Total of 120 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

CIS-331 Final Exam Spring 2018 Total of 120 Points. Version 1

CIS-331 Final Exam Spring 2018 Total of 120 Points. Version 1 Version 1 Instructions 1. Write your name and version number on the top of the yellow paper and the routing tables sheet. 2. Answer Question 2 on the routing tables sheet. 3. Answer Questions 1, 3, 4,

More information

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1 Version 1 1. (20 Points) Given the class A network address 117.0.0.0 will be divided into multiple subnets. a. (5 Points) How many bits will be necessary to address 4,000 subnets? b. (5 Points) What is

More information

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1 Version 1 1. (20 Points) Given the class A network address 119.0.0.0 will be divided into a maximum of 15,900 subnets. a. (5 Points) How many bits will be necessary to address the 15,900 subnets? b. (5

More information

CIS-331 Exam 2 Spring 2016 Total of 110 Points Version 1

CIS-331 Exam 2 Spring 2016 Total of 110 Points Version 1 Version 1 1. (20 Points) Given the class A network address 121.0.0.0 will be divided into multiple subnets. a. (5 Points) How many bits will be necessary to address 8,100 subnets? b. (5 Points) What is

More information

CIS-331 Fall 2013 Exam 1 Name: Total of 120 Points Version 1

CIS-331 Fall 2013 Exam 1 Name: Total of 120 Points Version 1 Version 1 1. (24 Points) Show the routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. NOTE: Router E should only be used for Internet traffic. Router A Router

More information

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1 Version 1 1. (24 Points) Show the routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Router A Router B Router C Router D Network Next Hop Next Hop Next Hop Next

More information

CIS-331 Spring 2016 Exam 1 Name: Total of 109 Points Version 1

CIS-331 Spring 2016 Exam 1 Name: Total of 109 Points Version 1 Version 1 Instructions Write your name on the exam paper. Write your name and version number on the top of the yellow paper. Answer Question 1 on the exam paper. Answer Questions 2-4 on the yellow paper.

More information

McGraw-Hill The McGraw-Hill Companies, Inc., 2000

McGraw-Hill The McGraw-Hill Companies, Inc., 2000 !! McGraw-Hill The McGraw-Hill Companies, Inc., 2000 "#$% & '$# )1 ) ) )6 ) )* )- ). )0 )1! )11 )1 )1 )16 )1 3'' 4", ( ( $ ( $ $$+, $$, /+ & 23,4 )/+ &4 $ 53" Network Layer Position of network layer Figure

More information

Network Layer/IP Protocols

Network Layer/IP Protocols Network Layer/IP Protocols 1 Outline IP Datagram (IPv4) NAT Connection less and connection oriented service 2 IPv4 packet header 3 IPv4 Datagram Header Format version of the IP protocol (4 BIts) IP header

More information

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer Homework Assignment 1 (Solutions due 20:00, Mon., 10 Sept. 2018) (Review due 20:00, Wed., 12 Sept. 2018) 1. IPv4 Addressing

More information

b. Suppose the two packets are to be forwarded to two different output ports. Is it

b. Suppose the two packets are to be forwarded to two different output ports. Is it Problem-1:[15] Suppose two packets arrive to two different input ports of a router at exactly the same time. Also suppose there are no other packets anywhere in the router. a. Suppose the two packets are

More information

Communication and Networks. Problems

Communication and Networks. Problems Electrical and Information Technology Communication and Networks Problems Network Layer (IP) 2016 Problems 1. The table below describes the next hop for each destination in the network for all nodes in

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

Position of IP and other network-layer protocols in TCP/IP protocol suite

Position of IP and other network-layer protocols in TCP/IP protocol suite Position of IP and other network-layer protocols in TCP/IP protocol suite IPv4 is an unreliable datagram protocol a best-effort delivery service. The term best-effort means that IPv4 packets can be corrupted,

More information

Network Basic v0.1. Network Basic v0.1. Chapter 3 Internet Protocol. Chapter 3. Internet Protocol

Network Basic v0.1. Network Basic v0.1. Chapter 3 Internet Protocol. Chapter 3. Internet Protocol Network Basic v0.1 Chapter 3. Internet Protocol 1 Network Basic v0.1 Chapter 3 Internet Protocol 1. The Role of Network Layer 2. IP Protocol Feature 3. IP Packet Routing 5. DHCP 6. NAT 2 1 네트워크 ICONs 3

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.2: IP Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

ECE 461 Internetworking Fall Quiz 1

ECE 461 Internetworking Fall Quiz 1 ECE 461 Internetworking Fall 2010 Quiz 1 Instructions (read carefully): The time for this quiz is 50 minutes. This is a closed book and closed notes in-class exam. Non-programmable calculators are permitted

More information

Tutorial 9. SOLUTION Since the number of supported interfaces is different for each subnet, this is a Variable- Length Subnet Masking (VLSM) problem.

Tutorial 9. SOLUTION Since the number of supported interfaces is different for each subnet, this is a Variable- Length Subnet Masking (VLSM) problem. Tutorial 9 1 Router Architecture Consider a router with a switch fabric, 2 input ports (A and B) and 2 output ports (C and D). Suppose the switch fabric operates at 1.5 times the line speed. a. If, for

More information

End-to-End Communication

End-to-End Communication End-to-End Communication Goal: Interconnect multiple LANs. Why? Diverse LANs speak different languages need to make them talk to each other Management flexibility global vs. local Internet Problems: How

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: Internet Protocol Literature: Forouzan: ch (4-6), 7-9 and ch 31 2004 Image Coding Group, Linköpings Universitet Lecture 2: IP Goals: Understand the benefits Understand the architecture IPv4

More information

4. Specifications and Additional Information

4. Specifications and Additional Information 4. Specifications and Additional Information AGX52004-1.0 8B/10B Code This section provides information about the data and control codes for Arria GX devices. Code Notation The 8B/10B data and control

More information

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly The Internet Protocol IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly IP Addresses IP Addresses are 32 bit. Written in dotted decimal format:

More information

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer PREPARED BY AHMED ABDEL-RAOUF Network Layer PREPARED BY AHMED ABDEL-RAOUF Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport

More information

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) 2. What is the purpose of Layer-3-Switches

More information

ECE 461 Internetworking Fall Quiz 1

ECE 461 Internetworking Fall Quiz 1 ECE 461 Internetworking Fall 2013 Quiz 1 Instructions (read carefully): The time for this quiz is 50 minutes. This is a closed book and closed notes in-class exam. Non-programmable (Type 2) calculators

More information

Network Layer: Control/data plane, addressing, routers

Network Layer: Control/data plane, addressing, routers Network Layer: Control/data plane, addressing, routers CS 352, Lecture 10 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors)

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

ARP, IP. Chong-Kwon Kim. Each station (or network interface) should be uniquely identified Use 6 byte long address

ARP, IP. Chong-Kwon Kim. Each station (or network interface) should be uniquely identified Use 6 byte long address ARP, IP Chong-Kwon Kim Routing Within a LAN MAC Address Each station (or network interface) should be uniquely identified Use 6 byte long address Broadcast & Filter Broadcast medium Signals are transmitted

More information

Network Layer, Link Layer, and Network Security Summary

Network Layer, Link Layer, and Network Security Summary CPSC 826 Internetworking, Link Layer, and Network Security Summary http://www.cs.clemson.edu/~mweigle/courses/cpsc826 1 Chapter 4, 5, 8 Topics» Forwarding and Routing» Router Architecture» Internet Protocol

More information

Course Contents. The TCP/IP protocol Stack

Course Contents. The TCP/IP protocol Stack Course Contents PART 1 Overview and Introduction PART 2 Communication Reference Models PART 3 Data Communication Fundamentals and Physical Layer PART 4 Datalink Layer and Emerging Network Technologies

More information

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ECPE / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Course Organization Top-Down! Starting with Applications / App programming Then Transport Layer (TCP/UDP) Then

More information

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab bacademy for Science &T Technology and Maritime Transport Internet Protocol Suite IP Suite Dr.

More information

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on IP Version 4 (IPv4) Header (Continued) Identification (16 bits): One of the parameters of any network is the maximum transmission unit (MTU) parameter. This parameter specifies the maximum size of the

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Solution of Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Solution of Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Solution of Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) They forward packets

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

IPv6 : Internet Protocol Version 6

IPv6 : Internet Protocol Version 6 IPv6 : Internet Protocol Version 6 History Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s)

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s) History IPv6 : Internet Protocol Version 6 Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

Department of Computer Science and Engineering. CSE 3214: Computer Network Protocols and Applications Instructor: N. Vlajic Date: Feb 23, 2016

Department of Computer Science and Engineering. CSE 3214: Computer Network Protocols and Applications Instructor: N. Vlajic Date: Feb 23, 2016 Department of Computer Science and Engineering CSE 3214: Computer Network Protocols and Applications Instructor: N. Vlajic Date: Feb 23, 2016 Midterm Examination Instructions: Examination time: 75 min.

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1 Networking Basics EC512 Spring 2015 2/15/2015 EC512 - Prof. Thomas Skinner 1 Protocols Protocols are required in order to allow information to be extracted from the stream of bits flowing from one point

More information

Internet Networking recitation #2 IP Checksum, Fragmentation

Internet Networking recitation #2 IP Checksum, Fragmentation Internet Networking recitation #2 IP Checksum, Fragmentation Winter Semester 2012, Dept. of Computer Science, Technion 1 IP Header Diagram Ver. IHL TOS Total Length Identification Flags Fragment Offset

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

IPv4 Lecture 10a. COMPSCI 726 Network Defence and Countermeasures. Muhammad Rizwan Asghar. August 14, 2017

IPv4 Lecture 10a. COMPSCI 726 Network Defence and Countermeasures. Muhammad Rizwan Asghar. August 14, 2017 IPv4 Lecture 10a COMPSCI 726 Network Defence and Countermeasures Muhammad Rizwan Asghar August 14, 2017 Source of some slides: Princeton University Also thanks to J.F Kurose and K.W. Ross IPv4 Internet

More information

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms Chapter 15&16 Internetworking Internetwork Structure & Terms Internetworking Architecture Features Connection/Connectionless Architecture Fragmentation & Reassembly Internet Protocol & Services Addressing

More information

EE-311 Data Communication & Networks

EE-311 Data Communication & Networks National University of Computer & Emerging Sciences, Islamabad, Pakistan Name: Roll No: EE-311 Data Communication & Networks Summer 2007 Final Thursday, 2 nd August 2007 Total Time: 3 Hours Total Marks:

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

EE 122 Fall 2010 Discussion Section III 5 October 2010

EE 122 Fall 2010 Discussion Section III 5 October 2010 EE 122 Fall 2010 Discussion Section III 5 October 2010 http://www.cs.berkeley.edu/~alspaugh/ee122/fa10/ Question 1: IP Header This is the IPv4 header structure we will need for the problems Kisco Inc.

More information

Lecture 11: Networks & Networking

Lecture 11: Networks & Networking Lecture 11: Networks & Networking Contents Distributed systems Network types Network standards ISO and TCP/IP network models Internet architecture IP addressing IP datagrams AE4B33OSS Lecture 11 / Page

More information

University of Toronto Faculty of Applied Science and Engineering. Final Exam, December ECE 461: Internetworking Examiner: J.

University of Toronto Faculty of Applied Science and Engineering. Final Exam, December ECE 461: Internetworking Examiner: J. University of Toronto Faculty of Applied Science and Engineering Final Exam, December 2010 ECE 461: Internetworking Examiner: J. Liebeherr Exam Type: B Calculator: Type 2 There are a total of 10 problems.

More information

! ' ,-. +) +))+, /+*, 2 01/)*,, 01/)*, + 01/+*, ) 054 +) +++++))+, ) 05,-. /,*+), 01/-*+) + 01/.*+)

! ' ,-. +) +))+, /+*, 2 01/)*,, 01/)*, + 01/+*, ) 054 +) +++++))+, ) 05,-. /,*+), 01/-*+) + 01/.*+) ! "#! # $ %& #! '!!!( &!)'*+' '(,-. +) /,*+), 01/-*+) + 01/.*+) ) 05,-. +))+, /+*, 2 01/)*,, 01/)*, + 01/+*, ) 054 +) +++++))+,3 4 +. 6*! ) ) ) ) 5 ) ) ) ) + 5 + + ) ) ) 5 9 + ) ) + 5 4 ) ) + ) 5, ) )

More information

CH. 3 IP FORWARDING AND ROUTING

CH. 3 IP FORWARDING AND ROUTING 1 2012, Morgan-Kaufmann Pub. Co., Prof. Larry Peterson and Bruce Davie Some marked texts and figures from textbook Conceptual Computer Networks & José María Foces Vivancos CH. 3 IP FORWARDING AND ROUTING

More information

The cache is 4-way set associative, with 4-byte blocks, and 16 total lines

The cache is 4-way set associative, with 4-byte blocks, and 16 total lines Sample Problem 1 Assume the following memory setup: Virtual addresses are 20 bits wide Physical addresses are 15 bits wide The page size if 1KB (2 10 bytes) The TLB is 2-way set associative, with 8 total

More information

Veryx ATTEST TM. Sample Test cases Overview. Conformance Test Suite. Internet Protocol version 4 (IPv4) Part Number: T / TCLS IPv /1.

Veryx ATTEST TM. Sample Test cases Overview. Conformance Test Suite. Internet Protocol version 4 (IPv4) Part Number: T / TCLS IPv /1. Veryx ATTEST TM Conformance Test Suite Internet Protocol version 4 (IPv4) Sample Test cases Overview Part Number: T / TCLS IPv4 1.0-1110/1.0 This page is intentionally left blank. Introduction The Veryx

More information

CSCI Computer Networks Fall 2016

CSCI Computer Networks Fall 2016 source: computer-s-webdesign.com CSCI 4760 - Computer Networks Fall 2016 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose and K.W.

More information

This talk will cover the basics of IP addressing and subnetting. Topics covered will include:

This talk will cover the basics of IP addressing and subnetting. Topics covered will include: This talk will cover the basics of IP addressing and subnetting. Topics covered will include: What is an IP Address? What are Classes? What is a Network Address? What are Subnet Masks and Subnet Addresses?

More information

Internet Protocol. Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1

Internet Protocol. Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1 Internet Protocol Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1 Internet Protocol Runs on all hosts in the Internet and enables packets to be routed between systems

More information

IP : Internet Protocol

IP : Internet Protocol 1/20 IP : Internet Protocol Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: July 30, 1999 Agenda 2/20 IP functions IP header format Routing architecture IP layer 3/20 defines

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (12 th Week) The Internet Protocol 12.Outline Principles of Internetworking Internet Protocol Operation Internet Protocol

More information

The Internet Protocol (IP)

The Internet Protocol (IP) The Internet Protocol (IP) The Blood of the Internet (C) Herbert Haas 2005/03/11 "Information Superhighway is really an acronym for 'Interactive Network For Organizing, Retrieving, Manipulating, Accessing

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

IP - The Internet Protocol

IP - The Internet Protocol IP - The Internet Protocol 1 Orientation IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network Layer ARP Network Access Link Layer Media 2 IP:

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2006 Lecture 16

CIS 551 / TCOM 401 Computer and Network Security. Spring 2006 Lecture 16 CIS 551 / TCOM 401 Computer and Network Security Spring 2006 Lecture 16 Announcements Midterm II March 21st (One week from today) In class Same format as last time Will cover all material since Midterm

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Introduction p. 1 The Need for Security p. 2 Public Network Threats p. 2 Private Network Threats p. 4 The Role of Routers p. 5 Other Security Devices

Introduction p. 1 The Need for Security p. 2 Public Network Threats p. 2 Private Network Threats p. 4 The Role of Routers p. 5 Other Security Devices Preface p. xv Acknowledgments p. xvii Introduction p. 1 The Need for Security p. 2 Public Network Threats p. 2 Private Network Threats p. 4 The Role of Routers p. 5 Other Security Devices p. 6 Firewall

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

Networking: Network Layer

Networking: Network Layer CS 4410 Operating Systems Networking: Network Layer Summer 2013 Cornell University 1 Today How packages are exchanged in a WAN? Network Layer IP Naming Subnetwork Forwarding Routing Algorithms 2 Protocol

More information

IP Addressing. Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora

IP Addressing. Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora IP Addressing Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora IP Addresses Structure of an IP address Subnetting CIDR IP Version 6 addresses IP

More information

Module 7 Internet And Internet Protocol Suite

Module 7 Internet And Internet Protocol Suite Module 7 Internet And Internet Protocol Suite Lesson 22 IP addressing. ICMP LESSON OBJECTIVE General The lesson will continue the discussion on IPv4 along with the idea of ICMP. Specific The focus areas

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK 219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 4 Network Layer Andreas Terzis Outline Internet Protocol Service Model Addressing Original addressing scheme Subnetting CIDR Fragmentation ICMP Address Shortage

More information

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ECPE / COMP 177 Fall 2012 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Application Layer Transport Layer Network Layer Link Layer Physical Layer 2 Application Layer HTTP DNS IMAP

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE361 Computer Networks Midterm March 09, 2016, 6:15PM DURATION: 75 minutes Calculator Type: 2 (non-programmable calculators) Examiner:

More information

CS 458 Internet Engineering Spring First Exam

CS 458 Internet Engineering Spring First Exam CS 458 Internet Engineering Spring 2005 First Exam Instructions (read carefully): There are 6 problems for a total of 60 points. This is a closed book and closed notes in-class exam. If any problem is

More information

Recap. Recap. Internetworking. First mile problem. Internet. End Users. Last mile problem. Direct link networks Packet switching.

Recap. Recap. Internetworking. First mile problem. Internet. End Users.   Last mile problem. Direct link networks Packet switching. Recap First mile problem Internet www.yahoo.com Comcast Sprint End Users SBC UUNET www.cnn.com Last mile problem Recap Direct link networks Packet switching Internetworking 1 IP Internet Concatenation

More information

Subnet Masks. Address Boundaries. Address Assignment. Host. Net. Host. Subnet Mask. Non-contiguous masks. To Administrator. Outside the network

Subnet Masks. Address Boundaries. Address Assignment. Host. Net. Host. Subnet Mask. Non-contiguous masks. To Administrator. Outside the network Subnet Masks RFCs 917 922 925 (1984) 932 936 940 950 (1985) First major change to IP after RFC791 Net Host Subnet Mask 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Net Bits set indicate net number Bits clear indicate

More information

Internet Protocol (IP)

Internet Protocol (IP) CPSC 360 - Network Programming Internet Protocol (IP) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu March 14, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

BSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security. Cohort: BIS/16B/FT & BCNS/16B/FT

BSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security. Cohort: BIS/16B/FT & BCNS/16B/FT BSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security Cohort: BIS/16B/FT & BCNS/16B/FT Examinations for 2016-2017 Semester 2, 2017 Semester 1 Resit Examinations for

More information

Chapter 20 Network Layer: Internet Protocol 20.1

Chapter 20 Network Layer: Internet Protocol 20.1 Chapter 20 Network Layer: Internet Protocol 20.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 20-1 INTERNETWORKING In this section, we discuss internetworking,

More information

INTERNET SYSTEM. Internet Protocol. Kent State University Dept. of Computer Science. CS 4/55231 Internet Engineering. Large Scale Networking

INTERNET SYSTEM. Internet Protocol. Kent State University Dept. of Computer Science. CS 4/55231 Internet Engineering. Large Scale Networking CS 4/55231 Internet Engineering Kent State University Dept. of Computer Science LECT-6 SYSTEM 1 2 Large Scale Networking No Single Technology can Adequately Serve Every One s Need. Each LAN/ WAN has specific

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

Introduction Layer 3. IP-Header: and RFC-760 Addressing schemes Subnetting Routing. Layer 3 Solution in Trains

Introduction Layer 3. IP-Header:  and RFC-760 Addressing schemes Subnetting Routing. Layer 3 Solution in Trains Chapter 2.3 Layer 3 Network Layer 1 Content Introduction Layer 3 IP Protocol IP-Header: www.ietf.org and RFC-760 Addressing schemes Subnetting Routing Layer 3 Solution in Trains Communication Matrix (Information

More information

Communication Systems DHCP

Communication Systems DHCP Communication Systems DHCP Computer Science Copyright Warning This lecture is already stolen If you copy it please ask the author Prof. Dr. Gerhard Schneider like I did 2 Internet Protocol the Universal

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Lecture 9: Internetworking

Lecture 9: Internetworking Lecture 9: Internetworking CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY So what does IP do? Addressing Fragmentation E.g. FDDI s maximum packet is 4500 bytes while Ethernet is 1500 bytes,

More information

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land IPv6 1 IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header Ver IHL Type of Service Total Length Ver Traffic Class Flow Label Identification Flags Fragment Offset Payload Length Next Header Hop Limit

More information

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ...

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ... 1 Inter-networking COS 460 & 540 2 Problem 3 LAN s are great but We want to connect them together...across the world Inter-networking 4 Internet Protocol (IP) Routing The Internet Multicast* Multi-protocol

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 17 CMPE 80N Spring'10 1 Announcements Next class: Presentation of fun projects

More information

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and INTERNET PROTOCOL VERSION 6 (IPv6) Introduction IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and addressing

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

CS/ECE 4457 FALL Name: Computing ID: WARM UP. Question 1: What type of transmission mode is depicted in the photo below:

CS/ECE 4457 FALL Name: Computing ID: WARM UP. Question 1: What type of transmission mode is depicted in the photo below: CS/ECE 4457 FALL 2018 Name: Computing ID: WARM UP Question 1: What type of transmission mode is depicted in the photo below: 1) Simplex 2) Full Duplex 3) Half Duplex 4) None of the above LINK LAYER Error

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

Lesson 3. IPv4 and IPv6 Protocols. Chapter-4 L03: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Lesson 3. IPv4 and IPv6 Protocols. Chapter-4 L03: Internet of Things , Raj Kamal, Publs.: McGraw-Hill Education Lesson 3 IPv4 and IPv6 Protocols Publs.: McGraw-Hill Education 1 Internet layer Receives and forwards data to next stage Uses IP version 4 (IPv4), Uses IP version 6 (IPv6) protocol or [IPv6 Routing Protocol

More information

Interconnecting Networks with TCP/IP

Interconnecting Networks with TCP/IP Chapter 8 Interconnecting s with TCP/IP 1999, Cisco Systems, Inc. 8-1 Introduction to TCP/IP Internet TCP/IP Early protocol suite Universal 1999, Cisco Systems, Inc. www.cisco.com ICND 8-2 TCP/IP Protocol

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information