UNLOCKING BANDWIDTH FOR GPUS IN CC-NUMA SYSTEMS

Size: px
Start display at page:

Download "UNLOCKING BANDWIDTH FOR GPUS IN CC-NUMA SYSTEMS"

Transcription

1 UNLOCKING BANDWIDTH FOR GPUS IN CC-NUMA SYSTEMS Neha Agarwal* David Nellans Mike O Connor Stephen W. Keckler Thomas F. Wenisch* NVIDIA University of Michigan* (Major part of this work was done when Neha Agarwal was an intern at NVIDIA)

2 EVOLVING GPU MEMORY SYSTEM NVLink (Cache PCI-E Coherent) GDDR5 GPU CPU 2 GB/s GB/s 8 GB/s DDR4 Roadmap CUDA 1.-5.x CUDA 6.+: Current Future cudamemcpy Unified virtual memory CPU-GPU cache-coherent high BW interconnect Programmer controlled copying to GPU memory Run-time controlled copying à Better productivity How to best exploit full BW while maintaining programmability? 2

3 DESIGN GOALS & OPPORTUNITIES! Simple programming model:! No need for explicit data copying! Exploit full DDR + GDDR BW! Additional 3% BW via NVLink! Crucial to BW sensitive GPU apps Total Bandwidth (GB/s) Legacy CUDA UVM PCI-E NVLink CC-NUMA BW Target Design intelligent dynamic page migration policies to achieve both these goals 3

4 BANDWIDTH UTILIZATION NVLink GPU 8 GB/s CPU 2 GB/s 8 GB/s GDDR5 DDR4 Total Bandwidth (GB/s) Total System Memory BW GPU Memory BW BW from CC % of Migrated Pages to GPU Memory 1! Coherence-based accesses, no page migration! Wastes GPU memory BW 4

5 BANDWIDTH UTILIZATION NVLink GPU 8 GB/s CPU 2 GB/s 8 GB/s GDDR5 DDR4 Total Bandwidth (GB/s) Total System Memory BW GPU Memory BW Additional BW from CC % of Migrated Pages to GPU Memory 1! Static Oracle: Place data in the ratio of memory bandwidths [ASPLOS 15] Dynamic migration can exploit the full system memory BW 5

6 BANDWIDTH UTILIZATION NVLink GPU 8 GB/s CPU 2 GB/s 8 GB/s GDDR5 DDR4 Total Bandwidth (GB/s) Total System Memory BW GPU Memory BW Additional BW from CC % of Migrated Pages to GPU Memory 1! Excessive migration leads to under-utilization of DDR BW Migrate pages for optimal BW utilization 6

7 CONTRIBUTIONS Intelligent Dynamic Page Migration! Aggressively migrate pages upon First-Touch to GDDR memory! Pre-fetch neighbors of touched pages to reduce TLB shootdowns! Throttle page migrations when nearing peak BW Dynamic page migration performs 1.95x better than no migration Comes within 28% of the static oracle performance 6% better than Legacy CUDA 7

8 OUTLINE! Page Migration Techniques! First-Touch page migration! Range-Expansion to save TLB shootdowns! BW balancing to stop excessive migrations! Results & Conclusions 8

9 FIRST-TOUCH PAGE MIGRATION! Naive: Migrate pages that are touched Throughput Rela.ve to No Migra.on CPU memory GPU memory! First-Touch migration approaches Legacy CUDA First-Touch migration is cheap, no hardware counters required 9

10 PROBLEMS WITH FIRST-TOUCH MIGRATION VA PA Send Ack VA PA V1 P2 P1 Invalidate V1 P2 P1 CPU TLB GPU TLB Migrate V1 CPU GPU Throughput Rela.ve To No Migra.on No overhead TLB shootdown backprop needle pathfinder! TLB shootdowns may negate benefits of page migration How to migrate pages without incurring shootdown cost? 1

11 PRE-FETCH TO AVOID TLB SHOOTDOWNS Hot pages, consume 8% BW! Intuition: Hot virtual addresses are clustered! Pre-fetch pages before access by the GPU Max Min Min No shootdown cost for pre-fetched pages 11

12 MIGRATION USING RANGE-EXPANSION CPU memory GPU memory X X X X X Accessed, shootdown required Pre-fetched, shootdown not required Throughput Relative to No Migration No overhead No range expansion TLB shootdown No overhead TLB shootdown No overhead backprop needle pathfinder TLB shootdown! Pre-fetch pages in spatially contiguous range 12

13 MIGRATION USING RANGE-EXPANSION CPU memory GPU memory X X X Accessed, shootdown required Pre-fetched, shootdown not required Throughput Relative to No Migration No range expansion Range:16 Range:64 Range: No overhead TLB shootdown No overhead TLB shootdown No overhead backprop needle pathfinder TLB shootdown! Pre-fetch pages in spatially contiguous range Range-Expansion hides TLB shootdown overhead 13

14 REVISITING BANDWIDTH UTILIZATION Total Bandwidth (GB/s) Total System Memory BW GPU Memory BW First-Touch migration BW from CC Excessive migration % of Migrated Pages to GPU Memory 1! First-Touch + Range-Expansion aggressively unlocks GDDR BW How to avoid excessive page migrations? 14

15 BANDWIDTH BALANCING First- Touch + Range Exp % of Migrated Pages to GPU Memory 1 7 Excessive migrations First-Touch migrations Total Bandwidth (GB/s) Target Start DDR under- subscribed GDDR under- subscribed Time End % of Accesses from GPU Memory Throttle migrations when nearing peak BW 15

16 BANDWIDTH BALANCING First- Touch + Range Exp First- Touch + Range Exp + BW Balancing % of Migrated Pages to GPU Memory 1 7 Excessive migrations First-Touch migrations Total Bandwidth (GB/s) Target Start DDR under- subscribed GDDR under- subscribed Time End % of Accesses from GPU Memory Throttle migrations when nearing peak BW 16

17 SIMULATION ENVIRONMENT! Simulator: GPGPU-Sim 3.x! Heterogeneous 2-level memory! GDDR5 (2GB/s, 8-channels)! DDR4 (8GB/s, 4-channels) GPU 1 clks additional latency 8 GB/s CPU! GPU-CPU interconnect! Latency: 1 GPU core cycles! Workloads:! Rodinia applications [Che IISWC29]! DoE mini apps [Villa SC214] GDDR5 2 GB/s 8 GB/s DDR4 17

18 Throughput Rela.ve to No Migra.on RESULTS Legacy CUDA First- Touch + Range Exp + BW Balancing ORACLE Static Oracle 18

19 Throughput Rela.ve to No Migra.on RESULTS Legacy CUDA First- Touch + Range Exp + BW Balancing ORACLE Static Oracle First-Touch + Range-Expansion + BW Balancing outperforms Legacy CUDA 19

20 Throughput Rela.ve to No Migra.on RESULTS Legacy CUDA First- Touch + Range Exp + BW Balancing ORACLE Static Oracle Streaming accesses, no-reuse after migration 2

21 Throughput Rela.ve to No Migra.on RESULTS Legacy CUDA First- Touch + Range Exp + BW Balancing ORACLE Static Oracle Dynamic page migration performs 1.95x better than no migration Comes within 28% of the static oracle performance 6% better than Legacy CUDA 21

22 CONCLUSIONS! Developed migration policies without any programmer involvement! First-Touch migration is cheap but has high TLB shootdowns! First-Touch + Range-Expansion technique unlocks GDDR memory BW! BW balancing maximizes BW utilization, throttles excessive migrations These 3 complementary techniques effectively unlock full system BW 22

23 THANK YOU 23

24 EFFECTIVENESS OF RANGE-EXPANSION TLB Shootdowns Execution % Migrations Shootdown Execution Saved Benchmark Execution % Migrations Exececution backpropbenchmark 29.1% Overhead 26% 7.6% TLB Shootdowns of Shootdown Without Saved Runtime backprop 29.1% 26% 7.6% bfs TLB 6.7% Shootdown Shootdown 12% Saved.8% cns 2.4% 2%.5% comd 2.2% 89% 1.8% cns Backprop 2.4% 29.1% 26% 2% 7.6%.5% minife 3.6% 36% 1.3% mummer 21.15% 13% 2.75% comd Pathfinder 2.2% 25.9% 1% 89% 2.6% 1.8% pathfinder 25.9% 1% 2.6% srad v1.5% 27%.14% kmeans Needle 4.1% 24.9% 55% 79% 2.75% 3.17% Average 11.13% 33.5% 3.72% minife Mummer TABLE 3.6% 21.15% II: Effectiveness of range prefetching 13% at36% avoiding 2.75% 1.3% mummer Bfs 21.15% 6.7% 12% 13%.8% 2.75% needle 24.9% 55% 13.7% pathfinder Range-Expansion 25.9% can save up to 45% 1% TLB shootdowns 2.6% srad v1.5% 27%.14% 24

25 DATA TRANSFER RATIO Performance is low when GDDR/DDR ratio is away from optimal 25

26 GPU WORKLOADS: BW SENSITIVITY backprop" bfs" btree" gaussian" heartwell" hotspot" kmeans" lava_md" lud_cuda" mummergpu" needle" pathfinder" sc_gpu" srad_v1" cns" comd" minife" xsbench" 3" Rela%ve'Throughput'' 2.5" 2" 1.5" 1".5" Rela%ve' Throughput' " 1.2$.8$.12x".14x".17x".2x".25x".33x".5x" 1x" 2x" 3x" 1$ Aggregate'DRAM'Bandwidth,'1x=2GB/sec' '99$ '8$ '6$ '4$ '2$ $ 2$ 4$ 6$ 8$ 1$ Additonal'DRAM'delay'in'GPU'core'cycles' GPU workloads are highly BW sensitive 26

27 Throughput Rela.ve to No Migra.on RESULTS Legacy CUDA First- Touch First- Touch + Range Exp First- Touch + Range Exp + BW Balancing ORACLE Oracle 6 Dynamic page migration performs 1.95x better than no migration Comes within 28% of the static oracle performance 6% better than Legacy CUDA 27

PAGE PLACEMENT STRATEGIES FOR GPUS WITHIN HETEROGENEOUS MEMORY SYSTEMS

PAGE PLACEMENT STRATEGIES FOR GPUS WITHIN HETEROGENEOUS MEMORY SYSTEMS PAGE PLACEMENT STRATEGIES FOR GPUS WITHIN HETEROGENEOUS MEMORY SYSTEMS Neha Agarwal* David Nellans Mark Stephenson Mike O Connor Stephen W. Keckler NVIDIA University of Michigan* ASPLOS 2015 EVOLVING GPU

More information

gem5-gpu Extending gem5 for GPGPUs Jason Power, Marc Orr, Joel Hestness, Mark Hill, David Wood

gem5-gpu Extending gem5 for GPGPUs Jason Power, Marc Orr, Joel Hestness, Mark Hill, David Wood gem5-gpu Extending gem5 for GPGPUs Jason Power, Marc Orr, Joel Hestness, Mark Hill, David Wood (powerjg/morr)@cs.wisc.edu UW-Madison Computer Sciences 2012 gem5-gpu gem5 + GPGPU-Sim (v3.0.1) Flexible memory

More information

Selective GPU Caches to Eliminate CPU GPU HW Cache Coherence

Selective GPU Caches to Eliminate CPU GPU HW Cache Coherence Selective GPU Caches to Eliminate CPU GPU HW Cache Coherence Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas F. Wenisch, John Danskin, Stephen W. Keckler NVIDIA and University of Michigan {dnellans,eebrahimi,jdanskin,skeckler}@nvidia.com,

More information

Elaborazione dati real-time su architetture embedded many-core e FPGA

Elaborazione dati real-time su architetture embedded many-core e FPGA Elaborazione dati real-time su architetture embedded many-core e FPGA DAVIDE ROSSI A L E S S A N D R O C A P O T O N D I G I U S E P P E T A G L I A V I N I A N D R E A M A R O N G I U C I R I - I C T

More information

GaaS Workload Characterization under NUMA Architecture for Virtualized GPU

GaaS Workload Characterization under NUMA Architecture for Virtualized GPU GaaS Workload Characterization under NUMA Architecture for Virtualized GPU Huixiang Chen, Meng Wang, Yang Hu, Mingcong Song, Tao Li Presented by Huixiang Chen ISPASS 2017 April 24, 2017, Santa Rosa, California

More information

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Transparent Offloading and Mapping () Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O Connor, Nandita Vijaykumar,

More information

Profiling-Based L1 Data Cache Bypassing to Improve GPU Performance and Energy Efficiency

Profiling-Based L1 Data Cache Bypassing to Improve GPU Performance and Energy Efficiency Profiling-Based L1 Data Cache Bypassing to Improve GPU Performance and Energy Efficiency Yijie Huangfu and Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University {huangfuy2,wzhang4}@vcu.edu

More information

Towards High Performance Paged Memory for GPUs

Towards High Performance Paged Memory for GPUs Towards High Performance Paged Memory for GPUs Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson, Stephen W. Keckler NVIDIA and The University of Texas at Austin {dnellans,azulfiqar,mstephenson,skeckler}@nvidia.com,

More information

An Investigation of Unified Memory Access Performance in CUDA

An Investigation of Unified Memory Access Performance in CUDA An Investigation of Unified Memory Access Performance in CUDA Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun and Martin Herbordt Electrical and Computer Engineering Department, Boston University,

More information

Ctrl-C: Instruction-Aware Control Loop Based Adaptive Cache Bypassing for GPUs

Ctrl-C: Instruction-Aware Control Loop Based Adaptive Cache Bypassing for GPUs The 34 th IEEE International Conference on Computer Design Ctrl-C: Instruction-Aware Control Loop Based Adaptive Cache Bypassing for GPUs Shin-Ying Lee and Carole-Jean Wu Arizona State University October

More information

NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems

NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems Carl Pearson 1, I-Hsin Chung 2, Zehra Sura 2, Wen-Mei Hwu 1, and Jinjun Xiong 2 1 University of Illinois Urbana-Champaign, Urbana

More information

GPU Architecture. Alan Gray EPCC The University of Edinburgh

GPU Architecture. Alan Gray EPCC The University of Edinburgh GPU Architecture Alan Gray EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? Architectural reasons for accelerator performance advantages Latest GPU Products From

More information

Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference

Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference The 2017 IEEE International Symposium on Workload Characterization Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference Shin-Ying Lee

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

High Performance Computing

High Performance Computing High Performance Computing 9th Lecture 2016/10/28 YUKI ITO 1 Selected Paper: vdnn: Virtualized Deep Neural Networks for Scalable, MemoryEfficient Neural Network Design Minsoo Rhu, Natalia Gimelshein, Jason

More information

Reducing GPU Address Translation Overhead with Virtual Caching

Reducing GPU Address Translation Overhead with Virtual Caching Computer Sciences Technical Report #1842 Reducing GPU Address Translation Overhead with Virtual Caching Hongil Yoon Jason Lowe-Power Gurindar S. Sohi University of Wisconsin-Madison Computer Sciences Department

More information

Exploiting Inter-Warp Heterogeneity to Improve GPGPU Performance

Exploiting Inter-Warp Heterogeneity to Improve GPGPU Performance Exploiting Inter-Warp Heterogeneity to Improve GPGPU Performance Rachata Ausavarungnirun Saugata Ghose, Onur Kayiran, Gabriel H. Loh Chita Das, Mahmut Kandemir, Onur Mutlu Overview of This Talk Problem:

More information

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Rajesh Bordawekar IBM T. J. Watson Research Center bordaw@us.ibm.com Pidad D Souza IBM Systems pidsouza@in.ibm.com 1 Outline

More information

Comparing Memory Systems for Chip Multiprocessors

Comparing Memory Systems for Chip Multiprocessors Comparing Memory Systems for Chip Multiprocessors Jacob Leverich Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark Horowitz, Christos Kozyrakis Computer Systems Laboratory Stanford University

More information

THE FUTURE OF GPU DATA MANAGEMENT. Michael Wolfe, May 9, 2017

THE FUTURE OF GPU DATA MANAGEMENT. Michael Wolfe, May 9, 2017 THE FUTURE OF GPU DATA MANAGEMENT Michael Wolfe, May 9, 2017 CPU CACHE Hardware managed What data to cache? Where to store the cached data? What data to evict when the cache fills up? When to store data

More information

The Case for Heterogeneous HTAP

The Case for Heterogeneous HTAP The Case for Heterogeneous HTAP Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab EPFL 1 HTAP the contract with the hardware Hybrid

More information

Cooperative Caching for GPUs

Cooperative Caching for GPUs Saumay Dublish, Vijay Nagarajan, Nigel Topham The University of Edinburgh at HiPEAC Stockholm, Sweden 24 th January, 2017 Multithreading on GPUs Kernel Hardware Scheduler Core Core Core Core Host CPU to

More information

DVFS Space Exploration in Power-Constrained Processing-in-Memory Systems

DVFS Space Exploration in Power-Constrained Processing-in-Memory Systems DVFS Space Exploration in Power-Constrained Processing-in-Memory Systems Marko Scrbak and Krishna M. Kavi Computer Systems Research Laboratory Department of Computer Science & Engineering University of

More information

Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency

Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu, Todd C. Mowry Phillip B. Gibbons,

More information

Towards Automatic Heterogeneous Computing Performance Analysis. Carl Pearson Adviser: Wen-Mei Hwu

Towards Automatic Heterogeneous Computing Performance Analysis. Carl Pearson Adviser: Wen-Mei Hwu Towards Automatic Heterogeneous Computing Performance Analysis Carl Pearson pearson@illinois.edu Adviser: Wen-Mei Hwu 2018 03 30 1 Outline High Performance Computing Challenges Vision CUDA Allocation and

More information

FusionSim: Characterizing the Performance Benefits of Fused CPU/GPU Systems

FusionSim: Characterizing the Performance Benefits of Fused CPU/GPU Systems FusionSim: Characterizing the Performance Benefits of Fused CPU/GPU Systems by Vitaly Zakharenko A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

HETEROGENEOUS MEMORY MANAGEMENT. Linux Plumbers Conference Jérôme Glisse

HETEROGENEOUS MEMORY MANAGEMENT. Linux Plumbers Conference Jérôme Glisse HETEROGENEOUS MEMORY MANAGEMENT Linux Plumbers Conference 2018 Jérôme Glisse EVERYTHING IS A POINTER All data structures rely on pointers, explicitly or implicitly: Explicit in languages like C, C++,...

More information

Introducing the Cray XMT. Petr Konecny May 4 th 2007

Introducing the Cray XMT. Petr Konecny May 4 th 2007 Introducing the Cray XMT Petr Konecny May 4 th 2007 Agenda Origins of the Cray XMT Cray XMT system architecture Cray XT infrastructure Cray Threadstorm processor Shared memory programming model Benefits/drawbacks/solutions

More information

An Evaluation of Unified Memory Technology on NVIDIA GPUs

An Evaluation of Unified Memory Technology on NVIDIA GPUs An Evaluation of Unified Memory Technology on NVIDIA GPUs Wenqiang Li 1, Guanghao Jin 2, Xuewen Cui 1, Simon See 1,3 Center for High Performance Computing, Shanghai Jiao Tong University, China 1 Tokyo

More information

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs

Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs Toward Standardized Near-Data Processing with Unrestricted Data Placement for GPUs ABSTRACT Gwangsun Kim Arm gwangsun.kim@arm.com Mike O Connor NVIDIA and UT-Austin moconnor@nvidia.com 3D-stacked memory

More information

HETEROGENEOUS SYSTEM ARCHITECTURE: PLATFORM FOR THE FUTURE

HETEROGENEOUS SYSTEM ARCHITECTURE: PLATFORM FOR THE FUTURE HETEROGENEOUS SYSTEM ARCHITECTURE: PLATFORM FOR THE FUTURE Haibo Xie, Ph.D. Chief HSA Evangelist AMD China OUTLINE: The Challenges with Computing Today Introducing Heterogeneous System Architecture (HSA)

More information

LoGA: Low-overhead GPU accounting using events

LoGA: Low-overhead GPU accounting using events : Low-overhead GPU accounting using events Jens Kehne Stanislav Spassov Marius Hillenbrand Marc Rittinghaus Frank Bellosa Karlsruhe Institute of Technology (KIT) Operating Systems Group os@itec.kit.edu

More information

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services Presented by: Jitong Chen Outline Architecture of Web-based Data Center Three-Stage framework to benefit

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

FPGA-based Supercomputing: New Opportunities and Challenges

FPGA-based Supercomputing: New Opportunities and Challenges FPGA-based Supercomputing: New Opportunities and Challenges Naoya Maruyama (RIKEN AICS)* 5 th ADAC Workshop Feb 15, 2018 * Current Main affiliation is Lawrence Livermore National Laboratory SIAM PP18:

More information

Correlation based File Prefetching Approach for Hadoop

Correlation based File Prefetching Approach for Hadoop IEEE 2nd International Conference on Cloud Computing Technology and Science Correlation based File Prefetching Approach for Hadoop Bo Dong 1, Xiao Zhong 2, Qinghua Zheng 1, Lirong Jian 2, Jian Liu 1, Jie

More information

High performance computing. Memory

High performance computing. Memory High performance computing Memory Performance of the computations For many programs, performance of the calculations can be considered as the retrievability from memory and processing by processor In fact

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

APRES: Improving Cache Efficiency by Exploiting Load Characteristics on GPUs

APRES: Improving Cache Efficiency by Exploiting Load Characteristics on GPUs 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture APRES: Improving Cache Efficiency by Exploiting Load Characteristics on GPUs Yunho Oh, Keunsoo Kim, Myung Kuk Yoon, Jong Hyun

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Review on ichat: Inter Cache Hardware Assistant Data Transfer for Heterogeneous Chip Multiprocessors. By: Anvesh Polepalli Raj Muchhala

Review on ichat: Inter Cache Hardware Assistant Data Transfer for Heterogeneous Chip Multiprocessors. By: Anvesh Polepalli Raj Muchhala Review on ichat: Inter Cache Hardware Assistant Data Transfer for Heterogeneous Chip Multiprocessors By: Anvesh Polepalli Raj Muchhala Introduction Integrating CPU and GPU into a single chip for performance

More information

Intel Architecture for HPC

Intel Architecture for HPC Intel Architecture for HPC Georg Zitzlsberger georg.zitzlsberger@vsb.cz 1st of March 2018 Agenda Salomon Architectures Intel R Xeon R processors v3 (Haswell) Intel R Xeon Phi TM coprocessor (KNC) Ohter

More information

Carlos Reaño, Javier Prades and Federico Silla Technical University of Valencia (Spain)

Carlos Reaño, Javier Prades and Federico Silla Technical University of Valencia (Spain) Carlos Reaño, Javier Prades and Federico Silla Technical University of Valencia (Spain) 4th IEEE International Workshop of High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB

More information

Lecture: Storage, GPUs. Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4)

Lecture: Storage, GPUs. Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4) Lecture: Storage, GPUs Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4) 1 Magnetic Disks A magnetic disk consists of 1-12 platters (metal or glass disk covered with magnetic recording material

More information

THE PROGRAMMER S GUIDE TO THE APU GALAXY. Phil Rogers, Corporate Fellow AMD

THE PROGRAMMER S GUIDE TO THE APU GALAXY. Phil Rogers, Corporate Fellow AMD THE PROGRAMMER S GUIDE TO THE APU GALAXY Phil Rogers, Corporate Fellow AMD THE OPPORTUNITY WE ARE SEIZING Make the unprecedented processing capability of the APU as accessible to programmers as the CPU

More information

Unified Memory. Notes on GPU Data Transfers. Andreas Herten, Forschungszentrum Jülich, 24 April Member of the Helmholtz Association

Unified Memory. Notes on GPU Data Transfers. Andreas Herten, Forschungszentrum Jülich, 24 April Member of the Helmholtz Association Unified Memory Notes on GPU Data Transfers Andreas Herten, Forschungszentrum Jülich, 24 April 2017 Handout Version Overview, Outline Overview Unified Memory enables easy access to GPU development But some

More information

Characterizing the Intra-warp Address Distribution and Bandwidth Demands of GPGPUs

Characterizing the Intra-warp Address Distribution and Bandwidth Demands of GPGPUs Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2014 Characterizing the Intra-warp Address Distribution and Bandwidth Demands of GPGPUs Calvin Holic Purdue University

More information

1 Building Heterogeneous Unified Virtual Memories (UVMs) without the Overhead

1 Building Heterogeneous Unified Virtual Memories (UVMs) without the Overhead 1 Building Heterogeneous Unified Virtual Memories (UVMs) without the Overhead Konstantinos Koukos, Uppsala University Alberto Ros, University of Murcia Erik Hagersten, Uppsala University Stefanos Kaxiras,

More information

Understanding Reduced-Voltage Operation in Modern DRAM Devices

Understanding Reduced-Voltage Operation in Modern DRAM Devices Understanding Reduced-Voltage Operation in Modern DRAM Devices Experimental Characterization, Analysis, and Mechanisms Kevin Chang A. Giray Yaglikci, Saugata Ghose,Aditya Agrawal *, Niladrish Chatterjee

More information

Unified memory. GPGPU 2015: High Performance Computing with CUDA University of Cape Town (South Africa), April, 20th-24th, 2015

Unified memory. GPGPU 2015: High Performance Computing with CUDA University of Cape Town (South Africa), April, 20th-24th, 2015 Unified memory GPGPU 2015: High Performance Computing with CUDA University of Cape Town (South Africa), April, 20th-24th, 2015 Manuel Ujaldón Associate Professor @ Univ. of Malaga (Spain) Conjoint Senior

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

A Case for Core-Assisted Bottleneck Acceleration in GPUs Enabling Flexible Data Compression with Assist Warps

A Case for Core-Assisted Bottleneck Acceleration in GPUs Enabling Flexible Data Compression with Assist Warps A Case for Core-Assisted Bottleneck Acceleration in GPUs Enabling Flexible Data Compression with Assist Warps Nandita Vijaykumar Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick, Rachata Ausavarangnirun,

More information

Orchestrated Scheduling and Prefetching for GPGPUs. Adwait Jog, Onur Kayiran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Ravi Iyer, Chita Das

Orchestrated Scheduling and Prefetching for GPGPUs. Adwait Jog, Onur Kayiran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Ravi Iyer, Chita Das Orchestrated Scheduling and Prefetching for GPGPUs Adwait Jog, Onur Kayiran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Ravi Iyer, Chita Das Parallelize your code! Launch more threads! Multi- threading

More information

Scientific Computing on GPUs: GPU Architecture Overview

Scientific Computing on GPUs: GPU Architecture Overview Scientific Computing on GPUs: GPU Architecture Overview Dominik Göddeke, Jakub Kurzak, Jan-Philipp Weiß, André Heidekrüger and Tim Schröder PPAM 2011 Tutorial Toruń, Poland, September 11 http://gpgpu.org/ppam11

More information

Rethinking Prefetching in GPGPUs: Exploiting Unique Opportunities

Rethinking Prefetching in GPGPUs: Exploiting Unique Opportunities Rethinking Prefetching in GPGPUs: Exploiting Unique Opportunities Ahmad Lashgar Electrical and Computer Engineering University of Victoria Victoria, BC, Canada Email: lashgar@uvic.ca Amirali Baniasadi

More information

A Comparison of Performance and Accuracy of Measurement Algorithms in Software

A Comparison of Performance and Accuracy of Measurement Algorithms in Software A Comparison of Performance and Accuracy of Measurement Algorithms in Software Omid Alipourfard, Masoud Moshref 1, Yang Zhou 2, Tong Yang 2, Minlan Yu 3 Yale University, Barefoot Networks 1, Peking University

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 15: Multicore Geoffrey M. Voelker Multicore Operating Systems We have generally discussed operating systems concepts independent of the number

More information

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Raghav Sethi Michael Kaminsky David G. Andersen Michael J. Freedman Goal: fast and cost-effective key-value store Target: cluster-level storage for

More information

NVidia s GPU Microarchitectures. By Stephen Lucas and Gerald Kotas

NVidia s GPU Microarchitectures. By Stephen Lucas and Gerald Kotas NVidia s GPU Microarchitectures By Stephen Lucas and Gerald Kotas Intro Discussion Points - Difference between CPU and GPU - Use s of GPUS - Brie f History - Te sla Archite cture - Fermi Architecture -

More information

Bigger GPUs and Bigger Nodes. Carl Pearson PhD Candidate, advised by Professor Wen-Mei Hwu

Bigger GPUs and Bigger Nodes. Carl Pearson PhD Candidate, advised by Professor Wen-Mei Hwu Bigger GPUs and Bigger Nodes Carl Pearson (pearson@illinois.edu) PhD Candidate, advised by Professor Wen-Mei Hwu 1 Outline Experiences from working with domain experts to develop GPU codes on Blue Waters

More information

Parallel Processing SIMD, Vector and GPU s cont.

Parallel Processing SIMD, Vector and GPU s cont. Parallel Processing SIMD, Vector and GPU s cont. EECS4201 Fall 2016 York University 1 Multithreading First, we start with multithreading Multithreading is used in GPU s 2 1 Thread Level Parallelism ILP

More information

Sharing High-Performance Devices Across Multiple Virtual Machines

Sharing High-Performance Devices Across Multiple Virtual Machines Sharing High-Performance Devices Across Multiple Virtual Machines Preamble What does sharing devices across multiple virtual machines in our title mean? How is it different from virtual networking / NSX,

More information

CAWA: Coordinated Warp Scheduling and Cache Priori6za6on for Cri6cal Warp Accelera6on of GPGPU Workloads

CAWA: Coordinated Warp Scheduling and Cache Priori6za6on for Cri6cal Warp Accelera6on of GPGPU Workloads 2015 InternaDonal Symposium on Computer Architecture (ISCA- 42) CAWA: Coordinated Warp Scheduling and Cache Priori6za6on for Cri6cal Warp Accelera6on of GPGPU Workloads Shin- Ying Lee Akhil Arunkumar Carole-

More information

Numerical Simulation on the GPU

Numerical Simulation on the GPU Numerical Simulation on the GPU Roadmap Part 1: GPU architecture and programming concepts Part 2: An introduction to GPU programming using CUDA Part 3: Numerical simulation techniques (grid and particle

More information

Adapted from: TRENDS AND ATTRIBUTES OF HORIZONTAL AND VERTICAL COMPUTING ARCHITECTURES

Adapted from: TRENDS AND ATTRIBUTES OF HORIZONTAL AND VERTICAL COMPUTING ARCHITECTURES Adapted from: TRENDS AND ATTRIBUTES OF HORIZONTAL AND VERTICAL COMPUTING ARCHITECTURES Tom Atwood Business Development Manager Sun Microsystems, Inc. Takeaways Understand the technical differences between

More information

ECE 8823: GPU Architectures. Objectives

ECE 8823: GPU Architectures. Objectives ECE 8823: GPU Architectures Introduction 1 Objectives Distinguishing features of GPUs vs. CPUs Major drivers in the evolution of general purpose GPUs (GPGPUs) 2 1 Chapter 1 Chapter 2: 2.2, 2.3 Reading

More information

Automatic Intra-Application Load Balancing for Heterogeneous Systems

Automatic Intra-Application Load Balancing for Heterogeneous Systems Automatic Intra-Application Load Balancing for Heterogeneous Systems Michael Boyer, Shuai Che, and Kevin Skadron Department of Computer Science University of Virginia Jayanth Gummaraju and Nuwan Jayasena

More information

OpenPOWER Performance

OpenPOWER Performance OpenPOWER Performance Alex Mericas Chief Engineer, OpenPOWER Performance IBM Delivering the Linux ecosystem for Power SOLUTIONS OpenPOWER IBM SOFTWARE LINUX ECOSYSTEM OPEN SOURCE Solutions with full stack

More information

Position Paper: OpenMP scheduling on ARM big.little architecture

Position Paper: OpenMP scheduling on ARM big.little architecture Position Paper: OpenMP scheduling on ARM big.little architecture Anastasiia Butko, Louisa Bessad, David Novo, Florent Bruguier, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres, and Michel Robert LIRMM

More information

Prefetching Techniques for Near-memory Throughput Processors

Prefetching Techniques for Near-memory Throughput Processors Prefetching Techniques for Near-memory Throughput Processors Reena Panda University of Texas at Austin reena.panda@utexas.edu Onur Kayiran AMD Research onur.kayiran@amd.com Yasuko Eckert AMD Research yasuko.eckert@amd.com

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 6 Parallel Processors from Client to Cloud Introduction Goal: connecting multiple computers to get higher performance

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

Lecture 27: Pot-Pourri. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability

Lecture 27: Pot-Pourri. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability Lecture 27: Pot-Pourri Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability 1 Shared-Memory Vs. Message-Passing Shared-memory: Well-understood

More information

Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory

Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory Institute of Computational Science Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory Juraj Kardoš (University of Lugano) July 9, 2014 Juraj Kardoš Efficient GPU data transfers July 9, 2014

More information

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Evaluating On-Node GPU Interconnects for Deep Learning Workloads Evaluating On-Node GPU Interconnects for Deep Learning Workloads NATHAN TALLENT, NITIN GAWANDE, CHARLES SIEGEL ABHINAV VISHNU, ADOLFY HOISIE Pacific Northwest National Lab PMBS 217 (@ SC) November 13,

More information

Exploring GPU Architecture for N2P Image Processing Algorithms

Exploring GPU Architecture for N2P Image Processing Algorithms Exploring GPU Architecture for N2P Image Processing Algorithms Xuyuan Jin(0729183) x.jin@student.tue.nl 1. Introduction It is a trend that computer manufacturers provide multithreaded hardware that strongly

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Fast and Efficient Automatic Memory Management for GPUs using Compiler- Assisted Runtime Coherence Scheme

Fast and Efficient Automatic Memory Management for GPUs using Compiler- Assisted Runtime Coherence Scheme Fast and Efficient Automatic Memory Management for GPUs using Compiler- Assisted Runtime Coherence Scheme Sreepathi Pai R. Govindarajan Matthew J. Thazhuthaveetil Supercomputer Education and Research Centre,

More information

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs Hsien-Kai Kuo, Ta-Kan Yen, Bo-Cheng Charles Lai and Jing-Yang Jou Department of Electronics Engineering National Chiao

More information

Performance in GPU Architectures: Potentials and Distances

Performance in GPU Architectures: Potentials and Distances Performance in GPU Architectures: s and Distances Ahmad Lashgar School of Electrical and Computer Engineering College of Engineering University of Tehran alashgar@eceutacir Amirali Baniasadi Electrical

More information

Lecture 27: Multiprocessors. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs

Lecture 27: Multiprocessors. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Lecture 27: Multiprocessors Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs 1 Shared-Memory Vs. Message-Passing Shared-memory: Well-understood programming model

More information

Cache efficiency based dynamic bypassing technique for improving GPU performance

Cache efficiency based dynamic bypassing technique for improving GPU performance 94 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. PDPTA'18 Cache efficiency based dynamic bypassing technique for improving GPU performance Min Goo Moon 1, Cheol Hong Kim* 1 1 School of Electronics and

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

Best Practices for Setting BIOS Parameters for Performance

Best Practices for Setting BIOS Parameters for Performance White Paper Best Practices for Setting BIOS Parameters for Performance Cisco UCS E5-based M3 Servers May 2013 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

EXASCALE COMPUTING ROADMAP IMPACT ON LEGACY CODES MARCH 17 TH, MIC Workshop PAGE 1. MIC workshop Guillaume Colin de Verdière

EXASCALE COMPUTING ROADMAP IMPACT ON LEGACY CODES MARCH 17 TH, MIC Workshop PAGE 1. MIC workshop Guillaume Colin de Verdière EXASCALE COMPUTING ROADMAP IMPACT ON LEGACY CODES MIC workshop Guillaume Colin de Verdière MARCH 17 TH, 2015 MIC Workshop PAGE 1 CEA, DAM, DIF, F-91297 Arpajon, France March 17th, 2015 Overview Context

More information

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache.

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache. Multiprocessors why would you want a multiprocessor? Multiprocessors and Multithreading more is better? Cache Cache Cache Classifying Multiprocessors Flynn Taxonomy Flynn Taxonomy Interconnection Network

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Multiprocessors and Thread-Level Parallelism. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessors and Thread-Level Parallelism. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multiprocessors and Thread-Level Parallelism Multithreading Increasing performance by ILP has the great advantage that it is reasonable transparent to the programmer, ILP can be quite limited or hard to

More information

Revisiting Virtual Memory for High Performance Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach

Revisiting Virtual Memory for High Performance Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach Revisiting Virtual Memory for High Performance Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach Yuki Soma, Balazs Gerofi, Yutaka Ishikawa 1 Agenda Background on virtual memory

More information

General Purpose GPU Programming. Advanced Operating Systems Tutorial 9

General Purpose GPU Programming. Advanced Operating Systems Tutorial 9 General Purpose GPU Programming Advanced Operating Systems Tutorial 9 Tutorial Outline Review of lectured material Key points Discussion OpenCL Future directions 2 Review of Lectured Material Heterogeneous

More information

MediaTek CorePilot 2.0. Delivering extreme compute performance with maximum power efficiency

MediaTek CorePilot 2.0. Delivering extreme compute performance with maximum power efficiency MediaTek CorePilot 2.0 Heterogeneous Computing Technology Delivering extreme compute performance with maximum power efficiency In July 2013, MediaTek delivered the industry s first mobile system on a chip

More information

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle M7: Next Generation SPARC Hotchips 26 August 12, 2014 Stephen Phillips Senior Director, SPARC Architecture Oracle Safe Harbor Statement The following is intended to outline our general product direction.

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

Overview of Project's Achievements

Overview of Project's Achievements PalDMC Parallelised Data Mining Components Final Presentation ESRIN, 12/01/2012 Overview of Project's Achievements page 1 Project Outline Project's objectives design and implement performance optimised,

More information

Eliminating Dark Bandwidth

Eliminating Dark Bandwidth Eliminating Dark Bandwidth Jonathan Beard (twitter: @jonathan_beard) Staff Research Engineer Memory Systems, HPC HCPM 2017 22 June 2017 Dark Bandwidth: Data moved throughout the memory hierarchy that is

More information