Activity Basic Inputs Programming - VEX Clawbot

Size: px
Start display at page:

Download "Activity Basic Inputs Programming - VEX Clawbot"

Transcription

1 Activity Basic Inputs Programming - VEX Clawbot Introduction Inputs are devices which provide a processor with environmental information to make decisions. These devices have the capacity to sense the environment in a variety of ways such as physical touch, rotation, and light. An engineer can design a system to respond to its environment through the use of input sensors. In this activity you will use ROBOTC and VEX robotics platform components to sense the environment. Equipment Procedure Computer with ROBOTC software POE Clawbot POE Clawbot ROBOTC template Part 1 - Bump Switch 1. Connect the POE Clawbot Cortex to the PC with the USB cable. Open your POE Clawbot ROBOTC template. Click File, Save As, select the folder that your teacher designated for you to save your ROBOTC programs in, then name the file A3.1.3_Part1. 2. In this activity you will use and program many of the Clawbot's inputs and outputs. For the next part, support your Clawbot on a box so that the wheels are not in contact with the table top. 3. Copy and paste or create the program below in the task main() section of the program between the curly braces. untilbump(bumpswitch); startmotor(rightmotor, 67); wait(5); 4. Power on the Cortex. 5. Compile and download the program. If you have any errors, check with your instructor to troubleshoot your program. 6. Press Start to run the program and observe the behaviors. 7. Document what this program would look like as pseudocode simple behaviors in the psuedocode section of the program. 8. Save the program to your saved files location. Bump Switch

2 Part 2 - Bump Switch II 9. Create a copy of your program file from above, then rename the it A3.1.3_Part The wiring configuration, motors &sensors tabs should remain the same as before. 11. Write a program that performs the following simple behaviors. Use the natural language functions where appropriate as shown below. Add comments at the end of each command line to explain the purpose of each step. a. Wait for the bumper switch to be bumped. Note that bump means that a switch is pressed and released and not simply pressed and held. b. Both motors turn on at half power until the sensor is bumped again. c. Both motors should then move in reverse at half power for 3.5 seconds. d. Both motors will stop. Natural LanguageMovement Natural Language Special Natural LanguageUntil Natural LanguageWait 12. Test the program and troubleshoot if needed until the expected behavior has occurred.

3 Part 3 - Quadrature Encoders 13. Open the POE Clawbot ROBOTC template. Click File, Save As, select the folder that your teacher designated, then name the file A3.1.3_Part The wiring configuration and motors and sensors tabs should be the same as in previous activities. 15. Copy and paste or create the program below in the task main() section of the program between the curly braces. startmotor(leftmotor, 63); startmotor(rightmotor, 63); untilencodercounts(480,leftencoder); untilencodercounts(480,rightencoder); stopmotor(leftmotor); 16. Download and run the program. Observe the behaviors and document what this program would look like as pseudocode simple behaviors in the pseudocode section of the programming file. 17. Modify your program to perform the pseudocode below. a. Turn on both motors 1/2 speed forward until the encoder has counted 480 degrees b. Stop both motors c. Wait 2 seconds d. Turn on both motors in reverse at 1/2 speed until another 3.5 rotations of the encoder have passed e. Turn off both motors Quad/Optical Encoder 18. Test the program and troubleshoot until the expected behavior has occurred. Save the program file. Part 4 - Line Followers 1. Open the POE Clawbot ROBOTC template. Click File, Save As, select the folder that your teacher designated, then name the file A3.1.3_Part4. 2. The wiring configuration and motors and sensors tabs should be the same as above. 3. Set the line follower threshold. Thresholds allow your robot to make decisions via Boolean Comparisons a. Calculate an appropriate Threshold with the aid of the Sensor Debug Window (see next page). Line Followers

4 b. Open the Sensor Debugger Window c. Verify that the Program Debug Window s Refresh Rate reads "Continuous". d. Place a white object (e.g., paper) within ¼ and 1/8 in. in front of the line follower sensors. Record the value for the sensors displayed in the Sensors Debug Window. Make sure that there is enough light to illuminate the white object or the sensors will register darkness. e. Place a dark object within ¼ and 1/8 in. in front of the line follower sensors. Record the value for the sensors displayed in the Sensors Debug Window. f. Add the two values and divide by 2. The result is the threshold for the sensors. 4. Copy and paste or create the program below in the task main() section of the program between the curly braces. Substitute your threshold number for "1000". wait1msec(2000); // The program waits for 2000 milliseconds before continuing. int threshold = 1000; /* found by taking a reading on both DARK and LIGHT */ /* surfaces, adding them together, then dividing by 2. */ while(true) // RIGHT sensor sees dark: if(sensorvalue(rightlinefollower) > threshold) // counter-steer right: motor[leftmotor] = 63; motor[rightmotor] = 0; // CENTER sensor sees dark: if(sensorvalue(centerlinefollower) > threshold) // go straight motor[leftmotor] = 63; motor[rightmotor] = 63; // LEFT sensor sees dark: if(sensorvalue(leftlinefollower) > threshold) // counter-steer left: motor[leftmotor] = 0; motor[rightmotor] = 63; 5. Test the program and troubleshoot until the expected behavior has occurred. Save the program file to your folder.

5 Part 5 - Ultrasonic (Sonar) Sensor 6. Open the POE Clawbot ROBOTC template. Click File, Save As, select the folder that your teacher designated, then name the file A3.1.3_Part5. 7. The wiring configuration and motors and sensors tabs should be the same as above. Ultrasonic (Sonar) Sensor 8. Copy and paste or create the program below in the task main() section of the program between the curly braces. startmotor(leftmotor, 63); startmotor(rightmotor, 63); untilsonarlessthan(20, sonar); stopmotor(leftmotor); turnledon(green); wait(6.25); turnledoff(green); 9. Download and run the program. Observe the behaviors and document what this program would look like as pseudocode simple behaviors in the pseudocode section of your program file. 10. Modify your program to perform the pseudocode below. a. Wait until an object is detected within 20 cm to turn both motors on. b. Wait for the object to move more than 25 cm away before turning the motors off. 11. Test the program and troubleshoot until the expected behavior has occurred. Save the program file. Conclusion 1. Describe any challenges that you encountered while developing the programs. 2. Describe three applications for the use of sensors below that you worked with in this activity. Bump Switch: Quad Encoder: Sonar:

Activity Basic Inputs Programming VEX

Activity Basic Inputs Programming VEX Activity 3.1.3 Basic Inputs Programming VEX Introduction Inputs are devices which provide a processor with environmental information to make decisions. These devices have the capacity to sense the environment

More information

Activity Basic Inputs Programming VEX

Activity Basic Inputs Programming VEX Activity 3.1.3 Basic Inputs Programming VEX Introduction Inputs are devices which provide a processor with environmental information to make decisions. These devices have the capacity to sense the environment

More information

2. Within your four student group, form a two student team known as Team A and a two student team known as Team B.

2. Within your four student group, form a two student team known as Team A and a two student team known as Team B. Introduction Inputs are devices which provide a processor with environmental information to make decisions. These devices have the capacity to sense the environment in a variety of ways such as physical

More information

Activity Basic Inputs Programming Answer Key (VEX)

Activity Basic Inputs Programming Answer Key (VEX) Activity 1.2.4 Basic Inputs Programming Answer Key (VEX) Introduction Inputs are devices which provide a processor with environmental information to make decisions. These devices have the capacity to sense

More information

Activity Basic Outputs Programming VEX

Activity Basic Outputs Programming VEX Activity 3.1.2 Basic Outputs Programming VEX Introduction Computer programs are used in many applications in our daily life. Devices that are controlled by a processor are called outputs. These devices

More information

Activity Basic Outputs Programming VEX

Activity Basic Outputs Programming VEX Activity 3.1.2 Basic Outputs Programming VEX Introduction Computer programs are used in many applications in our daily life. Devices that are controlled by a processor are called outputs. These devices

More information

Activity Variables and Functions VEX

Activity Variables and Functions VEX Activity 3.1.5 Variables and Functions VEX Introduction A program can accomplish a given task in any number of ways. Programs can quickly grow to an unmanageable size so variables and functions provide

More information

Activity Basic Outputs Programming Answer Key (VEX) Introduction

Activity Basic Outputs Programming Answer Key (VEX) Introduction Activity 1.2.3 Basic Outputs Programming Answer Key (VEX) Introduction Computer programs are used in many applications in our daily life. Devices that are controlled by a processor are called outputs.

More information

Activity While Loops and If-Else Structures VEX

Activity While Loops and If-Else Structures VEX Activity 3.1.4 While Loops and If-Else Structures VEX Introduction One of the powerful attributes of a computer program is its ability to make decisions. Although it can be argued that only humans are

More information

Activity Inputs and Outputs VEX

Activity Inputs and Outputs VEX Activity 3.1.1 Inputs and Outputs VEX Introduction Robots are similar to humans if you consider that both use inputs and outputs to sense and react to the world. Most humans use five senses to perceive

More information

Activity Inputs and Outputs VEX

Activity Inputs and Outputs VEX Activity 3.1.1 Inputs and Outputs VEX Introduction Robots are similar to humans if you consider that both use inputs and outputs to sense and react to the world. Most humans use five senses to perceive

More information

Activity While Loops and If-Else Structures Answer Key (VEX) Introduction

Activity While Loops and If-Else Structures Answer Key (VEX) Introduction Activity 1.2.5 While Loops and If-Else Structures Answer Key (VEX) Introduction One of the powerful attributes of a computer program is its ability to make decisions. Although it can be argued that only

More information

Troubleshooting ROBOTC with Cortex

Troubleshooting ROBOTC with Cortex This guide is to designed to be used by a student or teacher as a reference for help troubleshooting ROBOTC software issues. Troubleshooting Topics Computer will not Recognize the VEX Cortex Not able to

More information

Movement using Shaft Encoders

Movement using Shaft Encoders Movement using Shaft Encoders Configure (Motors and Sensors Setup) We will look at the following in this section SensorValue[] while Conditions (, =,!=, ==) Quadrature/Shaft/Rotation Encoder 360

More information

Getting Started in RobotC. // Comment task main() motor[] {} wait1msec() ; = Header Code Compile Download Run

Getting Started in RobotC. // Comment task main() motor[] {} wait1msec() ; = Header Code Compile Download Run Getting Started in RobotC // Comment task main() motor[] {} wait1msec() ; = Header Code Compile Download Run Learning Objectives Explore Computer Programming using by controlling a virtual robot. Understand

More information

RobotC for VEX. By Willem Scholten Learning Access Institute

RobotC for VEX. By Willem Scholten Learning Access Institute RobotC for VEX By Willem Scholten Learning Access Institute 1 RobotCgetStarted.key - February 5, 2016 RobotC for VEX Section 1 - RobotC How to switch between VEX 2.0 Cortex and VEX IQ Section 2 - RobotC

More information

Getting Started in RobotC. // Comment task main() motor[] {} wait1msec() ; = Header Code Compile Download Run

Getting Started in RobotC. // Comment task main() motor[] {} wait1msec() ; = Header Code Compile Download Run Getting Started in RobotC // Comment task main() motor[] {} wait1msec() ; = Header Code Compile Download Run Understand Motion Learning Objectives Motors: How they work and respond. Fuses: Understand why

More information

Variables and Functions. ROBOTC Software

Variables and Functions. ROBOTC Software Variables and Functions ROBOTC Software Variables A variable is a space in your robots memory where data can be stored, including whole numbers, decimal numbers, and words Variable names follow the same

More information

Testing VEX Cortex Robots using VEXnet

Testing VEX Cortex Robots using VEXnet Testing VEX Cortex Robots using VEXnet This document is an inspection guide for VEX Cortex based robots. Use this document to test if a robot is competition ready. Method I. Using the ROBOTC Competition

More information

RobotC. Remote Control

RobotC. Remote Control RobotC Remote Control Learning Objectives: Focusing on Virtual World with Physical Examples Understand Real-Time Joystick Mapping Understand how to use timers Understand how to incorporate buttons into

More information

TETRIX Getting Started Guide. Harvester and Transporter Programming Guide (ROBOTC )

TETRIX Getting Started Guide. Harvester and Transporter Programming Guide (ROBOTC ) Introduction: In this guide, the Ranger Bot will be programmed to follow a line, pick up an object using the harvester, and put the object into the transporter. It will also count the number of objects

More information

VEX/RobotC Video Trainer Assignments

VEX/RobotC Video Trainer Assignments VEX/RobotC Video Trainer Assignments Mr. Holmes Mechatronics I To view the VEX videos assigned for homework, click on the following link to access the Vex Video Trainer: http://www.education.rec.ri.cmu.edu/products/teaching_robotc_cortex/

More information

Activity Robot Behaviors and Writing Pseudocode

Activity Robot Behaviors and Writing Pseudocode Activity 2.3.2 Robot Behaviors and Writing Pseudocode Introduction A behavior is anything your robot does: turning on a single motor is a behavior, moving forward is a behavior, tracking a line is a behavior,

More information

VEX Robot Remote Control Set-Up

VEX Robot Remote Control Set-Up VEX Robot Remote Control Set-Up Note: Before proceeding with the VEXnet joystick setup on the following pages, complete these steps: 1) Open the RobotC program 2) Select File > Open Sample Program 3) Select

More information

K Force The Kristin Robotics Team Introductory Programming Tutorial 2014 For use with the teams squarebot training robots.

K Force The Kristin Robotics Team Introductory Programming Tutorial 2014 For use with the teams squarebot training robots. K Force The Kristin Robotics Team Introductory Programming Tutorial 2014 For use with the teams squarebot training robots. K Force Squarebot Programming Course - 2014 Robot moves forward for two seconds

More information

16-311: Getting Started with ROBOTC and the. LEGO Mindstorms NXT. Aurora Qian, Billy Zhu

16-311: Getting Started with ROBOTC and the. LEGO Mindstorms NXT. Aurora Qian, Billy Zhu 16-311: Getting Started with ROBOTC and the LEGO Mindstorms NXT Aurora Qian, Billy Zhu May, 2016 Table of Contents 1. Download and Install 2. License Activation 3. Wireless Connection 4. Running Programs

More information

Download Program. Setup ROBOTC. task main() { motor[motorc] = 100; wait1msec(3000);

Download Program. Setup ROBOTC. task main() { motor[motorc] = 100; wait1msec(3000); Your robot is ready to go! All that s left is for you to tell it what to do by sending it a program. A program is a set of commands that tell the robot what to do and how to react to its environment. Once

More information

TETRIX Getting Started Guide. Launcher Programming Guide (ROBOTC )

TETRIX Getting Started Guide. Launcher Programming Guide (ROBOTC ) Introduction: In this guide, the Ranger Bot will be programmed to follow a line while carrying a ball. Upon sensing a bin with its ultrasonic sensor, it will launch the ball into the bin. This guide is

More information

MS4SSA Robotics Module:

MS4SSA Robotics Module: MS4SSA Robotics Module: Programming and Sensors Brad Miller and Kim Hollan What are we doing today? Talk about why to program robots Learn about basic RobotC programming Learn how to make the robot move

More information

Step 1: Connect the Cortex to your PC

Step 1: Connect the Cortex to your PC This is a guide for configuring the VEX Cortex system to be programmed wirelessly using a VEXNet connection. These steps are required the first time you use your computer to program a specific VEX Cortex,

More information

VEX Robotics A Primer

VEX Robotics A Primer 2015 Andrew Dahlen andrew.dahlen@northlandcollege.edu VEX Robotics A Primer 2015 HI-TEC Conference Workshop July 27 th 2015 Portland Oregon Background VEX Robotics Overview 360 VEX Robotics Competition

More information

2

2 1 2 3 4 5 6 7 8 9 Robot C Settings for Programming in VEX IQ Text Mode Setup the software for Vex IQ: Platform Tab: Platform Type [Vex Robotics] [VEX IQ] Quick

More information

Programming in ROBOTC ROBOTC Rules

Programming in ROBOTC ROBOTC Rules Programming in ROBOTC ROBOTC Rules In this lesson, you will learn the basic rules for writing ROBOTC programs. ROBOTC is a text-based programming language Commands to the robot are first written as text

More information

G. Tardiani RoboCup Rescue. EV3 Workshop Part 1 Introduction to RobotC

G. Tardiani RoboCup Rescue. EV3 Workshop Part 1 Introduction to RobotC RoboCup Rescue EV3 Workshop Part 1 Introduction to RobotC Why use RobotC? RobotC is a more traditional text based programming language The more compact coding editor allows for large programs to be easily

More information

VEX ARM Cortex -based Microcontroller and VEXnet Joystick User Guide

VEX ARM Cortex -based Microcontroller and VEXnet Joystick User Guide 1. VEX ARM Cortex -based Microcontroller and VEXnet Joystick Pairing Procedure: a. The Joystick must first be paired to the VEX ARM Cortex -based Microcontroller before they will work using VEXnet Keys.

More information

RobotC primer. Alexander Kirillov

RobotC primer. Alexander Kirillov RobotC primer version 1.1, September 2013 Alexander Kirillov IslandBots robotic club URL: http://islandbots.org/robotc/ E-mail address: shurik179@gmail.com This work is licensed under the Creative Commons

More information

Autonomous Parking. LEGOeducation.com/MINDSTORMS. Duration Minutes. Learning Objectives Students will: Di culty Beginner

Autonomous Parking. LEGOeducation.com/MINDSTORMS. Duration Minutes. Learning Objectives Students will: Di culty Beginner Autonomous Parking Design cars that can park themselves safely without driver intervention. Learning Objectives Students will: Understand that algorithms are capable of carrying out a series of instructions

More information

Getting Started with FTC Using RobotC

Getting Started with FTC Using RobotC Oregon Robotics Tournament and Outreach Program Getting Started with FTC Using RobotC 2008 Opening doors to the worlds of science and technology for Oregon s s youth Instructors Coordinator Robot C for

More information

VEX Startup and Configuration Procedures

VEX Startup and Configuration Procedures VEX Startup and Configuration Procedures Power Up Open RobotC Step 2 Plug battery into the Cortex power port. The plug is keyed to only install one way. Black wire will face to the outside of the Cortex.

More information

MS4SSA Robotics Module:

MS4SSA Robotics Module: Robotics Module: Programming and Sensors Kim Hollan Why Program a Robot? Building a robot teaches many valuable skills; however, the learning doesn t stop there Programming also teaches valuable life skills

More information

EV3 Programming Workshop for FLL Coaches

EV3 Programming Workshop for FLL Coaches EV3 Programming Workshop for FLL Coaches Tony Ayad 2017 Outline This workshop is intended for FLL coaches who are interested in learning about Mindstorms EV3 programming language. Programming EV3 Controller

More information

USB. Bluetooth. Display. IO connectors. Sound. Main CPU Atmel ARM7 JTAG. IO Processor Atmel AVR JTAG. Introduction to the Lego NXT

USB. Bluetooth. Display. IO connectors. Sound. Main CPU Atmel ARM7 JTAG. IO Processor Atmel AVR JTAG. Introduction to the Lego NXT Introduction to the Lego NXT What is Lego Mindstorm? Andreas Sandberg A kit containing: A Lego NXT computer 3 motors Touch sensor Light sensor Sound sensor Ultrasonic range

More information

RCX Tutorial. Commands Sensor Watchers Stack Controllers My Commands

RCX Tutorial. Commands Sensor Watchers Stack Controllers My Commands RCX Tutorial Commands Sensor Watchers Stack Controllers My Commands The following is a list of commands available to you for programming the robot (See advanced below) On Turns motors (connected to ports

More information

Introduction to Robotics using Lego Mindstorms EV3

Introduction to Robotics using Lego Mindstorms EV3 Introduction to Robotics using Lego Mindstorms EV3 Facebook.com/roboticsgateway @roboticsgateway Robotics using EV3 Are we ready to go Roboticists? Does each group have at least one laptop? Do you have

More information

ROBOTC Basic Programming

ROBOTC Basic Programming ROBOTC Basic Programming Open ROBOTC and create a new file Check Compiler Target If you plan to download code to a robot, select the Physical Robot opbon. If you plan to download code to a virtual robot,

More information

Programming with the NXT using the touch and ultrasonic sensors. To be used with the activity of the How do Human Sensors Work?

Programming with the NXT using the touch and ultrasonic sensors. To be used with the activity of the How do Human Sensors Work? Programming with the NXT using the touch and ultrasonic sensors To be used with the activity of the How do Human Sensors Work? lesson How do you incorporate sensors into your programs? What you know: You

More information

Autonomy/Encoders Forward for Distance

Autonomy/Encoders Forward for Distance nomy/encoders Forward for Distance In this lesson, you will learn how to use an Encoder to more accurately control the distance that the robot will travel. 1. Your robot should have one encoder hooked

More information

Colin Harman and Jonathan Kim

Colin Harman and Jonathan Kim Colin Harman and Jonathan Kim 2-6-10 Getting RobotC 1. Go to robotc.net/robofest 2. Enter coach information including Robofestteam ID 3. The coach will get an email with a link to download RobotC(90-day

More information

Programming Techniques Workshop for Mindstorms EV3. Opening doors to the worlds of science and technology for Oregon s youth

Programming Techniques Workshop for Mindstorms EV3. Opening doors to the worlds of science and technology for Oregon s youth Oregon Robotics Tournament and Outreach Program Programming Techniques Workshop for Mindstorms EV3 2018 Opening doors to the worlds of science and technology for Oregon s youth 1 Instructor Contacts Terry

More information

Tutorial: Making Legobot Move Steering Command Brighton H.S Engineering By: Matthew Jourden

Tutorial: Making Legobot Move Steering Command Brighton H.S Engineering By: Matthew Jourden Tutorial: Making Legobot Move Steering Command Brighton H.S Engineering By: Matthew Jourden 1. Build Bas Robot. See Build Manual in the Lego Core Set Kit for details or Build Instructions Base Robot File

More information

Unit 03 Tutorial 3: Sensors: Touch Sensor Brighton H.S Engineering By: Matthew Jourden

Unit 03 Tutorial 3: Sensors: Touch Sensor Brighton H.S Engineering By: Matthew Jourden Unit 03 Tutorial 3: Sensors: Touch Sensor Brighton H.S Engineering By: Matthew Jourden Robots have a variety of sensors that help the machine sense the world around it. We will be looking at four different

More information

TETRIX Getting Started Guide FTC Extension. Programming Guide (ROBOTC ) Autonomous Programming

TETRIX Getting Started Guide FTC Extension. Programming Guide (ROBOTC ) Autonomous Programming Introduction In this guide, a TETRIX with LEGO MINDSTORMS robot with an arm and gripper extension will be programmed to move forward until it detects an object, slow down as it approaches the object, and

More information

LEGO Mindstorm EV3 Robots

LEGO Mindstorm EV3 Robots LEGO Mindstorm EV3 Robots Jian-Jia Chen Informatik 12 TU Dortmund Germany LEGO Mindstorm EV3 Robot - 2 - LEGO Mindstorm EV3 Components - 3 - LEGO Mindstorm EV3 Components motor 4 input ports (1, 2, 3,

More information

Robotics Study Material School Level 1 Semester 2

Robotics Study Material School Level 1 Semester 2 Robotics Study Material School Level 1 Semester 2 Contents UNIT-3... 4 NXT-PROGRAMMING... 4 CHAPTER-1... 5 NXT- PROGRAMMING... 5 CHAPTER-2... 6 NXT-BRICK PROGRAMMING... 6 A. Multiple choice questions:...

More information

Programming Preset Heights in ROBOTC for VEX Robotics By George Gillard

Programming Preset Heights in ROBOTC for VEX Robotics By George Gillard Programming Preset Heights in ROBOTC for VEX Robotics By George Gillard Introduction Programming a button that lifts an arm (or other mechanism for that matter) to a specific preprogrammed point can be

More information

Part A: Monitoring the Rotational Sensors of the Motor

Part A: Monitoring the Rotational Sensors of the Motor LEGO MINDSTORMS NXT Lab 1 This lab session is an introduction to the use of motors and rotational sensors for the Lego Mindstorm NXT. The first few parts of this exercise will introduce the use of the

More information

This is the Arduino Uno: This is the Arduino motor shield: Digital pins (0-13) Ground Rail

This is the Arduino Uno: This is the Arduino motor shield: Digital pins (0-13) Ground Rail Reacting to Sensors In this tutorial we will be going over how to program the Arduino to react to sensors. By the end of this workshop you will have an understanding of how to use sensors with the Arduino

More information

LME Software Block Quick Reference 1. Common Palette

LME Software Block Quick Reference 1. Common Palette LME Software Block Quick Reference Common Palette Move Block Use this block to set your robot to go forwards or backwards in a straight line or to turn by following a curve. Define how far your robot will

More information

Robotics Jumpstart Training II. EasyC: Software & Firmware Updates

Robotics Jumpstart Training II. EasyC: Software & Firmware Updates Robotics Jumpstart Training II EasyC: Software & Firmware Updates Objectives: Learn how to update EasyC Current Version: 4.2.1.9 Learn how to update Firmware VEX Joystick (Controller) VEX Microcontroller

More information

The Arduino IDE. & ArduBlock

The Arduino IDE. & ArduBlock Systems of Technology - Robotics: Section 3 The Arduino IDE & ArduBlock Instructions/Build Plans v2.0 Team Members: 1. 3. 2. 4. Introduction 1. Locate/Open: The Arduino IDE & Ardublock - Video Tutorial.

More information

Experiment 4.A. Speed and Position Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 4.A. Speed and Position Control. ECEN 2270 Electronics Design Laboratory 1 .A Speed and Position Control Electronics Design Laboratory 1 Procedures 4.A.0 4.A.1 4.A.2 4.A.3 4.A.4 Turn in your Pre-Lab before doing anything else Speed controller for second wheel Test Arduino Connect

More information

ROBOLAB Tutorial MAE 1170, Fall 2009

ROBOLAB Tutorial MAE 1170, Fall 2009 ROBOLAB Tutorial MAE 1170, Fall 2009 (I) Starting Out We will be using ROBOLAB 2.5, a GUI-based programming system, to program robots built using the Lego Mindstorms Kit. The brain of the robot is a microprocessor

More information

Intro to Programming the Lego Robots

Intro to Programming the Lego Robots Intro to Programming the Lego Robots Hello Byng Roboticists! I'm writing this introductory guide will teach you the basic commands to control your Lego NXT Robots. Keep in mind there are many more commands

More information

Creating a robot project

Creating a robot project Creating a robot project Liquid error: No route matches {:action=>"show", :controller=>"spaces/chapters", :space_id=>"3120", :manual_id=>"7952", :id=>nil} Launching WindRiver Workbench WindRiver Workbench

More information

Don t Bump into Me! Pre-Quiz

Don t Bump into Me! Pre-Quiz Don t Bump into Me! Don t Bump into Me! Pre-Quiz 1. How do bats sense distance? 2. Describe how bats sense distance in a stimulus-sensor-coordinator-effectorresponse framework. 2. Provide an example stimulus-sensorcoordinator-effector-response

More information

PROGRAMMING ROBOTS AN ABSTRACT VIEW

PROGRAMMING ROBOTS AN ABSTRACT VIEW ROBOTICS AND AUTONOMOUS SYSTEMS Simon Parsons Department of Computer Science University of Liverpool LECTURE 3 comp329-2013-parsons-lect03 2/50 Today Before the labs start on Monday, we will look a bit

More information

LEGO mindstorm robots

LEGO mindstorm robots LEGO mindstorm robots Peter Marwedel Informatik 12 TU Dortmund Germany Lego Mindstorm components motor 3 output ports (A, B, C) 1 USB port for software upload 4 input ports (1, 2, 3, 4) for connecting

More information

Brought to you by WIRED Les Quiocho September 30, 2017

Brought to you by WIRED Les Quiocho September 30, 2017 Brought to you by WIRED Les Quiocho September 30, 2017 Objectives To learn where to find necessary resources To recognize the basic electronic components of the BEST returnables kit To understand the software

More information

contents in detail introduction...xxi 1 LEGO and robots: a great combination the EV3 programming environment... 5

contents in detail introduction...xxi 1 LEGO and robots: a great combination the EV3 programming environment... 5 contents in detail introduction...xxi who this book is for...xxi prerequisites...xxi what to expect from this book...xxi how best to use this book...xxiii 1 LEGO and robots: a great combination... 1 LEGO

More information

RobotC Basics. FTC Team 2843 SSI Robotics October 6, 2012 Capitol College FTC Workshop

RobotC Basics. FTC Team 2843 SSI Robotics October 6, 2012 Capitol College FTC Workshop RobotC Basics FTC Team 2843 SSI Robotics October 6, 2012 Capitol College FTC Workshop Agenda The Brick Sample Setup Template Multi Click Program Cancel Configuration (Pragmas) Joystick Data (get data)

More information

CORTEX Microcontroller and Joystick User Guide

CORTEX Microcontroller and Joystick User Guide This is a User Guide for using the VEX CORTEX Microcontroller and VEX Joystick. Refer to the VEX Wiki (http://www.vexforum.com/wiki/index.php/vex_cortex_microcontroller) for updates to this document. 1.

More information

Robotics II. Module 2: Application of Data Programming Blocks

Robotics II. Module 2: Application of Data Programming Blocks Robotics II Module 2: Application of Data Programming Blocks PREPARED BY Academic Services Unit December 2011 Applied Technology High Schools, 2011 Module 2: Application of Data Programming Blocks Module

More information

INDEX. Tasks 1-9. Tasks Tasks Tasks Tasks Tasks Tasks Tasks Tasks Tasks Tasks

INDEX. Tasks 1-9. Tasks Tasks Tasks Tasks Tasks Tasks Tasks Tasks Tasks Tasks TASKS INDEX Pages 1-2 Sensors 3 Rotation Sensor ( Motor ) 4 NXT Desktop 5 Rotation Sensor ( Motor ) 6 Common Palette 7-8 Inputs and outputs - Common Palette 9 Complete Palette 10-13 Inputs and outputs

More information

Robotics II. Module 1: Introduction to Data & Advanced Programming Blocks

Robotics II. Module 1: Introduction to Data & Advanced Programming Blocks Robotics II Module 1: Introduction to Data & Advanced Programming Blocks PREPARED BY Academic Services Unit December 2011 Applied Technology High Schools, 2011 Module 1: Introduction to Data & Advanced

More information

INTRODUCTION LEGO MINDSTORMS NXT AND LABVIEW 8.6

INTRODUCTION LEGO MINDSTORMS NXT AND LABVIEW 8.6 INTRODUCTION LEGO MINDSTORMS NXT AND LABVIEW 8.6 Prof. Dr.-Ing. Dahlkemper Fabian Schwartau Patrick Voigt 1 NXT DIRECT COMMANDS There are two different kinds of programming Lego Mindstorms NXT with LabVIEW:

More information

CORTEX Microcontroller and Joystick Quick Start Guide

CORTEX Microcontroller and Joystick Quick Start Guide This is a Quick Start Guide for using the VEX CORTEX and VEX Joystick. Refer to the VEX Wiki for updates to this document. 1. Basic connections; batteries, microcontroller, joysticks and VEXnet keys. a.

More information

TETRIX Getting Started Guide FTC Extension

TETRIX Getting Started Guide FTC Extension TeleOp Programming TETRIX Getting Started Guide FTC Extension Introduction In this guide, a TETRIX with LEGO MINDSTORMS robot with an arm and gripper extension will be programmed to be controlled by a

More information

Sensor Melody Light Robot

Sensor Melody Light Robot Assembly Instructions is a registered trademark of Artec Co., Ltd. in multiple countries including Japan, South Korea, Canada, and the USA. Components Studuino Unit Battery Box USB Cable Sound Sensor Sound

More information

Advanced RobotC. Sensors and Autonomous Coding Teams 5233 Vector and 5293 Rexbotics

Advanced RobotC. Sensors and Autonomous Coding Teams 5233 Vector and 5293 Rexbotics Advanced RobotC Sensors and Autonomous Coding Teams 5233 Vector and 5293 Rexbotics jcagle@chapelgateacademy.org Setup Select platform NXT + TETRIX/MATRIX Create New Autonomous Configure Robot with your

More information

B - Broken Track Page 1 of 8

B - Broken Track Page 1 of 8 B - Broken Track There's a gap in the track! We need to make our robot even more intelligent so it won't get stuck, and can find the track again on its own. 2017 https://www.hamiltonbuhl.com/teacher-resources

More information

Competitive VEX Robot Designer. Terminal Objective 5.2: program functions to accept values

Competitive VEX Robot Designer. Terminal Objective 5.2: program functions to accept values Skill Set 5: Programmer II Competitive VEX Robot Designer Terminal Objective 5.2: program functions to accept values Performance Objective: Using an ultrasonic range sensor and optical quad encoder, program

More information

US Version USER GUIDE COMPUTER SCIENCE SCIENCE TECHNOLOGY ENGINEERING MATH. LEGOeducation.com/MINDSTORMS

US Version USER GUIDE COMPUTER SCIENCE SCIENCE TECHNOLOGY ENGINEERING MATH. LEGOeducation.com/MINDSTORMS US Version 1.3.2 USER GUIDE πr COMPUTER SCIENCE SCIENCE TECHNOLOGY ENGINEERING MATH LEGOeducation.com/MINDSTORMS TABLE OF CONTENTS INTRODUCTION + Welcome... 3 + How to Use This Guide... 4 + Help... 5 EV3

More information

OBSTACLE AVOIDANCE ROBOT

OBSTACLE AVOIDANCE ROBOT e-issn 2455 1392 Volume 3 Issue 4, April 2017 pp. 85 89 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com OBSTACLE AVOIDANCE ROBOT Sanjay Jaiswal 1, Saurabh Kumar Singh 2, Rahul Kumar 3 1,2,3

More information

The Beginners Guide to ROBOTC. Volume 2, 3 rd Edition Written by George Gillard Published: 18-July-2016

The Beginners Guide to ROBOTC. Volume 2, 3 rd Edition Written by George Gillard Published: 18-July-2016 The Beginners Guide to ROBOTC Volume 2, 3 rd Edition Written by George Gillard Published: 18-July-2016 Introduction ROBOTC is an application used for programming robots. There are many different versions

More information

Tech Tips. BeeBots. WeDo

Tech Tips. BeeBots. WeDo Tech Tips Teachers, especially classroom teachers who are implementing a robotics unit in their classroom, may not have much troubleshooting experience and may not have ready access to tech support. As

More information

Adaptive Cruise Control

Adaptive Cruise Control Teacher Notes & Answers 7 8 9 10 11 12 TI-Nspire Investigation Student 50 min Introduction Basic cruise control is where the car s computer automatically adjusts the throttle so that the car maintains

More information

NXT Programming for Beginners Project 9: Automatic Sensor Calibration

NXT Programming for Beginners Project 9: Automatic Sensor Calibration Copyright 2012 Neil Rosenberg (neil@vectorr.com) Revision: 1.1 Date: 5/28/2012 NXT Programming for Beginners Project 9: Automatic Sensor Calibration More advanced use of data Sometimes you need to save

More information

Robotic Systems ECE 401RB Fall 2006

Robotic Systems ECE 401RB Fall 2006 The following notes are from: Robotic Systems ECE 401RB Fall 2006 Lecture 13: Processors Part 1 Chapter 12, G. McComb, and M. Predko, Robot Builder's Bonanza, Third Edition, Mc- Graw Hill, 2006. I. Introduction

More information

Today. Robotics and Autonomous Systems. The scenario (again) Basic control loop

Today. Robotics and Autonomous Systems. The scenario (again) Basic control loop Today Robotics and Autonomous Systems Lecture 3 Programming robots Richard Williams Department of Computer Science University of Liverpool Before the labs start on Monday, we will look a bit at programming

More information

Part I. "Hello, world"

Part I. Hello, world Part I. "Hello, world" In this part, you will build a program executable from files provided to you. Create a project and build To start a new project, you ll need to follow these steps: In Code Composer

More information

Programming With easyc Kevin Barrett September 12, 2015

Programming With easyc Kevin Barrett September 12, 2015 BEST Robotic, Inc. easyc Team Training Programming With easyc Kevin Barrett September 12, 2015 1 What You ll Need Minimum System Requirements Windows XP/Vista/Win7, Mac not supported PIII-450MHz+, 256MB+

More information

Hands-on Lab. Lego Programming BricxCC Basics

Hands-on Lab. Lego Programming BricxCC Basics Hands-on Lab Lego Programming BricxCC Basics This lab reviews the installation of BricxCC and introduces a C-like programming environment (called NXC) for the Lego NXT system. Specific concepts include:

More information

IME-100 ECE. Lab 4. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 4. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 4 Electrical and Computer Engineering Department Kettering University 4-1 1. Laboratory Computers Getting Started i. Log-in with User Name: Kettering Student (no password required) ii.

More information

TETRIX Getting Started Guide FTC Extension

TETRIX Getting Started Guide FTC Extension Introduction In this guide, code created with the FTC templates will be explored and then run using the Field Control Software (FCS). An FTC game begins with an autonomous period where only autonomous

More information

Wall-Follower. Xiaodong Fang. EEL5666 Intelligent Machines Design Laboratory University of Florida School of Electrical and Computer Engineering

Wall-Follower. Xiaodong Fang. EEL5666 Intelligent Machines Design Laboratory University of Florida School of Electrical and Computer Engineering Wall-Follower Xiaodong Fang EEL5666 Intelligent Machines Design Laboratory University of Florida School of Electrical and Computer Engineering TAs: Tim Martin Josh Weaver Instructors: Dr. A. Antonio Arroyo

More information

Computer science Science Technology Engineering Math. LEGOeducation.com/MINDSTORMS

Computer science Science Technology Engineering Math. LEGOeducation.com/MINDSTORMS User Guide πr Computer science Science Technology Engineering Math LEGOeducation.com/MINDSTORMS Table of Contents Introduction + Welcome... 3 EV3 Technology + overview.... 4 + EV3 Brick.... 5 Overview...

More information

The Maze Runner. Alexander Kirillov

The Maze Runner. Alexander Kirillov The Maze Runner URL: http://sigmacamp.org/mazerunner E-mail address: shurik179@gmail.com Alexander Kirillov This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License.

More information

Sonar range sensor WiFi n

Sonar range sensor WiFi n Continuously rotating Pan and 100o Tilt Thermal Imaging Camera (option) On-board Peripherals:USB RS232 I2C SPI GPIO Laser Pointer 36x Optical Zoom / 12x Digital Zoom SONY Camera Front & Rear Drive Camera

More information

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

INTRODUCTION TO ARTIFICIAL INTELLIGENCE DATA15001 INTRODUCTION TO ARTIFICIAL INTELLIGENCE THE FINAL EPISODE (11): ROBOTICS TODAY S MENU 1. "GRAND CHALLENGE" 2. LEGO MIND- STORMS 3. ROBO WORKSHOPS ROBOTICS AS A "GRAND CHALLENGE" OF AI actuators:

More information

Clawbotics Control Center:

Clawbotics Control Center: Clawbotics Control Center: Maintenance Report Jessel Serrano April 12th, 2015 CEN 4935 Senior Software Engineering Project Spring 2015 Instructor: Dr. Janusz Zalewski Software Engineering Program Florida

More information