CS179 GPU Programming Introduction to CUDA. Lecture originally by Luke Durant and Tamas Szalay

Size: px
Start display at page:

Download "CS179 GPU Programming Introduction to CUDA. Lecture originally by Luke Durant and Tamas Szalay"

Transcription

1 Introduction to CUDA Lecture originally by Luke Durant and Tamas Szalay

2 Today CUDA - Why CUDA? - Overview of CUDA architecture - Dense matrix multiplication with CUDA 2

3 Shader GPGPU - Before current generation, this is all we had - Lots of things are faster in GLSL than on the CPU, but No scatter! No communication between fragments (threads) Awkward interface, need familiarity with graphics APIs Memory modes not what we would like Hard to transfer data from GPU to CPU 3

4 Shader GPGPU - Before current generation, this is all we had - Lots of things are faster in GLSL than on the CPU, but No scatter! No communication between fragments (threads) Awkward interface, need familiarity with graphics APIs Memory modes not what we would like Hard to transfer data from GPU to CPU 4

5 CUDA - nvidia s solution to GPGPU - Extension to the C language - Has been far more popular than CTM/Brook for GPGPU, and is thus the focus of this course - Still a proprietary environment Keep your eyes on OpenCL DirectX 11 includes a compute shader 5

6 CUDA - Only works on nvidia G80 (Geforce 8000 series) and newer cards - Can run in emulation on other hardware Floating point might not be exactly the same Watch out for OpenGL integration -Designed to scale well over time 6

7 CUDA - Compute Unified Device Architecture - A different way of looking at GPU programming - Provides far more features than we re used to from GL - Less hassle, more access to the hardware 7

8 What is a CUDA Program? - Two main parts, Host and Device - Host code Runs on CPU, uses special library calls.cpp or.cu -Device code Runs on GPU, written in C with some extensions Called kernels.cu 8

9 Host vs. Device -Host Code Single Program, Single Data Not parallel Typically few threads, threads take overhead -Device Code Single Program, Multiple Data Parallel Typically thousands of threads, very little overhead in thread creation 9

10 Graphics Mode Host Input Assembler Vtx Thread Issue Geom Thread Issue Setup / Rstr / ZCull Pixel Thread Issue SP TF L1 SP SP TF L1 SP SP TF L1 SP SP TF L1 SP SP TF L1 SP SP TF L1 SP SP TF L1 SP SP TF L1 SP Thread Processor L2 L2 L2 L2 L2 L2 FB FB FB FB FB FB 1

11 CUDA Mode Host Input Assembler Thread Execution Manager Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Texture Texture Texture Texture Texture Texture Texture Texture Load/store Load/store Load/store Load/store Load/store Load/store Global Memory 1

12 Overview of CUDA architecture 1

13 Basic Units of CUDA: The Grid - A grid is a group of threads all running the same kernel (not synchronized) - Every call to CUDA from CPU is one grid - Starting a grid on CPU is a synchronous operation - But can run multiple grids at once - On multi-gpu systems, grids cannot be shared between GPUs - use several grids for maximum efficiency 1

14 Basic Units of CUDA: The Block - Grids are composed of blocks - Each block is a logical unit containing a number of coordinating threads, a certain amount of shared memory. - Just as grids are not shared between GPUs, blocks are not shared between multiprocessors. 1

15 Basic Units of CUDA: The Block - All blocks in a grid use the same program - How do you tell what block you are in? - blockidx built-in variable - You can set up block IDs to be 1D or 2D (based on the grid dimensions) 1

16 Basic Units of CUDA: The Thread - Blocks are composed of threads - Threads are run on the individual cores of the multiprocessors, but unlike grids and blocks, they are not married to a single core - Like blocks, each thread has an ID (threadidx) - Thread IDs can be 1D, 2D, or 3D (based on block dimension) The thread id is relative to the block it is in 1

17 Overview of CUDA architecture 1

18 Thread Storage and Communication - Threads have a certain amount of register memory - Limited register memory per multiprocessor - Several ways of communicating with other threads within the block - Outside of the block, not a lot of communication Ideally, should be none 1

19 Memory Model 1

20 Memory Areas: Globals -Global memory Main communication between device and host Read/write from both device and host -Texture memory Read only from device Uses 2D hardware caching -Constant memory Read only from device -Persistent across grid runs 2

21 Memory Areas: Per-Block -Shared memory Accessible by all threads within a block Physically stored in each multiprocessor 2

22 Memory Areas: Per-Thread - Register Memory Efficient Can t index (no arrays!) Very limited space -Local Memory More space More access modes - Limited by physical memory in each multiprocessor - Unless you say otherwise, compiler will try to put things into register memory - Easy to run out of register memory 2

23 Memory Synchronization - All memory accesses are thread safe in the sense that one will happen (atomic), although order is undefined without explicit synchronization - If two threads write the same location at the same time, one will win - Try to avoid these situations no two threads should write the same location at the same time 2

24 Memory Areas: Comparison -We have a lot more memory tools than GLSL: Shared memory effectively allows communication between threads Global memory offers read/write access to memory areas directly accessible from CPU Allowed memory formats aren t restricted by graphics APIs we don t have to stuff data into textures; we just get a void*! 2

25 Synchronization - Basic unit of synchronization: syncthreads() Waits until all threads in block reach the call to syncthreads() Be careful of using in conditionals! Some threads may not reach it deadlock! OK if the conditional only depends on blockidx -No easy way of synchronizing between blocks Be careful of having blocks write to the same area of global memory 2

26 What did we really get? - Cleaner interface (no more ARB, EXT, etc.) - No more graphics APIs, opening windows, messing with textures, etc. - Scatter! - Read/write memory (no more ping-ponging) - Synchronization - Easy library calls to share data with CPU - Now that we have scatter and synchronization, the whole literature of parallel algorithms is easy to implement 2

27 CUDA Example - Now, let s use our new knowledge to figure out how to do a familiar problem efficiently in CUDA - Matrix multiplication - Y = A*B - For simplicity, A and B are square (NxN) 2

28 Dense Multiplication #1 - First attempt: use 1 block - Use NxN threads with 2D indexing - In each thread, compute the value of the corresponding element of Y in the normal way 2

29 What s wrong with attempt #1? - Biggest problem: 1 thread block means only 1 multiprocessor is in use - On the GTX280, this means we re only using 3% of our processing power! - Also, global memory accesses are out of control - Each source element is read N times from global memory! - We ll fix this later 2

30 Dense Multiplication #2 - Use N blocks, with N threads per block - Each thread calculates element determined by block and thread index 3

31 What s wrong with attempt #2? - Biggest problem: global memory access - Global memory reads are not particularly fast! - Want to minimize the amount of data read from global memory - Key idea: each thread in the block is accessing the same data - Can move the data into shared memory, which is much faster 3

32 Dense Multiplication #3 - Use N blocks, with N threads per block - Before any calculation, copy the row corresponding to each block into shared memory - Now we ve drastically cut down on global memory accesses 3

33 Potential Problems with #3 - Shared memory probably isn t large enough to store a whole row - Solution: store as much as we can at one time, then grab more. Problem with this: we would need to sync threads between each memory access; otherwise we may produce the wrong answer 3

34 Dense Multiplication - There is a trade-off to be made here - If we use fewer blocks, in general, memory accesses are less common - If we use more blocks, there could be more dead time in processors - Have to experiment to find best balance - In general, as size increases, fewer blocks will give better performance for a while, then suddenly will be terrible 3

35 Dense Multiplication - Other factors as well - Global vs. Texture memory? Memory caching: texture memory is heavily cached 3

36 How to Learn CUDA in 3 Steps 1. Read the CUDA Programming Guide 2. Look at the SDK 3. Repeat steps 1 and 2 for a while 3

CS 179: GPU Programming

CS 179: GPU Programming CS 179: GPU Programming Introduction Lecture originally written by Luke Durant, Tamas Szalay, Russell McClellan What We Will Cover Programming GPUs, of course: OpenGL Shader Language (GLSL) Compute Unified

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU Real-time Graphics 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing

More information

CS179 GPU Programming: CUDA Memory. Lecture originally by Luke Durant and Tamas Szalay

CS179 GPU Programming: CUDA Memory. Lecture originally by Luke Durant and Tamas Szalay : CUDA Memory Lecture originally by Luke Durant and Tamas Szalay CUDA Memory Review of Memory Spaces Memory syntax Constant Memory Allocation Issues Global Memory Gotchas Shared Memory Gotchas Texture

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing GPGPU general-purpose

More information

Threading Hardware in G80

Threading Hardware in G80 ing Hardware in G80 1 Sources Slides by ECE 498 AL : Programming Massively Parallel Processors : Wen-Mei Hwu John Nickolls, NVIDIA 2 3D 3D API: API: OpenGL OpenGL or or Direct3D Direct3D GPU Command &

More information

CUDA (Compute Unified Device Architecture)

CUDA (Compute Unified Device Architecture) CUDA (Compute Unified Device Architecture) Mike Bailey History of GPU Performance vs. CPU Performance GFLOPS Source: NVIDIA G80 = GeForce 8800 GTX G71 = GeForce 7900 GTX G70 = GeForce 7800 GTX NV40 = GeForce

More information

Programming shaders & GPUs Christian Miller CS Fall 2011

Programming shaders & GPUs Christian Miller CS Fall 2011 Programming shaders & GPUs Christian Miller CS 354 - Fall 2011 Fixed-function vs. programmable Up until 2001, graphics cards implemented the whole pipeline for you Fixed functionality but configurable

More information

Core/Many-Core Architectures and Programming. Prof. Huiyang Zhou

Core/Many-Core Architectures and Programming.  Prof. Huiyang Zhou ST: CDA 6938 Multi-Core/Many Core/Many-Core Architectures and Programming http://csl.cs.ucf.edu/courses/cda6938/ Prof. Huiyang Zhou School of Electrical Engineering and Computer Science University of Central

More information

GPU 101. Mike Bailey. Oregon State University. Oregon State University. Computer Graphics gpu101.pptx. mjb April 23, 2017

GPU 101. Mike Bailey. Oregon State University. Oregon State University. Computer Graphics gpu101.pptx. mjb April 23, 2017 1 GPU 101 Mike Bailey mjb@cs.oregonstate.edu gpu101.pptx Why do we care about GPU Programming? A History of GPU Performance vs. CPU Performance 2 Source: NVIDIA How Can You Gain Access to GPU Power? 3

More information

GPU 101. Mike Bailey. Oregon State University

GPU 101. Mike Bailey. Oregon State University 1 GPU 101 Mike Bailey mjb@cs.oregonstate.edu gpu101.pptx Why do we care about GPU Programming? A History of GPU Performance vs. CPU Performance 2 Source: NVIDIA 1 How Can You Gain Access to GPU Power?

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References This set of slides is mainly based on: CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory Slide of Applied

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

CUDA Architecture & Programming Model

CUDA Architecture & Programming Model CUDA Architecture & Programming Model Course on Multi-core Architectures & Programming Oliver Taubmann May 9, 2012 Outline Introduction Architecture Generation Fermi A Brief Look Back At Tesla What s New

More information

Introduction to CUDA (1 of n*)

Introduction to CUDA (1 of n*) Administrivia Introduction to CUDA (1 of n*) Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Paper presentation due Wednesday, 02/23 Topics first come, first serve Assignment 4 handed today

More information

CUDA Programming Model

CUDA Programming Model CUDA Xing Zeng, Dongyue Mou Introduction Example Pro & Contra Trend Introduction Example Pro & Contra Trend Introduction What is CUDA? - Compute Unified Device Architecture. - A powerful parallel programming

More information

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez. The University of Texas at Austin

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez. The University of Texas at Austin EE382 (20): Computer Architecture - ism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez The University of Texas at Austin 1 Recap 2 Streaming model 1. Use many slimmed down cores to run in parallel

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability 1 History of GPU

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability History of GPU

More information

Technische Universität München. GPU Programming. Rüdiger Westermann Chair for Computer Graphics & Visualization. Faculty of Informatics

Technische Universität München. GPU Programming. Rüdiger Westermann Chair for Computer Graphics & Visualization. Faculty of Informatics GPU Programming Rüdiger Westermann Chair for Computer Graphics & Visualization Faculty of Informatics Overview Programming interfaces and support libraries The CUDA programming abstraction An in-depth

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Introduction to CUDA programming

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Introduction to CUDA programming KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Introduction to CUDA programming 1 Agenda GPU Architecture Overview Tools of the Trade Introduction to CUDA C Patterns of Parallel

More information

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions.

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions. Schedule CUDA Digging further into the programming manual Application Programming Interface (API) text only part, sorry Image utilities (simple CUDA examples) Performace considerations Matrix multiplication

More information

Introduction to CUDA (1 of n*)

Introduction to CUDA (1 of n*) Agenda Introduction to CUDA (1 of n*) GPU architecture review CUDA First of two or three dedicated classes Joseph Kider University of Pennsylvania CIS 565 - Spring 2011 * Where n is 2 or 3 Acknowledgements

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 12 GPU Architecture (NVIDIA G80) Mattan Erez The University of Texas at Austin Outline 3D graphics recap and

More information

ECE 574 Cluster Computing Lecture 17

ECE 574 Cluster Computing Lecture 17 ECE 574 Cluster Computing Lecture 17 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 March 2019 HW#8 (CUDA) posted. Project topics due. Announcements 1 CUDA installing On Linux

More information

CIS 665: GPU Programming. Lecture 2: The CUDA Programming Model

CIS 665: GPU Programming. Lecture 2: The CUDA Programming Model CIS 665: GPU Programming Lecture 2: The CUDA Programming Model 1 Slides References Nvidia (Kitchen) David Kirk + Wen-Mei Hwu (UIUC) Gary Katz and Joe Kider 2 3D 3D API: API: OpenGL OpenGL or or Direct3D

More information

High Performance Linear Algebra on Data Parallel Co-Processors I

High Performance Linear Algebra on Data Parallel Co-Processors I 926535897932384626433832795028841971693993754918980183 592653589793238462643383279502884197169399375491898018 415926535897932384626433832795028841971693993754918980 592653589793238462643383279502884197169399375491898018

More information

Intro to GPU s for Parallel Computing

Intro to GPU s for Parallel Computing Intro to GPU s for Parallel Computing Goals for Rest of Course Learn how to program massively parallel processors and achieve high performance functionality and maintainability scalability across future

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1 Lecture 15: Introduction to GPU programming Lecture 15: Introduction to GPU programming p. 1 Overview Hardware features of GPGPU Principles of GPU programming A good reference: David B. Kirk and Wen-mei

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms CS 590: High Performance Computing GPU Architectures and CUDA Concepts/Terms Fengguang Song Department of Computer & Information Science IUPUI What is GPU? Conventional GPUs are used to generate 2D, 3D

More information

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 18 GPUs (III)

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 18 GPUs (III) EE382 (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 18 GPUs (III) Mattan Erez The University of Texas at Austin EE382: Principles of Computer Architecture, Fall 2011 -- Lecture

More information

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum GPU & High Performance Computing (by NVIDIA) CUDA Compute Unified Device Architecture 29.02.2008 Florian Schornbaum GPU Computing Performance In the last few years the GPU has evolved into an absolute

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

NVIDIA GPU CODING & COMPUTING

NVIDIA GPU CODING & COMPUTING NVIDIA GPU CODING & COMPUTING WHY GPU S? ARCHITECTURE & PROGRAM MODEL CPU v. GPU Multiprocessor Model Memory Model Memory Model: Thread Level Programing Model: Logical Mapping of Threads Programing Model:

More information

ECE 574 Cluster Computing Lecture 15

ECE 574 Cluster Computing Lecture 15 ECE 574 Cluster Computing Lecture 15 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 March 2017 HW#7 (MPI) posted. Project topics due. Update on the PAPI paper Announcements

More information

Heterogeneous-Race-Free Memory Models

Heterogeneous-Race-Free Memory Models Heterogeneous-Race-Free Memory Models Jyh-Jing (JJ) Hwang, Yiren (Max) Lu 02/28/2017 1 Outline 1. Background 2. HRF-direct 3. HRF-indirect 4. Experiments 2 Data Race Condition op1 op2 write read 3 Sequential

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Overview HW computational power Graphics API vs. CUDA CUDA glossary Memory model, HW implementation, execution Performance guidelines CUDA compiler C/C++ Language extensions Limitations

More information

Comparison of High-Speed Ray Casting on GPU

Comparison of High-Speed Ray Casting on GPU Comparison of High-Speed Ray Casting on GPU using CUDA and OpenGL November 8, 2008 NVIDIA 1,2, Andreas Weinlich 1, Holger Scherl 2, Markus Kowarschik 2 and Joachim Hornegger 1 1 Chair of Pattern Recognition

More information

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture Rafia Inam Mälardalen Real-Time Research Centre Mälardalen University, Västerås, Sweden http://www.mrtc.mdh.se rafia.inam@mdh.se CONTENTS

More information

CS 220: Introduction to Parallel Computing. Introduction to CUDA. Lecture 28

CS 220: Introduction to Parallel Computing. Introduction to CUDA. Lecture 28 CS 220: Introduction to Parallel Computing Introduction to CUDA Lecture 28 Today s Schedule Project 4 Read-Write Locks Introduction to CUDA 5/2/18 CS 220: Parallel Computing 2 Today s Schedule Project

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

GPUs and GPGPUs. Greg Blanton John T. Lubia

GPUs and GPGPUs. Greg Blanton John T. Lubia GPUs and GPGPUs Greg Blanton John T. Lubia PROCESSOR ARCHITECTURAL ROADMAP Design CPU Optimized for sequential performance ILP increasingly difficult to extract from instruction stream Control hardware

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 11 The Graphics Processing Unit Mattan Erez The University of Texas at Austin Outline What is a GPU? Why should

More information

GPU Computation CSCI 4239/5239 Advanced Computer Graphics Spring 2014

GPU Computation CSCI 4239/5239 Advanced Computer Graphics Spring 2014 GPU Computation CSCI 4239/5239 Advanced Computer Graphics Spring 2014 Solutions to Parallel Processing Message Passing (distributed) MPI (library) Threads (shared memory) pthreads (library) OpenMP (compiler)

More information

Data-Parallel Algorithms on GPUs. Mark Harris NVIDIA Developer Technology

Data-Parallel Algorithms on GPUs. Mark Harris NVIDIA Developer Technology Data-Parallel Algorithms on GPUs Mark Harris NVIDIA Developer Technology Outline Introduction Algorithmic complexity on GPUs Algorithmic Building Blocks Gather & Scatter Reductions Scan (parallel prefix)

More information

NVIDIA Parallel Nsight. Jeff Kiel

NVIDIA Parallel Nsight. Jeff Kiel NVIDIA Parallel Nsight Jeff Kiel Agenda: NVIDIA Parallel Nsight Programmable GPU Development Presenting Parallel Nsight Demo Questions/Feedback Programmable GPU Development More programmability = more

More information

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1 Programmable GPUs Real Time Graphics Virtua Fighter 1995 (SEGA Corporation) NV1 Dead or Alive 3 2001 (Tecmo Corporation) Xbox (NV2A) Nalu 2004 (NVIDIA Corporation) GeForce 6 Human Head 2006 (NVIDIA Corporation)

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

Parallel Systems Course: Chapter IV. GPU Programming. Jan Lemeire Dept. ETRO November 6th 2008

Parallel Systems Course: Chapter IV. GPU Programming. Jan Lemeire Dept. ETRO November 6th 2008 Parallel Systems Course: Chapter IV GPU Programming Jan Lemeire Dept. ETRO November 6th 2008 GPU Message-passing Programming with Parallel CUDAMessagepassing Parallel Processing Processing Overview 1.

More information

GPU programming. Dr. Bernhard Kainz

GPU programming. Dr. Bernhard Kainz GPU programming Dr. Bernhard Kainz Overview About myself Motivation GPU hardware and system architecture GPU programming languages GPU programming paradigms Pitfalls and best practice Reduction and tiling

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Accelerating CFD with Graphics Hardware

Accelerating CFD with Graphics Hardware Accelerating CFD with Graphics Hardware Graham Pullan (Whittle Laboratory, Cambridge University) 16 March 2009 Today Motivation CPUs and GPUs Programming NVIDIA GPUs with CUDA Application to turbomachinery

More information

CS 179 GPU Programming

CS 179 GPU Programming CS179: GPU Programming Lecture 7: Render to Texture Lecture originally by Luke Durant, Russell McClellan, Tamas Szalay 1 Today: Render to Texture Render to texture in OpenGL Framebuffers and renderbuffers

More information

Current Trends in Computer Graphics Hardware

Current Trends in Computer Graphics Hardware Current Trends in Computer Graphics Hardware Dirk Reiners University of Louisiana Lafayette, LA Quick Introduction Assistant Professor in Computer Science at University of Louisiana, Lafayette (since 2006)

More information

CENG 477 Introduction to Computer Graphics. Graphics Hardware and OpenGL

CENG 477 Introduction to Computer Graphics. Graphics Hardware and OpenGL CENG 477 Introduction to Computer Graphics Graphics Hardware and OpenGL Introduction Until now, we focused on graphic algorithms rather than hardware and implementation details But graphics, without using

More information

Lecture 13: OpenGL Shading Language (GLSL)

Lecture 13: OpenGL Shading Language (GLSL) Lecture 13: OpenGL Shading Language (GLSL) COMP 175: Computer Graphics April 18, 2018 1/56 Motivation } Last week, we discussed the many of the new tricks in Graphics require low-level access to the Graphics

More information

GPGPU, 4th Meeting Mordechai Butrashvily, CEO GASS Company for Advanced Supercomputing Solutions

GPGPU, 4th Meeting Mordechai Butrashvily, CEO GASS Company for Advanced Supercomputing Solutions GPGPU, 4th Meeting Mordechai Butrashvily, CEO moti@gass-ltd.co.il GASS Company for Advanced Supercomputing Solutions Agenda 3rd meeting 4th meeting Future meetings Activities All rights reserved (c) 2008

More information

GpuPy: Accelerating NumPy With a GPU

GpuPy: Accelerating NumPy With a GPU GpuPy: Accelerating NumPy With a GPU Washington State University School of Electrical Engineering and Computer Science Benjamin Eitzen - eitzenb@eecs.wsu.edu Robert R. Lewis - bobl@tricity.wsu.edu Presentation

More information

CSCI-GA Graphics Processing Units (GPUs): Architecture and Programming Lecture 2: Hardware Perspective of GPUs

CSCI-GA Graphics Processing Units (GPUs): Architecture and Programming Lecture 2: Hardware Perspective of GPUs CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming Lecture 2: Hardware Perspective of GPUs Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com History of GPUs

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs GPU architecture Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University GPU Graphical Processing

More information

NVIDIA Fermi Architecture

NVIDIA Fermi Architecture Administrivia NVIDIA Fermi Architecture Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 4 grades returned Project checkpoint on Monday Post an update on your blog beforehand Poster

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34 1 / 34 GPU Programming Lecture 2: CUDA C Basics Miaoqing Huang University of Arkansas 2 / 34 Outline Evolvements of NVIDIA GPU CUDA Basic Detailed Steps Device Memories and Data Transfer Kernel Functions

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

CS195V Week 9. GPU Architecture and Other Shading Languages

CS195V Week 9. GPU Architecture and Other Shading Languages CS195V Week 9 GPU Architecture and Other Shading Languages GPU Architecture We will do a short overview of GPU hardware and architecture Relatively short journey into hardware, for more in depth information,

More information

REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS

REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS BeBeC-2014-08 REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS Steffen Schmidt GFaI ev Volmerstraße 3, 12489, Berlin, Germany ABSTRACT Beamforming algorithms make high demands on the

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Understanding Shaders and WebGL. Chris Dalton & Olli Etuaho

Understanding Shaders and WebGL. Chris Dalton & Olli Etuaho Understanding Shaders and WebGL Chris Dalton & Olli Etuaho Agenda Introduction: Accessible shader development with WebGL Understanding WebGL shader execution: from JS to GPU Common shader bugs Accessible

More information

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015 WebGL and GLSL Basics CS559 Fall 2015 Lecture 10 October 6, 2015 Last time Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, -.4 1.1, 0, -.1.9,.05,.05.33,.33,.33

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

General Purpose Computing on Graphical Processing Units (GPGPU(

General Purpose Computing on Graphical Processing Units (GPGPU( General Purpose Computing on Graphical Processing Units (GPGPU( / GPGP /GP 2 ) By Simon J.K. Pedersen Aalborg University, Oct 2008 VGIS, Readings Course Presentation no. 7 Presentation Outline Part 1:

More information

University of Bielefeld

University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Introduction to GPU Programming using CUDA Olaf Kaczmarek University of Bielefeld STRONGnet Summerschool 2011 ZIF Bielefeld

More information

Practical Introduction to CUDA and GPU

Practical Introduction to CUDA and GPU Practical Introduction to CUDA and GPU Charlie Tang Centre for Theoretical Neuroscience October 9, 2009 Overview CUDA - stands for Compute Unified Device Architecture Introduced Nov. 2006, a parallel computing

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes Last Time? Programmable GPUS Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes frame buffer depth buffer stencil buffer Stencil Buffer Homework 4 Reading for Create some geometry "Rendering

More information

GPGPU/CUDA/C Workshop 2012

GPGPU/CUDA/C Workshop 2012 GPGPU/CUDA/C Workshop 2012 Day-2: Intro to CUDA/C Programming Presenter(s): Abu Asaduzzaman Chok Yip Wichita State University July 11, 2012 GPGPU/CUDA/C Workshop 2012 Outline Review: Day-1 Brief history

More information

Josef Pelikán, Jan Horáček CGG MFF UK Praha

Josef Pelikán, Jan Horáček CGG MFF UK Praha GPGPU and CUDA 2012-2018 Josef Pelikán, Jan Horáček CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 41 Content advances in hardware multi-core vs. many-core general computing

More information

Introduction to Parallel Computing with CUDA. Oswald Haan

Introduction to Parallel Computing with CUDA. Oswald Haan Introduction to Parallel Computing with CUDA Oswald Haan ohaan@gwdg.de Schedule Introduction to Parallel Computing with CUDA Using CUDA CUDA Application Examples Using Multiple GPUs CUDA Application Libraries

More information

GPGPU introduction and network applications. PacketShaders, SSLShader

GPGPU introduction and network applications. PacketShaders, SSLShader GPGPU introduction and network applications PacketShaders, SSLShader Agenda GPGPU Introduction Computer graphics background GPGPUs past, present and future PacketShader A GPU-Accelerated Software Router

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

GPU Programming Using NVIDIA CUDA

GPU Programming Using NVIDIA CUDA GPU Programming Using NVIDIA CUDA Siddhante Nangla 1, Professor Chetna Achar 2 1, 2 MET s Institute of Computer Science, Bandra Mumbai University Abstract: GPGPU or General-Purpose Computing on Graphics

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

CS 179: GPU Computing

CS 179: GPU Computing CS 179: GPU Computing LECTURE 2: INTRO TO THE SIMD LIFESTYLE AND GPU INTERNALS Recap Can use GPU to solve highly parallelizable problems Straightforward extension to C++ Separate CUDA code into.cu and.cuh

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Automatic Parallelization and OpenMP 3 GPGPU 2 Multithreaded Programming

More information

CSE 591: GPU Programming. Programmer Interface. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591: GPU Programming. Programmer Interface. Klaus Mueller. Computer Science Department Stony Brook University CSE 591: GPU Programming Programmer Interface Klaus Mueller Computer Science Department Stony Brook University Compute Levels Encodes the hardware capability of a GPU card newer cards have higher compute

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Synchronization 3 Automatic Parallelization and OpenMP 4 GPGPU 5 Q& A 2 Multithreaded

More information

WebGL and GLSL Basics. CS559 Fall 2016 Lecture 14 October

WebGL and GLSL Basics. CS559 Fall 2016 Lecture 14 October WebGL and GLSL Basics CS559 Fall 2016 Lecture 14 October 24 2016 Review Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, -.4 1.1, 0, -.1.9,.05,.05.33,.33,.33

More information

CUDA Memory Types All material not from online sources/textbook copyright Travis Desell, 2012

CUDA Memory Types All material not from online sources/textbook copyright Travis Desell, 2012 CUDA Memory Types All material not from online sources/textbook copyright Travis Desell, 2012 Overview 1. Memory Access Efficiency 2. CUDA Memory Types 3. Reducing Global Memory Traffic 4. Example: Matrix-Matrix

More information

Optimizing CUDA for GPU Architecture. CSInParallel Project

Optimizing CUDA for GPU Architecture. CSInParallel Project Optimizing CUDA for GPU Architecture CSInParallel Project August 13, 2014 CONTENTS 1 CUDA Architecture 2 1.1 Physical Architecture........................................... 2 1.2 Virtual Architecture...........................................

More information