volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section)

Similar documents
Mathematical Analysis of Spherical Rectangle by H.C. Rajpoot

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot, HCR. Spring May 6, 2017

Mathematical Analysis of Tetrahedron (solid angle subtended by any tetrahedron at its vertex)

Mathematical analysis of uniform decahedron having 10 congruent faces each as a right kite by H.C. Rajpoot

Mathematical derivations of inscribed & circumscribed radii for three externally touching circles (Geometry of Circles by HCR)

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015

Mathematical derivations of some important formula in 2D-Geometry by HCR

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

ADVANCED GEOMETRY BY HARISH CHANDRA RAJPOOT

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

MAT175 Overview and Sample Problems

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Vectors and the Geometry of Space

WHAT YOU SHOULD LEARN

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES

1.8 Coordinate Geometry. Copyright Cengage Learning. All rights reserved.

Moore Catholic High School Math Department

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P

Module 3: Stand Up Conics

Geometry: Conic Sections

Quadric surface. Ellipsoid

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 15: Functions of Several Variables

Moore Catholic High School Math Department

Standard Equation of a Circle

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Conic Sections. College Algebra

Chapter 10. Homework

4. The following diagram shows the triangle AOP, where OP = 2 cm, AP = 4 cm and AO = 3 cm.

MATH 1020 WORKSHEET 10.1 Parametric Equations

Int 2 Checklist (Unit 1) Int 2 Checklist (Unit 1) Percentages

MATH 2023 Multivariable Calculus

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

12.6 Cylinders and Quadric Surfaces

Design and Communication Graphics

Chapter 10. Exploring Conic Sections

MATHEMATICS 105 Plane Trigonometry

Study Guide and Review

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Ellipse, Hyperbola and Their Conjunction

A plane that is to the base of the figure will create a cross section that is the same shape as the base.

Write down a formula for the surface area of a Prism and a Cylinder

General Pyramids. General Cone. Right Circular Cone = "Cone"

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below:

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Grade IX. Mathematics Geometry Notes. #GrowWithGreen

9.1 Parametric Curves

Rectangular Coordinates in Space

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS

12 - THREE DIMENSIONAL GEOMETRY Page 1 ( Answers at the end of all questions ) = 2. ( d ) - 3. ^i - 2. ^j c 3. ( d )

Multivariable Calculus

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Volume by Slicing (Disks & Washers)

The customary introduction to hyperbolic functions mentions that the combinations and

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles

Properties of Quadratic functions

Shortcuts, Formulas & Tips

Chapter 9 Topics in Analytic Geometry

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin,

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

USING THE DEFINITE INTEGRAL

4. TANGENTS AND NORMALS

Notes on Spherical Geometry

Suggested List of Mathematical Language. Geometry

18.02 Final Exam. y = 0

Aim: How do we find the volume of a figure with a given base? Get Ready: The region R is bounded by the curves. y = x 2 + 1

PhysicsAndMathsTutor.com

What you will learn today

Math 155, Lecture Notes- Bonds

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

Chapter 6 Some Applications of the Integral

FURTHER MATHS. WELCOME TO A Level FURTHER MATHEMATICS AT CARDINAL NEWMAN CATHOLIC SCHOOL

Unit 12 Topics in Analytic Geometry - Classwork

Common Core Cluster. Experiment with transformations in the plane. Unpacking What does this standard mean that a student will know and be able to do?

Year 10 Term 2 Homework

Put your initials on the top of every page, in case the pages become separated.

Practice Test - Chapter 7

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

Geometry Vocabulary. Name Class

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle.

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space:

Circular inversions = hyperbolic isometries

The Humble Tetrahedron

Multivariate Calculus Review Problems for Examination Two

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Spring 2012 Student Performance Analysis

SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

Section 12.1 Translations and Rotations

Volume by Slicing (Disks & Washers)

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

Mathematics. Geometry Revision Notes for Higher Tier

Transcription:

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter December 25, 2016 volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) Harish Chandra Rajpoot, HCR Available at: https://works.bepress.com/harishchandrarajpoot_hcrajpoot/56/

1. Introduction: Mr Harish Chandra Rajpoot M.M.M. University of Technology, Gorakhpur-273010 (UP), India When a right circular cone is thoroughly cut by a plane parallel to its symmetrical (longitudinal) axis, then we get either a hyperbola or a pair of straight lines. Here we are interested to compute the volume & surface of right circular cone left after cutting by a plane parallel to its symmetrical axis by computing the volume & surface area of removed part of original cone. (See figure 1, showing a right circular cone ABC of vertical height & base radius being cut by a plane ST (dotted line) parallel to its symmetrical axis AO at a distance ). Thus we have three known values as follows Figure 1: A right circular cone of vertical height H & base radius R is being cut by a parallel plane at a distance x from the symmetrical axis AO. Thus the original cone is divided into two parts, one is major & other is minor with hyperbolic plane sections We have to derive the mathematical expressions of volume & surface area of cut cone (i.e. major part left over after removing smaller/minor part) in terms of above three known/given values. 2. Derivation of volume of cut cone (Major part): Consider a right circular cone ABC of vertical height & base radius cut by a plane parallel to its symmetrical axis AO at a distance. In order to derive the expression of volume of the cut cone left over after removing smaller/minor part, it is easier to derive the expression of the volume of removed part from original right circular cone. Consider the circular base of cone on the XYplane & symmetrical axis AO is coincident with Z-axis. Now consider any arbitrary point say on curved surface of minor part to be removed from cone (see left image in fig-2) Figure 2: A parametric point P r θ z lies on the curved surface of minor part of original right circular cone. A perpendicular PN is dropped from the point P to the XYplane within the region of minor part to be removed from original cone Drop a perpendicular PN from point P to the XY-plane within region to be removed. Now, in similar right triangles & (see right image in fig-2)

Now, consider an infinitely small rectangular area, on the XY-plane within the region of minor part to be removed from original right circular cone (see figure-3 below) & let it extend vertically upward to a height up to the point P (as shown by dotted line PN in the figure-2 above) Now, the volume of the elementary cylinder of normal height & cross sectional area By integrating above volume, the total volume of removed part (i.e. minor part) of cone The minor part to be removed from original cone is symmetrical about XZ-plane & its base area is symmetrical about x-axis (As shown by figure- 3) hence using symmetry of solid minor part to be removed from original cone & applying the proper limits, the volume of removed minor part Substituting the value of, we get + Figure 3: It is the top view of circular base of right cone which is cut by a plane CD (normal to plane of paper). The minor part (to the left of plane CD) of original right circular cone is symmetrical about XZ-plane. [ ] ( ) ( ( ) ( ) ( ) ( ) ( +

( Hence, the volume of the minor part removed from original right circular cone, ( Hence, the volume ( ) of cut right circular cone (i.e. major part left over from original cone), ( Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get ( The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each having a volume half that of the original cone. 2. Substituting in the above expressions, we get ( It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn t remove any part of cone. 3. Derivation of area of the curved surface of cut cone (Major part): In order to derive the expression of area of curved surface of the cut cone (major part) left over after removing smaller/minor part, it is easier to derive the expression of area of curved surface of minor part to be removed from original right circular cone. Consider the circular base of original cone on the XY-plane & symmetrical axis AO is coincident with z-axis. Now, consider any arbitrary point say on the curved surface of minor part to be removed from the original right circular cone (As shown in the figure-4) Now, in similar right triangles & (see fig-3) Figure 4: A parametric point P r θ z lies on the curved surface of minor part of original right circular cone. PQ l is the slant length of minor part

On differentiating slant length w.r.t., we get Now, consider an infinitely small rectangular area, on the curved surface of minor part to be removed from original right circular cone. Hence by integrating the elementary area, the total area of curved surface of minor part to be removed The curved surface of minor part to be removed from original cone is symmetrical about XZ-plane & its base area is symmetrical about x-axis (As shown by figure-3 above) hence using symmetry of curved surface to be removed from original cone & applying the proper limits, area of curved surface of minor part to be removed Substituting the value of, we get ( ) + [ ] Hence, the area of curved surface of the minor part removed from original right circular cone, Hence, the area of curved surface ( cone), ) of cut right circular cone (i.e. major part left over from original

Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each having area of curved surface half that of the original cone. 2. Substituting in the above expressions, we get It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn t remove any part of cone. 4. Derivation of area of the hyperbolic section of cut cone (Major part): The hyperbolic sections of both major & minor parts cut from the right circular cone are identical & equal in dimensions. In order to derive the expression of area of hyperbolic section of the cut cone (major part) or removed/minor part, configure the hyperbolic section on the XY-plane symmetrically about the x-axis such that is the vertex of right branch of hyperbola (As shown in the figure-5) Length of OA can be easily obtained by rule of similarity of right triangles, as follows Points C, D, M, N lie on the base of the cut cone (major part). In right (see figure-3 above) Let the standard equation of hyperbola be as follows Figure 5: Hyperbolic section of the cut cone is configured symmetrically about the x-axis. A a 0 is the vertex of hyperbola Since,, & the point ( ) lies on the hyperbola, hence substituting the corresponding values of X, Y & in the equation of hyperbola,

Now, substituting the values of semi-major & semi-minor axes in the equation of hyperbola, ( Now, consider an elementary rectangular slab of area & then integrating to get the total area of plane hyperbolic section of the cut cone as follows ( ( [ ( ( ( ] [ ( ( ( ( ] ( ( ( ) ) ( ( + ( ( ) ) ( Hence, the area of hyperbolic section ( ) of the cut cone or removed/minor part, ( Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get (

The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each with an isosceles triangular section instead of hyperbolic section i.e. cutting plane passing through the symmetrical axis of a right circular cone gives a pair of straight lines instead of a conic i.e. hyperbola. 2. Substituting in the above expressions, we get ( It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn t remove any part of cone. 5. Derivation of area of plane base of cut cone (Major part): In order to derive the expression of area of circular base of the cut cone (major part) left over after removing smaller/minor part, it is easier to derive the expression of area of circular base of minor part to be removed from original right circular cone. Configure the circular base of original cone on the XY-plane such that the base of minor part to be removed is symmetrical about x-axis (As shown in the figure-3 above) Now, consider an infinitely small rectangular area, on the XY-plane within the region of minor part to be removed from original right circular cone. Now, considering symmetry of circular base of minor part about x-axis & applying the proper limits, the area of circular base of removed minor part + [ ] ( ) ( ) Hence, the area of circular base of the minor part removed from original right circular cone, Hence, the area of circular base ( cone), ) of cut right circular cone (i.e. major part left over from original

Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each having area of base half that of the original cone. 2. Substituting in the above expressions, we get It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn t remove any part of cone. Conclusion: When a right circular cone of vertical height & base radius is thoroughly cut by a plane parallel to its symmetrical (longitudinal) axis at a distance, then we get two parts each with either a hyperbolic section or an isosceles triangular section. The volume & surface area of these two parts (usually unequal parts) of cone are computed as tabulated below Parameter Minor part (removed from original right circular cone) Major part/cut cone (left over) Volume ( Area of curved surface Area of hyperbolic section ( ( Area of circular base All the articles above have been derived by the author by using simple geometry, trigonometry & calculus. All above formula are the most generalised expressions which can be used for computing the volume & surface area of minor & major parts usually each with hyperbolic section obtained by cutting a right circular cone with a plane parallel to its symmetrical (longitudinal) axis. Note: Above articles had been derived & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering) M.M.M. University of Technology, Gorakhpur-273010 (UP) India Feb, 2015 Email:rajpootharishchandra@gmail.com Author s Home Page: https://notionpress.com/author/harishchandrarajpoot