Cache Memories. Andrew Case. Slides adapted from Jinyang Li, Randy Bryant and Dave O Hallaron

Similar documents
Carnegie Mellon. Cache Memories. Computer Architecture. Instructor: Norbert Lu1enberger. based on the book by Randy Bryant and Dave O Hallaron

Today Cache memory organization and operation Performance impact of caches

Today. Cache Memories. General Cache Concept. General Cache Organization (S, E, B) Cache Memories. Example Memory Hierarchy Smaller, faster,

Carnegie Mellon. Cache Memories

Cache memories are small, fast SRAM based memories managed automatically in hardware.

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories

Denison University. Cache Memories. CS-281: Introduction to Computer Systems. Instructor: Thomas C. Bressoud

Cache Memories /18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, Today s Instructor: Phil Gibbons

Memory Hierarchy. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska

Memory Hierarchy. Cache Memory Organization and Access. General Cache Concept. Example Memory Hierarchy Smaller, faster,

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory

CS 33. Caches. CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

Cache Memories. Topics. Next time. Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance

Cache Memories : Introduc on to Computer Systems 12 th Lecture, October 6th, Instructor: Randy Bryant.

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Giving credit where credit is due

Cache Memories October 8, 2007

211: Computer Architecture Summer 2016

CISC 360. Cache Memories Nov 25, 2008

Cache Memories. EL2010 Organisasi dan Arsitektur Sistem Komputer Sekolah Teknik Elektro dan Informatika ITB 2010

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6.

Last class. Caches. Direct mapped

Problem: Processor Memory BoJleneck

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Cache Memories. Cache Memories Oct. 10, Inserting an L1 Cache Between the CPU and Main Memory. General Org of a Cache Memory

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( )

Cache memories The course that gives CMU its Zip! Cache Memories Oct 11, General organization of a cache memory

ν Hold frequently accessed blocks of main memory 2 CISC 360, Fa09 Cache is an array of sets. Each set contains one or more lines.

Systems I. Optimizing for the Memory Hierarchy. Topics Impact of caches on performance Memory hierarchy considerations

Example. How are these parameters decided?

Computer Systems CSE 410 Autumn Memory Organiza:on and Caches

High-Performance Parallel Computing

The course that gives CMU its Zip! Memory System Performance. March 22, 2001

Types of Cache Misses. The Hardware/So<ware Interface CSE351 Winter Cache Read. General Cache OrganizaJon (S, E, B) Memory and Caches II

The Hardware/So<ware Interface CSE351 Winter 2013

Memory Hierarchy. Instructor: Adam C. Champion, Ph.D. CSE 2431: Introduction to Operating Systems Reading: Chap. 6, [CSAPP]

Memory Hierarchy. Announcement. Computer system model. Reference

Cache Memories. Lecture, Oct. 30, Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

CSCI-UA.0201 Computer Systems Organization Memory Hierarchy

The Memory Hierarchy. Fall Instructors: Aykut & Erkut Erdem

CS 33. Architecture and Optimization (3) CS33 Intro to Computer Systems XVI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Lecture 12. Memory Design & Caches, part 2. Christos Kozyrakis Stanford University

Caches Spring 2016 May 4: Caches 1

Memory hierarchies: caches and their impact on the running time

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Cache Memory and Performance

CSCI 402: Computer Architectures. Performance of Multilevel Cache

Cache Memory and Performance

Caches III. CSE 351 Spring Instructor: Ruth Anderson

Carnegie Mellon. Cache Lab. Recitation 7: Oct 11 th, 2016

CS 240 Stage 3 Abstractions for Practical Systems

CS241 Computer Organization Spring Principle of Locality

Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui

Lecture 17: Memory Hierarchy and Cache Coherence Concurrent and Mul7core Programming

Computer Organization: A Programmer's Perspective

CISC 360. Cache Memories Exercises Dec 3, 2009

211: Computer Architecture Summer 2016

Caches III. CSE 351 Winter Instructor: Mark Wyse

Cache Performance II 1

CS 261 Fall Caching. Mike Lam, Professor. (get it??)

How to Write Fast Numerical Code

Problem: Processor- Memory Bo<leneck

Caches Concepts Review

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture

Computer Organization - Overview

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 15

Cache Lab Implementation and Blocking

Introduction to Computer Systems

Introduction to Computer Systems

How to Write Fast Numerical Code

F28HS Hardware-Software Interface: Systems Programming

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 15

Advanced Memory Organizations

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

Agenda. Cache-Memory Consistency? (1/2) 7/14/2011. New-School Machine Structures (It s a bit more complicated!)

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed.

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan Memory Hierarchy

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example

How to Write Fast Numerical Code Spring 2011 Lecture 7. Instructor: Markus Püschel TA: Georg Ofenbeck

5. Memory Hierarchy Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3. Emil Sekerinski, McMaster University, Fall Term 2015/16

EE108B Lecture 13. Caches Wrap Up Processes, Interrupts, and Exceptions. Christos Kozyrakis Stanford University

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory

CSF Cache Introduction. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

Chapter 5A. Large and Fast: Exploiting Memory Hierarchy

Basic Memory Hierarchy Principles. Appendix C (Not all will be covered by the lecture; studying the textbook is recommended!)

LECTURE 4: LARGE AND FAST: EXPLOITING MEMORY HIERARCHY

write-through v. write-back write-through v. write-back write-through v. write-back option 1: write-through write 10 to 0xABCD CPU RAM Cache ABCD: FF

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

10/16/17. Outline. Outline. Typical Memory Hierarchy. Adding Cache to Computer. Key Cache Concepts

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative

CS3350B Computer Architecture

Announcements. EE108B Lecture 13. Caches Wrap Up Processes, Interrupts, and Exceptions. Measuring Performance. Memory Performance

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

General Cache Mechanics. Memory Hierarchy: Cache. Cache Hit. Cache Miss CPU. Cache. Memory CPU CPU. Cache. Cache. Memory. Memory

Question 13 1: (Solution, p 4) Describe the inputs and outputs of a (1-way) demultiplexer, and how they relate.

Storage Management 1

Transcription:

Cache Memories Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O Hallaron 1

Topics Cache memory organiza3on and opera3on Performance impact of caches 2

Cache Memories Cache memories are small, fast SRAM- based memories Hold frequently accessed blocks of main memory Managed automaecally in hardware CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory. Typical system structure: CPU chip Register file Cache memories ALU System bus Memory bus Bus interface I/O bridge Main memory 3

General Cache Organiza3on (S, E, B) E = lines per set (2 e ) S = num sets (2 s ) line set valid bit v tag 0 1 2 B- 1 Cache size: C = S x E x B data bytes most significant memory bits B = bytes per cache block (the data) (2 b ) 4

Cache Read E = 2 e lines per set Locate set Check if any line in set has matching tag If Match + valid: hit Locate data starang at offset Address of word: t bits s bits b bits S = 2 s sets tag set index block offset MSB memory address (address_size s - b) data begins at this offset v tag 0 1 2 B- 1 valid bit B = 2 b bytes per cache block (the data) 5

Example: Direct Mapped Cache (E = 1) Direct mapped: One line per set Assume: cache block size 8 bytes S = 2 s sets v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 Address of int: t bits 01 100 find set v tag 0 1 2 3 4 5 6 7 6

Example: Direct Mapped Cache (E = 1) Direct mapped: One line per set Assume: cache block size 8 bytes valid? + match = hit Address of int: t bits 01 100 v tag 0 1 2 3 4 5 6 7 block offset 7

Example: Direct Mapped Cache (E = 1) Direct mapped: One line per set Assume: cache block size 8 bytes valid? + match = hit Address of int: t bits 01 100 v tag 0 1 2 3 4 5 6 7 block offset int (4 Bytes) is here On cache miss: old line is evicted and replaced 8

Direct- Mapped (E=1) Cache Simula3on t=1 s=2 b=1 x xx x M=16 byte addresses B=2 bytes/block S=4 sets E=1 Blocks/set Address trace (reads, one byte per read): 0 [0000 2 ], miss 1 [0001 2 ], hit 7 [0111 2 ], miss 8 [1000 2 ], miss 0 [0000 2 ] miss Set 0 Set 1 Set 2 Set 3 v Tag Block 0 1 10? M[8-9] M[0-1]? 1 0 M[6-7] 9

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 10

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 11

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here a[0][0] a[0][1] a[0][2] a[0][3] for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; Miss ra3o =? 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 12

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here a[0][0] a[0][1] a[0][2] a[0][3] for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; Miss ra3o =.25 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 13

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7] Miss ra3o =? 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 14

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; a[0][0] Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7] a[0][8] a[0][9] a[0][10] a[0][11] a[0][12] a[0][13] a[0][14] a[0][15] a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7] Miss ra3o =? a[1][8] a[1][9] a[1][10] a[1][11] a[1][12] a[1][13] a[1][14] a[1][15] 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 15

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7] a[0][8] a[0][9] a[0][10] a[0][11] a[0][12] a[0][13] a[0][14] a[0][15] a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7] Miss ra3o = 0.25 a[1][8] a[1][9] a[1][10] a[1][11] a[1][12] a[1][13] a[1][14] a[1][15] 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 16

A Higher Level Example int sum_array_rows(double a[16][16]) { int i, j; double sum = 0; for (i = 0; i < 16; i++) for (j = 0; j < 16; j++) sum += a[i][j]; return sum; Ignore the variables sum, i, j (stored in registers) a[0][0] swapped for a[2][0] a[2][0] a[2][1] a[2][2] a[2][3] a[0][4] a[0][5] a[0][6] a[0][7] a[0][8] a[0][9] a[0][10] a[0][11] a[0][12] a[0][13] a[0][14] a[0][15] a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7] Miss ra3o = 0.25 a[1][8] a[1][9] a[1][10] a[1][11] a[1][12] a[1][13] a[1][14] a[1][15] 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 17

A Higher Level Example Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here Miss ra3o =? a[0][0] a[0][1] a[0][2] a[0][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 18

A Higher Level Example Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here Miss ra3o = 1.0 a[0][0] a[0][1] a[0][2] a[0][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 19

A Higher Level Example Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here Miss ra3o =? a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 20

A Higher Level Example Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here Miss ra3o = 1.0 a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 21

A Higher Level Example Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here Miss ra3o =? a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; a[2][0] a[2][1] a[2][2] a[2][3] a[3][0] a[3][1] a[3][2] a[3][3] a[4][0] a[4][1] a[4][2] a[4][3] a[5][0] a[5][1] a[5][2] a[5][3] a[6][0] a[6][1] a[6][2] a[6][3] a[7][0] a[7][1] a[7][2] a[7][3] 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 22

A Higher Level Example Ignore the variables sum, i, j (stored in registers) assume: cold (empty) cache, a[0][0] goes here Miss ra3o = 1.0 a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; a[2][0] a[2][1] a[2][2] a[2][3] a[3][0] a[3][1] a[3][2] a[3][3] a[4][0] a[4][1] a[4][2] a[4][3] a[5][0] a[5][1] a[5][2] a[5][3] a[6][0] a[6][1] a[6][2] a[6][3] a[7][0] a[7][1] a[7][2] a[7][3] 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 23

A Higher Level Example Ignore the variables sum, i, j (stored in registers) a[0][0] is swapped with a[8][0] Miss ra3o = 1.0 a[8][0] a[8][1] a[8][2] a[8][3] a[1][0] a[1][1] a[1][2] a[1][3] int sum_array_cols(double a[16][16]) { int i, j; double sum = 0; for (j = 0; i < 16; i++) for (i = 0; j < 16; j++) sum += a[i][j]; return sum; a[2][0] a[2][1] a[2][2] a[2][3] a[3][0] a[3][1] a[3][2] a[3][3] a[4][0] a[4][1] a[4][2] a[4][3] a[5][0] a[5][1] a[5][2] a[5][3] a[6][0] a[6][1] a[6][2] a[6][3] a[7][0] a[7][1] a[7][2] a[7][3] 32 B = 4 doubles (line size) AdministraAve flag and tag bits not shown 24

E- way Set Associa3ve Cache (Here: E = 2) E = 2: Two lines per set Assume: cache block size 8 bytes Address of short int: t bits 01 100 v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 find set v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 25

E- way Set Associa3ve Cache (Here: E = 2) E = 2: Two lines per set Assume: cache block size 8 bytes compare both Address of short int: t bits 01 100 valid? + match: yes = hit v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 block offset 26

E- way Set Associa3ve Cache (Here: E = 2) E = 2: Two lines per set Assume: cache block size 8 bytes compare both Address of short int: t bits 01 100 valid? + match: yes = hit v tag 0 1 2 3 4 5 6 7 v tag 0 1 2 3 4 5 6 7 short int (2 Bytes) is here block offset On cache miss: One line in set is selected for evic3on and replacement Replacement policies: random, least recently used (LRU), 27

2- Way Set Associa3ve Cache Simula3on t=2 s=1 b=1 xx x x M=16 byte addresses B=2 bytes/block, S=2 sets E=2 blocks/set Address trace (reads, one byte per read): 0 [0000 2 ], miss 1 [0001 2 ], hit 7 [0111 2 ], miss 8 [1000 2 ], miss 0 [0000 2 ] hit Set 0 v Tag Block 01? 00? M[0-1] 10 10 M[8-9] Set 1 10 01 M[6-7] 0 28

E- Way Set Associa3ve Cache Simula3on Increased associa3vity decreases miss rate But with diminishing returns Simula3on of a system with 64KB D- cache, 16- word blocks, SPEC2000 1- way: 10.3% 2- way: 8.6% 4- way: 8.3% 8- way: 8.1% 29

What about writes? Mul3ple copies of data exist: L1, L2, Main Memory, Disk What to do on a write- hit? Write- through (write immediately to memory) Write- back (write to memory on eviceon) Dirty bit (keeps track if line is different from memory) What to do on a write- miss? Write- allocate (load into cache, update line in cache) Good if more writes to the locaeon follow No- write- allocate (writes immediately to memory) Typical Write- through + No- write- allocate Write- back + Write- allocate 30

Intel Core i7 Cache Hierarchy Processor package Core 0 Regs Core 3 Regs L1 i- cache and d- cache: 32 KB, 8- way, Access: 4 CPU cycles L1 d-cache L1 i-cache L1 d-cache L1 i-cache L2 unified cache: 256 KB, 8- way, Access: 11 cycles L2 unified cache L2 unified cache L3 unified cache: 8 MB, 16- way, Access: 30-40 cycles L3 unified cache (shared by all cores) Block size: 64 bytes for all caches. Main memory i instruceon d data 31

Topics Cache organiza3on and opera3on Performance impact of caches The memory mountain Rearranging loops to improve spaeal locality Using blocking to improve temporal locality 32

Cache Performance Miss Rate FracEon of memory references not found in cache Typical numbers (in percentages): 3-10% miss rate for L1 can be quite small (e.g., < 1%) for L2, depending on L2 size, etc. Hit Time Time to deliver a line in the cache to the processor includes Eme to determine whether the line is in the cache Typical numbers: 1-2 clock cycle for L1 5-20 clock cycles for L2 (~10x L1 hit Eme) Miss Penalty AddiEonal Eme required because of a miss typically 50-200 cycles for main memory (Trend: increasing!) 33

Think about those numbers Huge difference between a hit and a miss Could be 100x, if just L1 and main memory Would you believe 99% hits is twice as good as 97%? Consider: cache hit Eme of 1 cycle miss penalty of 100 cycles Average access Eme: 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles 34

Wri3ng Cache Friendly Code Make the common case go fast Focus on the inner loops of the core funceons Minimize the misses in the inner loops Repeated references to variables are good (temporal locality) Stride- 1 reference paperns are good (spaeal locality) Key idea: Locality is quan3fied through understanding of cache memories. 35

The Memory Mountain Based on Intel Core i7 Read throughput (MB/s) 7000 6000 5000 4000 3000 2000 1000 0 s1 s3 s5 s7 s9 Element size (x8 byte strides) s11 s13 s15 s32 64M 8M 1M 128K 16K 2K Data size (bytes) 36

The Memory Mountain Based on Intel Core i7 Read throughput (MB/s) 7000 6000 5000 4000 3000 2000 Slopes of spaaal locality 1000 0 s1 s3 s5 s7 s9 Element size (x8 byte strides) s11 s13 s15 s32 64M 8M 1M 128K 16K 2K Data size (bytes) 37

The Memory Mountain Based on Intel Core i7 Read throughput (MB/s) Slopes of spaaal locality 7000 6000 5000 4000 3000 2000 1000 0 s1 s3 s5 s7 s9 Element size (x8 byte strides) s11 s13 Mem s15 L3 s32 64M L1 L2 8M 1M 128K 16K 2K Data size (bytes) Ridges of Temporal locality 38

Topics Cache organiza3on and opera3on Performance impact of caches The memory mountain Rearranging loops to improve spaeal locality Using blocking to improve temporal locality 39

Miss Rate Analysis for Matrix Mul3ply Assume: Line size = 32B (big enough for four 64- bit words) Matrix dimension (N) is very large Cache size > 1 row Cache size < muleple rows Analysis Method: Look at access papern of inner loop k j j i * k = i A B C 40

Matrix Mul3plica3on Example Variables i, j, sum held in registers Descrip3on: MulEply N x N matrices O(N 3 ) total operaeons N reads per source element /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; 41

Layout of C Arrays in Memory (review) C arrays allocated in row- major order each row in coneguous memory locaeons Stepping through columns in one row: accesses successive elements exploit spaeal locality! Stepping through rows in one column: accesses distant elements no spaeal locality! 42

Matrix Mul3plica3on (ijk) /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; Misses per inner loop iteraeon: A B C 0.25 1.0 0.0 Inner loop: (i,*) (*,j) (i,j) A B C Row- wise Column- wise Fixed 43

Matrix Mul3plica3on (kij) /* kij */ for (k=0; k<n; k++) { for (i=0; i<n; i++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; Inner loop: (i,k) (k,*) (i,*) A B C Fixed Row- wise Row- wise Misses per inner loop iteraeon: A B C 0.0 0.25 0.25 44

Matrix Mul3plica3on (jki) /* jki */ for (j=0; j<n; j++) { for (k=0; k<n; k++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; Inner loop: (*,k) (k,j) (*,j) A B C Column- wise Fixed Column- wise Misses per inner loop iteraeon: A B C 1.0 0.0 1.0 45

Summary of Matrix Mul3plica3on for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; for (k=0; k<n; k++) { for (i=0; i<n; i++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; for (j=0; j<n; j++) { for (k=0; k<n; k++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; ijk (& jik): 2 loads, 0 stores misses/iter = 1.25 kij (& ikj): 2 loads, 1 store misses/iter = 0.5 jki (& kji): 2 loads, 1 store misses/iter = 2.0 46

Core i7 Matrix Mul3ply Performance 60 jki / kji Cycles per inner loop iteration 50 40 30 20 10 ijk / jik kij / ikj jki kji ijk jik kij ikj 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 Array size (n) 47

Topics Cache organiza3on and opera3on Performance impact of caches The memory mountain Rearranging loops to improve spaeal locality Using blocking to improve temporal locality 48

Using blocking to improve temporal locality c = (double *) calloc(sizeof(double), n*n); /* Example: Multiply n x n matrices a and b */ void mmm(double *a, double *b, double *c, int n) { int i, j, k; for (i = 0; i < n; i++) for (j = 0; j < n; j++) for (k = 0; k < n; k++) c[i*n+j] += a[i*n + k]*b[k*n + j]; c = i a * b j 49

Cache Miss Analysis Assume: Matrix elements are doubles Cache block = 8 doubles Cache size C << n (much smaller than n) First itera3on: n/8 + n = 9n/8 misses = * n Aterwards in cache: = * 8 wide C A B 50

Cache Miss Analysis Assume: Matrix elements are doubles Cache block = 8 doubles Cache size C << n (much smaller than n) Second itera3on: Again in cache: n/8 + n = 9n/8 misses = * n Total misses: 9n/8 * n 2 = (9/8) * n 3 8 wide C A B 51

Blocked Matrix Mul3plica3on c = (double *) calloc(sizeof(double), n*n); /* Multiply n x n matrices a and b */ void mmm(double *a, double *b, double *c, int n) { int i, j, k; for (i = 0; i < n; i+=b) for (j = 0; j < n; j+=b) for (k = 0; k < n; k+=b) /* B x B mini matrix multiplications */ for (i1 = i; i1 < i+b; i++) for (j1 = j; j1 < j+b; j++) for (k1 = k; k1 < k+b; k++) c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1]; c = i1 a * b j1 + c Block size B x B 52

Cache Miss Analysis Assume: Cache block = 8 doubles Cache size C << n (much smaller than n) Three blocks fit into cache: 3B 2 < C First (block) itera3on: B 2 /8 misses for each block 2n/B * B 2 /8 = nb/4 (omivng matrix c) = * n/b blocks Aterwards in cache = Block size B x B * 53

Cache Miss Analysis Assume: Cache block = 8 doubles Cache size C << n (much smaller than n) Three blocks fit into cache: 3B 2 < C Second (block) itera3on: Same as first iteraeon 2n/B * B 2 /8 = nb/4 = * n/b blocks Total misses: nb/4 * (n/b) 2 = n 3 /(4B) Block size B x B 54

Summary No blocking: (9/8) * n 3 Blocking: 1/(4B) * n 3 Suggest largest possible block size B, but limit 3B 2 < C! Reason for drama3c difference: Matrix muleplicaeon has inherent temporal locality: Input data: 3n 2, computaeon 2n 3 Every array elements used O(n) Emes! But program has to be wripen properly 55

Concluding Observa3ons Programmer can op3mize for cache performance How data structures are organized How data are accessed Nested loop structure Blocking is a general technique All systems favor cache friendly code Gevng absolute opemum performance is very plaworm specific Cache sizes, line sizes, associaeviees, etc. Can get most of the advantage with generic code Keep working set reasonably small (temporal locality) Use small strides (spaeal locality) 56