Date: June 4 th a t 1 4:00 1 7:00

Size: px
Start display at page:

Download "Date: June 4 th a t 1 4:00 1 7:00"

Transcription

1 Kommunika tionssyste m FK, Examina tion G Date: June 4 th a t 4:00 7:00 KTH/IMIT/LCN No help material is allowed. You may answer questions in English or Swedish. Please answer each question on a separate page. Fill in the table on page for each question you have addressed. The grading of the exam will be completed no later than June After grading, the exams will be available for inspection no later than August 003. Deadline for written complaints is August Course responsible is Olof Hagsand, phone Your name: Your social security number (personnummer): Your major (utbildningslinje):.. Total Points:. Grade:..

2 Question Answered Potential points Received points Total 60

3 . General (5p) a) Formulate the End- to- End argument (you do not have to quote it)? (p) A specific application- level function should not be implemented in the lower levels of the system. b) Name at least two consequences of the End- to- End argument. (p) The bulk of functions are placed at the edge of the network. The complexity of the core network is reduced. Generality in the network increases the chances that new applications can be added. c) Place each of the following protocols in the correct layer of the TCP/IP protocol stack: DHCP, IP, ARP, SNMP, RTP, IGMP, (p) DHCP, SNMP, RTP Application layer IP, IGMP Network layer ARP Link layer. Link Layer (5p) a) Name at least two advantages with PPP compared to SLIP. (p) Support for multiple protocols on a link CRC on every frame Dynamic negotiation of IP address of each end Link control with facilities for negotiating many data- link options b) How does proxy ARP work? (p) A node (proxy server) answers ARP requests on another node s behalf. c) What is gratuitous ARP? (p) When a host sends an ARP request of its own address. d) RARP can be used as a bootstrap protocol. Name at least one limitation with RARP used in this setting. (p) The use of a link- layer broadcast prevents routers from forwarding the RARP request, and the information returned is minimal: just the system s IP address. 3. Link Layer / Spanning Tree Protocol (5p) Briefly describe the Spanning Tree algorithm. Your answer should cover: a) Why the protocol is needed (p) To avoid forwarding loops in a bridged network. b) The process of constructing the tree (4p) ) An ID number is assigned to each bridge, and a cost to each port. ) Bridge with smallest ID is elected root bridge. 3) Each bridge determines its root port, the port that has the least root path

4 cost to the root. 4) One designated bridge is chosen for each segment. 5) Include the following ports in the spanning tree: root port plus any ports on which self has been elected designated bridge 6) Data traffic is forwarded only to and from ports selected for inclusion in the spanning tree. 4. IPv4 Addressing (5p) All other subnets on site... One subnet A B C Internet A site has been allocated the class B network The site is shown in the figure above, where one router routes between three interfaces A, B, and C. The site is partitioned into several subnetworks. One of those subnetworks includes host , and is connected to interface B. The other subnetworks are connected to interface A. a) The site needs to partition its class B network into at least 53 subnetworks by using fixed partitioning and classful addressing. How large is the (minimal) subnet mask and how many hosts can be on each network? (p) The minimal subnet mask is 6 bits, so that ^6 = 64 subnetworks can be addressed. There may be ^0- =0 hosts on each network (03 is also accepted as an answer). b) Construct the net- directed broadcast address for the sub- network to which host is connected. (p) c) Using classless addressing and CIDR notation, how is that network denoted? (p) / d) Draw a minimal routing table of the router using CIDR notation. Each router entry shall only contain the network in CIDR notation and an outgoing interface. (p) /0 C /6 A / B

5 5. ICMP and IP options (5p) a) ICMP messages are grouped into query and error messages. Error messages are sent when errors in IP datagrams are detected, except for some special cases. Name at least two such special cases. (p) A datagram carrying another ICMP Error A datagram destined to IP broadcast or multicast A datagram sent as link- layer broadcast (eg Ethernet) An IP fragment other than the first A datagram whose source address does not define a single host b) Traceroute is a tool to explore the path to a given destination. Traceroute uses two methods where ICMP messages are involved to detect each hop on the way to the destination. Describe these two methods and name the ICMP messages involved. (p) Traceroute starts with TTL= and sends IP datagrams with increasing TTL levels to the destination. The intermediate routers send ICMP time exceeded back to the source, if the TTL is decremented to zero. When the destination is reached, traceroute sends a UDP datagram with an unlikely port. The destination returns an ICMP Port unreachable. c) Using IP options, an alternative method to traceroute can be used to find the path to a given destination. Describe this method, and name at least one reason why it is of limited use. (p) The IPv4 record route option can be used as an alternative. Limitations of this approach include - The limited (0-byte) option field that can only be used for a limited (9) set of hops - Not all routers implement this functionality. 6. TCP (5p) a) What protocol is used for flow control in TCP? (p) Sliding windows. b) What is the difference between offered window and usable window in TCP? (p) The offered window is advertised by the receiver and defines how much data the receiver is ready to accept. The usable window is maintained by the sender and defines the amount of data the sender can transmit immediately. c) Someone complained about a throughput of 0,000 bits/sec on a 56,000bits/sec link with a 8-ms RTT (Round Trip Time) between the United States and Japan (47% utilization), and a throughput of 33,000 bits/sec when the link was routed over a satellite (3% utilization). Assume a 500 ms RTT for the satellite link. What does the window size appear to be for both cases? (p) Terrestial link: capacity = throughput x RTT = 0000 bits/s x 8 ms = 90 bytes Satellite link: capcity = throughput x RTT = bits/s x 500 ms = 06

6 bytes It appears that the receiving TCP advertises a K window size. d) How large should the window in the previous example be for optimal throughput over the satellite link? (p) For optimal throughput on the satellite link: capacity = bandwidth x RTT = bits/s x 500 ms = 6000 bytes. 7. Routing (5p) N 3 N R N R R 3 3 B N 4 A N 5 N 6 3 R 4 R 5 N 7 R 6 N 8 R 7 R 8 N 9 N 0 Internet Regard the network in the figure above. It consists of eight routers (R -R 8 ), with ten networks (N -N 0 ). Ethernets are denoted with horizontal bold lines. Hosts are not shown, except for hosts A and B. There are two point- to- point links connecting R - R 4 and R 3 -R 5. R 5 is connected to the rest of the Internet. Each router runs OSPF. The whole network belongs to the backbone area: Area 0. The costs are shown in the figure. a) Perform a shortest path calculation (such as by the Dijkstra s algorithm) with router R as root, and draw the resulting directed tree of the network shown in the figure. The tree should include routers and designated routers and costs on each link. (p) (see figure below)

7 b) The OSPF protocol really consists of three separate sub- protocols. Which are these protocols? Describe the purposes of each sub- protocol. (3p). The OSPF HELLO protocol: Neighbour detection. Authentication. Designated Router selection.. The OSPF Exchange protocol: Exchange Database description (DD) between neighbours. Request and receive LSAs initially from neighbours. 3. The Flooding protocol: When links change or age, send link updates recursively (flooding). Answer to 5a: R 3 N N 3 N 4 R 4 N R R 3 R 5 N 7 R 6 N 8 R 7 R 8 N 9 N 0 8. Autoconfigura tion and DNS (Domai n Name System) (5p)

8 a) Many configuration problems in TCP/IP are solved automatically by DHCP and BOOTP. DHCP is a follow- up of BOOTP. Which is the major advantage of DHCP over BOOTP? (p) BOOTP is not a dynamic solution and requires a predetermined mapping between MAC addresses and IP addresses. DHCP can provide dynamic configuration of IP addresses by giving the client a temporary address from a pool of available addresses. b) DNS uses a hierarchical structure for, among other things, translation between names and IP addresses in the Internet. Several name servers may have to cooperate to find out the IP address of a particular hostname. Describe the two different modes of resolution that can be used within DNS. (p) Iterative Resolution: the host has to ask the next name server in the hierarchy. Recursive Resolution: the name server asks the next name server in the hierarchy. c) What is the purpose of the in-addr.arpa zone in the DNS hierarchy? (p) To make reverse lookup (IP address to hostname) possible without having to search the complete DNS tree. 9. IPv4 Multicast (5p) a) Briefly outline how IPv4 multicast addresses are mapped to Ethernet multicast addresses. Describe any limitations with this mapping that may have consequences to host interfaces. (You do not need to state the exact bit patterns used) (p) The 3 low- order bits of the IP multicast IP address are placed in the 3 loworder bits of the 48-bit Ethernet multicast address. Since IP multicast addresses uses 8 bits to denote addresses, the mapping is not unique but gives a 3: overlap. This means that the Ethernet layer cannot filter frames uniquely, the IP layer needs to do additional filtering, typically in software. b) IGMP handles signalling between hosts and multicast routers. Briefly outline the IGMP (version ) messages and their operation: In which situations are they used, who sends them, and to whom are they sent? (p) Membership query sent by multicast routers to query membership on a network. Two situations: general query sent to , or specific group queries to specified address. Membership report sent by hosts to multicast routers to report group membership. Leave group Sent by hosts to multicast routers when leaving a multicast group. c) DVMRP (Distance- Vector Multicast Routing Protocol) is used to propagate multicast routes. Briefly outline the operation of DVMRP. (p) DVMRP uses Truncated Reverse Path forwarding with pruning and grafting. That is, it broadcasts to all networks and then prunes branches with no members. Prune messages are propagated upwards toward the source. When new members join, graft messages extend the delivery tree.

9 0. Differen ti a t e d Services and Inte gra t e d Services (5p) a) Within the Differentiated Services architecture, the AF PHB (Assured Forwarding Per- Hop Behavior) has been defined. Typically, the ingress node performs traffic conditioning on incoming packets according to the SLA (Service Level Agreement) with the upstream domain. The traffic conditioning includes the following four functions: Marking, Metering, Classification, and Shaping. In what order are these functions performed? (p) ) Classification ) Metering 3) Marking 4) Shaping b) Suppose that the following flows, specified with token bucket traffic specifications, have been accepted by an IntServ (Integrated Services) capable router: R (rate in packets/second) B (bucket depth in no of packets) All flows are in the same direction and the router forwards 0 packets per second. Note that the example is unrealistic in its use of packets, instead of bytes. What is the maximum delay a packet may face? (p) Max delay is given by max queue length, which is the sum of all buckets. B tot = +6+3 = 0. Max delay = B tot /link capacity = 0/0 = second. c) What is the maximum number of packets from the third flow (r = 8, B = 3) that the router would send over.0 seconds, assuming the router sends packets at its maximum rate uniformly? (p) Max no of packets over seconds for the third flow = rt + B = 8x + 3 = 9 pkts.. IPv6 (5p) a) Show the shortest form of the following IPv6 address: 340:0000:0000:000F:7000:9A:A00:0000 (p) 340::F:7000:9A:A00:0 b) What is the difference between fragmentation in IPv6 versus IPv4? (p) In IPv4, packets can be fragmented by the host and by routers along the path between sender and receiver (hop- by-hop fragmentation). In IPv6, only the sending host is allowed to perform fragmentation. The sending host should learn the path MTU through path MTU discovery, or transmit packets that are small enough to fit any MTU limit. c) Name two main issues in IPv4 that were addressed by IPv6? (p) ) The address space in IPv4 was not considered large enough ) The routing tables in IPv4 were getting too large

10 3) Security improvements needed 4) Better support for autoconfiguration (plug- and- play). IPsec (5p) Outline the IPsec architecture. You should cover: a) In what layer IPsec is implemented (p) IPsec is implemented in the network layer as a part of the IP implementation. b) The three protocols included in IPsec, and the purpose of each protocol. (p). ESP (Encapsulating Security Payload - defines the encryption of the IP payload ). AH (Authentication Header - defines the authentication method). 3. ISAKMP (Internet Security Association and Key Management Protocol - manages the exchange of cryptographic keys). c) How do two nodes agree on security schemes? (p) A sender and receiver agree on a set of security schemes and establishes a security association (SA). This includes: Encryption algorithms, Keys, lifetime, addresses, etc. d) Briefly explain the two modes used by IPsec. When are the two modes used? How do they differ? (p) The two modes are transport and tunnel mode. Transport mode has a SA between two end- hosts, while tunnel mode has a SA between two routers. Tunnel mode encapsulates the original datagram within an IPsec encapsulated header, while transport mode inserts the IPsec headers between the original header and its payload.

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS 1. General (5p) a) The so-called hourglass model (sometimes referred to as a wine-glass ) has been used

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

Topic: Multicast routing

Topic: Multicast routing Topic: Multicast routing What you will learn Broadcast routing algorithms Multicasting IGMP Multicast routing algorithms Multicast routing in the Internet Multicasting 1/21 Unicasting One source node and

More information

Acknowledgments. Part One - Introduction to the TCP/IP Protocol

Acknowledgments. Part One - Introduction to the TCP/IP Protocol Illustrated TCP/IP by Matthew G. Naugle Wiley Computer Publishing, John Wiley & Sons, Inc. ISBN: 0471196568 Pub Date: 11/01/98 Acknowledgments Part One - Introduction to the TCP/IP Protocol Chapter 1 -

More information

Example questions for the Final Exam, part A

Example questions for the Final Exam, part A ETSF10, ETSF05 Ht 2010 Example questions for the Final Exam, part A 1. In AdHoc routing there are two main strategies, reactive and proactive routing. Describe in a small number of words the concept of

More information

Lecture 6. TCP/IP Network Layer (4)

Lecture 6. TCP/IP Network Layer (4) Lecture 6 TCP/IP Network Layer (4) Outline (Network Layer) Principles behind network layer services: Virtual circuit and datagram networks Routing algorithms Link State Distance Vector Hierarchical Routing

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

Chapter 19 Network Layer: Logical Addressing

Chapter 19 Network Layer: Logical Addressing Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19.2 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I

Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I Hello and welcome to today s lecture on TCP/IP. (Refer Slide

More information

Examination IP routning inom enkla datornät, DD2490 IP routing in simple networks, DD2490 KTH/CSC. Date: 20 May :00 19:00 SOLUTIONS

Examination IP routning inom enkla datornät, DD2490 IP routing in simple networks, DD2490 KTH/CSC. Date: 20 May :00 19:00 SOLUTIONS Examination IP routning inom enkla datornät, DD2490 IP routing in simple networks, DD2490 KTH/CSC Date: 20 May 2009 14:00 19:00 SOLUTIONS a) No help material is allowed - You are not allowed to use books

More information

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University Computer Networks More on Standards & Protocols Quality of Service Week 10 College of Information Science and Engineering Ritsumeikan University Introduction to Protocols l A protocol is a set of rules

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

===================================================================== Exercises =====================================================================

===================================================================== Exercises ===================================================================== ===================================================================== Exercises ===================================================================== 1 Chapter 1 1) Design and describe an application-level

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Presentation 2 Security/Privacy Presentations Nov 3 rd, Nov 10 th, Nov 15 th Upload slides to Canvas by midnight

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008 Networks an overview dr. C. P. J. Koymans Informatics Institute University of Amsterdam February 4, 2008 dr. C. P. J. Koymans (UvA) Networks February 4, 2008 1 / 53 1 Network modeling Layered networks

More information

ARP, IP. Chong-Kwon Kim. Each station (or network interface) should be uniquely identified Use 6 byte long address

ARP, IP. Chong-Kwon Kim. Each station (or network interface) should be uniquely identified Use 6 byte long address ARP, IP Chong-Kwon Kim Routing Within a LAN MAC Address Each station (or network interface) should be uniquely identified Use 6 byte long address Broadcast & Filter Broadcast medium Signals are transmitted

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: Internet Protocol Literature: Forouzan: ch (4-6), 7-9 and ch 31 2004 Image Coding Group, Linköpings Universitet Lecture 2: IP Goals: Understand the benefits Understand the architecture IPv4

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. Hans Peter Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Lecture Computer Networks Internet Protocol

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

Multicast Communications

Multicast Communications Multicast Communications Multicast communications refers to one-to-many or many-tomany communications. Unicast Broadcast Multicast Dragkedja IP Multicasting refers to the implementation of multicast communication

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) Internet Control Message Protocol (ICMP) 1 Overview The IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions: Control functions (ICMP) Multicast signaling

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

Lecture 2: Basic routing, ARP, and basic IP

Lecture 2: Basic routing, ARP, and basic IP Internetworking Lecture 2: Basic routing, ARP, and basic IP Literature: Forouzan, TCP/IP Protocol Suite: Ch 6-8 Basic Routing Delivery, Forwarding, and Routing of IP packets Connection-oriented vs Connectionless

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 4 Network Layer Andreas Terzis Outline Internet Protocol Service Model Addressing Original addressing scheme Subnetting CIDR Fragmentation ICMP Address Shortage

More information

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk Date: January 17 th 2006 at 14:00 18:00 SOLUTIONS 1. General (5p) a) Draw the layered

More information

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications.

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications. The Internet 9.1 Introduction The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications. Associated with each access network - ISP network, intranet,

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network Question No: 1( M a r k s: 1 ) A ---------- Relies on the hardware manufacturer to assign a unique physical

More information

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals What is Multicasting? Multicasting Fundamentals Unicast transmission transmitting a packet to one receiver point-to-point transmission used by most applications today Multicast transmission transmitting

More information

Chapter 6. The Network Layer

Chapter 6. The Network Layer Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Chapter 09 Network Protocols

Chapter 09 Network Protocols Chapter 09 Network Protocols Copyright 2011, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems

More information

Internetworking Part 2

Internetworking Part 2 CMPE 344 Computer Networks Spring 2012 Internetworking Part 2 Reading: Peterson and Davie, 3.2, 4.1 19/04/2012 1 Aim and Problems Aim: Build networks connecting millions of users around the globe spanning

More information

ETSF10 Internet Protocols Routing on the Internet

ETSF10 Internet Protocols Routing on the Internet ETSF10 Internet Protocols Routing on the Internet 2013, Part 2, Lecture 1.2 Jens Andersson (Kaan Bür) Routing on the Internet Unicast routing protocols (part 2) [ed.5 ch.20.3] Multicast routing, IGMP [ed.5

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2011 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Topics This week: Network layer (IP, ARP, ICMP) Next week: More network layer (Routers and routing protocols)

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2. CS 356: Computer Network Architectures Lecture 14: Switching hardware, IP auxiliary functions, and midterm review [PD] chapter 3.4.1, 3.2.7 Xiaowei Yang xwy@cs.duke.edu Switching hardware Software switch

More information

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction The Network layer Host, network layer functions: Network layer Routing protocols path selection R, OSPF, BGP Transport layer: TCP, forwarding table Link layer physical layer protocol addressing conventions

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

IP Protocols. ALTTC/Oct

IP Protocols. ALTTC/Oct IP Protocols Internet or IP technology over the years has emerged as the most prominent data communication technology. TCP/IP protocol has become de-facto data comm standard throughout the world. It can

More information

Network Layer: Control/data plane, addressing, routers

Network Layer: Control/data plane, addressing, routers Network Layer: Control/data plane, addressing, routers CS 352, Lecture 10 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors)

More information

Indian Institute of Technology, Kharagpur

Indian Institute of Technology, Kharagpur Indian Institute of Technology, Kharagpur End-Autumn Semester 2018-19 Date of Examination: 27-11-2018 Session: FN (9-12 pm) Duration: 3 hrs Subject No.: IT30037 Subject: INTRODUCTION TO INTERNET Department/Center/School:

More information

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis Session 8. TCP/IP Dongsoo S. Kim (dskim@iupui.edu) Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis IP Packet 0 4 8 16 19 31 Version IHL Type of Service Total Length Identification

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

IPv6 and Multicast. Outline. IPv6 Multicast. S Computer Networks - Spring 2005

IPv6 and Multicast. Outline. IPv6 Multicast. S Computer Networks - Spring 2005 IPv6 and Multicast 188lecture5.ppt Pasi Lassila 1 Outline IPv6 Multicast 2 IPv6 overview Motivation Internet growth (address space depletion and routing information eplosion) CIDR has helped but eventually

More information

Internet Protocol, Version 6

Internet Protocol, Version 6 Outline Protocol, Version 6 () Introduction to Header Format Addressing Model ICMPv6 Neighbor Discovery Transition from to vs. Taken from:chun-chuan Yang Basics: TCP/ Protocol Suite Protocol (IP) Features:

More information

EE-311 Data Communication & Networks

EE-311 Data Communication & Networks National University of Computer & Emerging Sciences, Islamabad, Pakistan Name: Roll No: EE-311 Data Communication & Networks Summer 2007 Final Thursday, 2 nd August 2007 Total Time: 3 Hours Total Marks:

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Information Network Systems The network layer. Stephan Sigg

Information Network Systems The network layer. Stephan Sigg Information Network Systems The network layer Stephan Sigg Tokyo, November 1, 2012 Error-detection and correction Decoding of Reed-Muller codes Assume a second order (16, 11) code for m = 4. The r-th order

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

DD2490 p IP Multicast routing. Multicast routing. Olof Hagsand KTH CSC

DD2490 p IP Multicast routing. Multicast routing. Olof Hagsand KTH CSC DD2490 p4 2010 IP Multicast routing Multicast routing Olof Hagsand KTH CSC 1 Literature RFC 4601 Section 3 (you may need some definitions from Section 2). See reading instructions on web. 2 Deployment

More information

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUBJECT NAME: COMPUTER NETWORKS SUBJECT CODE: CST52 UNIT-I 2 MARKS 1. What is Network? 2.

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing CHAPTER 39 This chapter describes how to configure IP Version 4 (IPv4) unicast routing on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack. A switch

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Chapter 12 Network Protocols

Chapter 12 Network Protocols Chapter 12 Network Protocols 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems Interconnection (OSI) Transmission Control Protocol/Internetworking Protocol (TCP/IP)

More information

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab bacademy for Science &T Technology and Maritime Transport Internet Protocol Suite IP Suite Dr.

More information

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions Tuomo Karhapää tuomo.karhapaa@otaverkko.fi Otaverkko Oy Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

ECE 435 Network Engineering Lecture 14

ECE 435 Network Engineering Lecture 14 ECE 435 Network Engineering Lecture 14 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 25 October 2018 Announcements HW#6 was due HW#7 will be posted 1 IPv4 Catastrophe 2 Out of

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing Finding Feature Information, page 2 Information About, page 2 Information About IP Routing, page 2 How to Configure IP Routing, page 9 How to Configure IP Addressing, page 10 Monitoring and Maintaining

More information

Review. Some slides are in courtesy of J. Kurose and K. Ross

Review. Some slides are in courtesy of J. Kurose and K. Ross Review The Internet (IP) Protocol Datagram format IP fragmentation ICMP: Internet Control Message Protocol NAT: Network Address Translation Routing in the Internet Intra-AS routing: RIP and OSPF Inter-AS

More information

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang CS 356: Computer Network Architectures Lecture 10: IP Fragmentation, ARP, and ICMP Xiaowei Yang xwy@cs.duke.edu Overview Homework 2-dimension parity IP fragmentation ARP ICMP Fragmentation and Reassembly

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing CHAPTER 40 This chapter describes how to configure IP Version 4 (IPv4) unicast routing on the Catalyst 3750-E or 3560-E switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E

More information

Outline. Addressing on the network layer ICMP IPv6 Addressing on the link layer Virtual circuits

Outline. Addressing on the network layer ICMP IPv6 Addressing on the link layer Virtual circuits Lecture 2 Outline Addressing on the network layer ICMP IPv6 Addressing on the link layer Virtual circuits TCP/IP protocol suite Good name for our book! User application, e.g., http with Mozilla Communication

More information

Foreword xxiii Preface xxvii IPv6 Rationale and Features

Foreword xxiii Preface xxvii IPv6 Rationale and Features Contents Foreword Preface xxiii xxvii 1 IPv6 Rationale and Features 1 1.1 Internet Growth 1 1.1.1 IPv4 Addressing 1 1.1.2 IPv4 Address Space Utilization 3 1.1.3 Network Address Translation 5 1.1.4 HTTP

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 13 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of lecture 12 Routing Congestion

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols 1 Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among

More information

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa Multicast Communications Slide Set were original prepared by Dr. Tatsuya Susa Outline 1. Advantages of multicast 2. Multicast addressing 3. Multicast Routing Protocols 4. Multicast in the Internet 5. IGMP

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #4 preview ICMP ARP DHCP NAT

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR410402 Set No. 1 1. (a) Write any four reasons for using layered protocols. (b) List two ways in which the OSI reference model and the TCP/IP reference model are the same and list in which they

More information

MULTICAST EXTENSIONS TO OSPF (MOSPF)

MULTICAST EXTENSIONS TO OSPF (MOSPF) MULTICAST EXTENSIONS TO OSPF (MOSPF) Version 2 of the Open Shortest Path First (OSPF) routing protocol is defined in RFC-1583. It is an Interior Gateway Protocol (IGP) specifically designed to distribute

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Sungkyunkwan University Chapter 4 Network Layer Prepared by H. Choo 2018-Fall Computer Networks Copyright 2000-2014 2000-2018 Networking Laboratory 1/52 Presentation Outline 4.1 Introduction 4.2 Network-Layer

More information

Chapter 6. The Network Layer

Chapter 6. The Network Layer Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land IPv6 1 IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header Ver IHL Type of Service Total Length Ver Traffic Class Flow Label Identification Flags Fragment Offset Payload Length Next Header Hop Limit

More information

Agenda L2 versus L3 Switching IP Protocol, IP Addressing IP Forwarding ARP and ICMP IP Routing First Hop Redundancy

Agenda L2 versus L3 Switching IP Protocol, IP Addressing IP Forwarding ARP and ICMP IP Routing First Hop Redundancy Primer IP Technology L2 Ethernet Switching versus L3 routing IP Protocol, IP Addressing, IP Forwarding ARP and ICMP IP Routing, OSPF Basics First Hop Redundancy (HSRP) Agenda L2 versus L3 Switching IP

More information

CS164 Final Exam Winter 2013

CS164 Final Exam Winter 2013 CS164 Final Exam Winter 2013 Name: Last 4 digits of Student ID: Problem 1. State whether each of the following statements is true or false. (Two points for each correct answer, 1 point for each incorrect

More information

Where we are in the Course

Where we are in the Course Network Layer Where we are in the Course Moving on up to the Network Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Network Layer How to connect different link layer

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

ICS 451: Today's plan

ICS 451: Today's plan ICS 451: Today's plan ICMP ping traceroute ARP DHCP summary of IP processing ICMP Internet Control Message Protocol, 2 functions: error reporting (never sent in response to ICMP error packets) network

More information