Public Switched Telephone Network (PSTN II/II)

Similar documents
Telephone network. T Jouni Karvo, Raimo Kantola, Timo Kiravuo

Telephone network. Telephone network. Background. T Jouni Karvo, Raimo Kantola, Timo Kiravuo

TELECOMMUNICATION SYSTEMS

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

SS#7. T Jouni Karvo, Timo Kiravuo

Chapter 8: Multiplexing

Module 3. Wide Area Networking (WAN)

Chapter 4 Transmission Systems and the Telephone Network. School of Info. Sci. & Eng. Shandong Univ.

Signaling System 7 (SS7) By : Ali Mustafa

Introduction to Network Technologies & Layered Architecture BUPT/QMUL

Public Switched TelephoneNetwork (PSTN) By Iqtidar Ali

Lecture 2 Physical Layer - Multiplexing

Narrowband ISDN. (ISDN = Integrated Services Digital Network)

PDH Switches. Switching Technology S PDH switches

Networks 15.2 Multiplexing Technologies Access Networks 15.5 Common Peripheral Interfaces

PDH Switches. Switching Technology S P. Raatikainen Switching Technology / 2004.

Circuit Switching and Packet Switching

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching

Integrated services Digital Network

Communication Networks

Data Networks. Lecture 1: Introduction. September 4, 2008

SS7. Mercantec H2 2009

Lecture 15: Multiplexing (2)

Computer Networks

TELECOMMUNICATION SYSTEMS

Module 1. Introduction. Version 2, CSE IIT, Kharagpur

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR

Lecture #6 Multiplexing and Switching

Chapter 5. Voice Network Concepts. Voice Network Concepts. Voice Communication Concepts and Technology

CHAPTER -1. Introduction to Computer Networks

Digital Communication Networks

Multimedia Systems. Networks WS 2009/2010

Computer Communication Networks

Ch. 5 - ISDN - Integrated Services Digital Network

Networks 15.2 Multiplexing Technologies Access Networks 15.5 Common Peripheral Interfaces

Data Communications. From Basics to Broadband. Third Edition. William J. Beyda

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007.

RECOMMENDATION ITU-R F * Generic requirements for fixed wireless access systems

RAD KILOMUX-2100/2104

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.

3630 MAINSTREET. Intelligent, high perfomance multiplexing that terminates up to 31 voice or data circuits. PRIMARY RATE MULTIPLEXER Release 5.

RION ORION TELECOM NETWORKS INC. VCL-EC T1 Echo Canceller 1U, 19 inch Version with Telnet. T1, 1U Echo Canceller Product Brochure & Data Sheet

Overview of Networks

Master Course Computer Networks IN2097

AE64 TELECOMMUNICATION SWITCHING SYSTEMS JUNE Q2 (a) Write short notes on (a) uniselector and (b) two motion selector.

Internetworking Part 1

Lecture 6 Datalink Framing, Switching. From Signals to Packets

Circuit-Switching Networks Traffic and Overload Control in Telephone Networks

V C ALIANT OMMUNICATIONS. VCL-EC E1 Echo Canceller 1U, 19 inch Version with Telnet E1, 1U Echo Canceller Product Brochure & Data Sheet

Unit-3 Wireless Data Services

WAN Technology & Design. Dr. Nawaporn Wisitpongphan

Computer Networks. Andrew S. Tanenbaum

ISDN. Integrated Services Digital Network

Introduction to Networks and the Internet

Synopsis of Basic VoIP Concepts

Ch. 4 - WAN, Wide Area Networks

Wave Division Multiplexing. Circuit Switching (1) Switching Networks. Nodes. Last Lecture Multiplexing (2) Source: chapter8

Program Title: Telecommunication Engineering Technology Postsecondary Number: (AS) (AAS

Chapter 10: Wireless Networking. School of information science and Engineering, SDU

2. The initialization vector (IV) is used in the framework of

KIBABII UNIVERSITY COLLEGE DEPARTMENT COMPUTER SCIENCE & IT ANSWER ALL QUESTIONS IN SECTION A AND ANY TWO QUESTIONS IN SECTION B

MA Yan, BUPTCC, ~16 BUPT Information Network Center LAN LAN. Transmission system

PPP. Point-to-Point Protocol

Chapter 15 Computer and Multimedia Networks

Computer Communications and Network Basics p. 1 Overview of Computer Communications and Networking p. 2 What Does Computer Communications and

ORION TELECOM NETWORKS INC.

Telecommunications II TEL 202 Spring, 2004

Signaling System No. 7 (Zeichengabesystem Nr. 7)

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy)

INTERNATIONAL TELECOMMUNICATION UNION. SERIES I: INTEGRATED SERVICES DIGITAL NETWORK (ISDN) Internetwork interfaces

WAN Technologies CCNA 4

Layer 2 functionality bridging and switching

Objectives. Learn how computers are connected. Become familiar with different types of transmission media

ABSTRACT. that it avoids the tolls charged by ordinary telephone service

A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers,

VCL-CB RION. Intelligent E1 Channel Bank ORION TELECOM NETWORKS INC. Product Brochure & Data Sheet TELECOM NETWORKS. Headquarters: Phoenix, Arizona

A typical WAN structure includes the following components.

DE62 TELECOMMUNICATION SWITCHING SYSTEMS JUN 2015

AE64 TELECOMMUNICATION SWITCHING SYSTEMS JUN 2015

Outline: Connecting Many Computers

Voice And Telephony over ATM: Status

Technology Series: Introduction to ISDN - North America

Understanding TeleCom Networks Today II The World of Data

ISDN. Integrated Services Digital Network. definition of ISDN ISDN services basic BRA / PRA architecture protocols & signalling

WAN technology which are to be discussed:

Synchronous Optical Networks SONET. Computer Networks: SONET

ATM-SS7 Interworking. Public Narrowband SS7 Network. Central Office. Subscriber. Copyright Hughes Software Systems Ltd., 1999

Telephony and LAN Planning

ISDN principles. By: Ogah, Oshoriamhe Frederick Instructor: Prof. Werner Henkel Course: Wireline Communications Date: November 30, 2004

Module 11 Narrowband and Broadband ISDN

Chapter 1 Introduction

Switched Multimegabit Data Service (SMDS)

Internet Architecture and Protocol

Integrated Services Digital Network

Chapter 3. Underlying Technology. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

InterPrise 3200D. An IP Telephony Gateway for Enterprise Network Applications

and Networks Data Communications Second Edition Tata McGraw Hill Education Private Limited Managing Director SoftExcel Services Limited, Mumbai

INTRODUCTORY COMPUTER

GSM and Similar Architectures Lesson 13 GPRS

Transcription:

Public Switched Telephone Network (PSTN II/II)

Topics today in PSTN Trunk Network Node 1 Node 2 Access Access! A: Switching types! Connectionless/ connection oriented! Packet/circuit! B: PSNT exchanges and interfaces! interface Q.512! using access and trunk networks! signaling Terminals! network management Node 3! internetworking - Digital Circuit Multiplexing Equipment DCME (G.763) Terminals 2

Switching in public networks X.21 Cell switching - works with cells (packets) having a fixed size : offers bounded delay guarantees (QoS compatible, long packets won t stuck cells) (fixed length) CSPDN: Circuit switched public data net* PSPDN: Packet switched public data net** DQDB: Distributed queue dual bus * Used by European Telecom s that use X.21 in circuit switched nets 3 **Used by British Telecom s Packet-switched Service (PSS), Data Pac (Canada)...

Circuit switching Circuit switching - dedicated path - constant delay/bandwidth -voice/data - paid by time - examples: PSTN, GSM? Time switch - Makes switching between time slots - In the figure incoming slot 3 is switched to outgoing slot 3 for one voice direction - Each coming timeslot stored in Speech Store (SS) - Control store (CS) determines the order the slot are read from SS - The info in CS is determined during setup phase of the call Space switch - makes switching between PCM lines - works with electronic gates controlled by CS Cross-point Cross-point controlled controlled by by CS CS TDMA 4

Packet switching example Packet structure Seq: sequence number Op code: message/control identifier CRC: Cyclic Redundancy Code Node structure Note: - source address required for retransmission in ARQ - byte count could be also an end flag 5

6 Packet switching summarized! General characteristics! can use packets of varying length! packet is assigned an address and the necessary control information! packets are placed in frames! Each sent frame stored in a buffer (store & forward) in a receiving node and its information is checked before resending -> delays but errorless transmission possible! In summary: packet handing by nodes consists of! checking the packet format! checking for errors (link level - OSI 2)! waiting for available outgoing path capacity! Nodes have routing tables (network level - OSI 3)

Connection-oriented and connectionless switching Connection oriented - Applies same route - QoS well defined -Phases - Connection setup - Data transmission - Release - Packets received in same order - Example: ATM, frame relay, PCM Connectionless - Use of different routes for each packet possible - Each packet has address fields - QoS not guaranteed - Packets may come in different order - Example: IP (Internet Protocol), TCP takes care of cleaning the mess 7

Transfer modes & connections summarized PSTN ISDN PCM Transfer modes Circuit switching - developed for voice - nowadays also for data - well-specified delays - echo problems Connection types Connection oriented - hand-shaking Frame-relay - strict error requirements - for fast data transfer ATM X.25 Packet switching - developed for data - nowadays also for voice - statistical multiplexing - generally variable delays IP, Frame-relay ATM Connectionless - especially for broadcasting/ streaming - modest error rates often accepted - for fast data in good channels X.25, IP, UDP* 8 *User Datagram Protoco

Example of cell switching: Distributed queue dual buss (DQDB) Function - transport units have a constant length - access units access known subscribers in access unit s subnets and route packets for them - access protocol applies token ring Properties - distributed switching (see also FDDI*) - ATM compatible - rates: 64 kb/s... 45 Mb/s - geographical limit up to 200 km access unit LAN access unit access unit access unit LAN * FDDI: Fiber Distributed Data Interface for description, see the supplementary material of this lecture Transport Unit (same as in ATM) 9

Connecting into PSTN exchange: Equipment in the access network Distribution point On-line subscriber with several telephones Cross connection point Twisted pair - connections ISDN 2B+D 144 kb/s Wireless access (or radio access point) Business subscriber Private Branch Exchange Multiplexer ISDN connection example: 30B+D (2.048 Mb/s) Q.512 specifies exchange interface 10

Local exchange Signaling (SS7) with users and other exchanges PBX ETC to other exchanges Subscriber stage Group switch Announcement equipment Signaling equipment Recorded announcement faults/subscribe services Traffic concentration conference calls, call waiting, broadcasting... Third-party equipment Test/measurement equipment - Operation & maintenance support (Q.513) - Charging Control system - Supplementary (IN) services (as credit card call) - Subscriber data, switch control Switch Control ETC: Exchange terminal circuit IN: Intelligent network O&M HW 11

Subscriber stage Connects to: digit receivers, info tones, test equipment Concentrator MUX internet access (DSLAM) centrex* service To ETC Control system: subscriber authentication, routing, billing, O & M,... ETC: Exchange terminal circuit Speech store: shift registers storing bits for time switching Control store: gates guiding speech store switches * leased PBX function from local exchange 12

13 Exchange control functions! Maintenance functions! supervision of subscriber lines and trunk circuits! Operational functions! administrative data as! subscriber database! routing database! statistical data as! from where and whom subscribers call! holding times for different equipment types! utilization of IN services! User services Sample of IN services

Exchange user services (examples)! Absent-subscriber services as the answering machine! Call booking: connection at the desired time! Person-to-person call: ensures that call goes to a right person! Serial call: setting up several calls! Telephone conferencing: several persons participate to call in real-time (compare: teleconferencing)! Directory inquiries: also speech recognition, recorded messages (many of these nowadays available in terminals) 14

The space-switch (used as a cross-switch and concentrator) Cross-bar switch (space division matrix)!!!! Number of cross-connections reduced compared if a simple space division matrix of NxM (input x output) would be used Usually performs concentration: Blocking possible Same signal can be routed via different paths: increased reliability application: connects physically separate PCM-lines 15

The time-switch! One of the time slots of any full-duplex lines is connected to some other line (at a time)! Thus two switches / time slot connect a line! For 100 full-duplex lines at 19.6 kbps a 1.92 Mbps bus is thus required for no blocking! If no fixed assignment of input lines to time slot but on demand allocation -> blocking switch that reduces number of switches and switch clock frequency. For instance 200 lines of 19.6 kbps with bus of 1.92 Mbps -> about half of the devices can connect at any time, eg concentration is 2:1 16

The time-space-time (TST) switch! Works in local exchange and subscriber stage! Performs PCM concentration, usually 10:1 3:1! Connects subscribers also to information tones and test equipment! Time switch contains one bus for incoming and outgoing calls (full-duplex) Time switch Space switch Subscriber stage Time switch Question: Why time or space switch is not always enough? 17

18 PSTN ISDN exchange interfaces (Q.512) NT LT V1 ET ET V4 A LT CN LT V2 ET ET LT X ET B LT ISDN PABX LT AN LT Peek to Q-recommendations V3 V5 ET ET CN:Concentrator ET:Exchange T. LT:Line T. AN:Access Net. NT:Network T. (in ISDN) T:Terminal

19 Exchange interfaces and tasks, V1! Purpose of exchange is to organizes connection between exchange terminators!! V1: Access to basic ISDN (This is user s ISDN-u interface that can be used to connect small PBX also)! Basic ISDN V1-functions:! 2 B + D (2x64 kbps + 16 kbps) channeling structure! timing and frame synchronization! activate and deactivate terminator! operation and maintenance! feeding power supply! ISDN basic access parameters defined in G.961

20 Exchange interfaces and tasks, V2-V4! V2: Interface serves typically concentrators! 2048 kbit/s eg! 30 B + D! Electrical standard G.704! V3: Resembles V2 but intended for interface other exchanges (PABX)! Electrical standard G.703! 30 B + D at 2048 kb/s (SDH E-1, Europe)! also 23 B +D at 1544 kb/s (I.431) (SDH T-1, US)! V4:Interface to private networks (as such not ITU-T specified), for instance DSLAM (ADSL-interface specified by ADSL-forum - ANSI T1.413, ITU-T: G.992)

21 Exchange interfaces and tasks, V5! Between access network and exchange! 2048 kbit/s basic rate! Specifies basic interfaces for! Analog access! ISDN-access! Electrical interface G.703! Channel control and signaling! V5 supports interface rates 2048 kbit/s 8448 kbit/s

Connecting the local loop: Line interface circuit (LIC) 22 Used for signaling in certain coin-operated pay-phones and PBX

23 Line interface circuit components! Over-voltage protection! Test equipment to connect to monitor the line condition faults! Voltage feed! ringing! telephone current supply! Detection of! hook stage, pulse generated, or dual-tone receiver! The hybrid junction (2 wire - 4 wire interface)! An A/D converter (uses PCM techniques at 64 kbps)

24 The hybrid circuit! 4-wire connection is used between exchanges and 2-wire connections from exchange to subscribers Exchange A Amplifier Exhange B Two-wire Two-wire Amplifier Bridge Bridge

25 The hybrid-circuit If the impedance Z b equals the line impedance no incoming voice (down right) leaks to outgoing voice (up right but the signal goes via the two wire connection on the left To exchange Local loop From exchange

26 The hybrid circuit summarized! The hybrid circuit transforms two-wire connection into 4- wire connection.! If the hybrid is unbalanced echo will result! Hybrid is balanced when no own voice is leaked into own loudspeaker! Hybrid unbalance can result from line impedance changes due to weather conditions! Unbalance results echo! Echo cancellation circuits are harmful in data connections! Nowadays realized by operational amplifier based circuitry that automatically monitors line impedance changes

27 Network echo suppressor (NES)! R: transmission gate, A: attenuator, L: logic circuit! When the signal is present on the receiving line the transmitting line is cut-off! A kind of semi-duplex approach to solve the echo problem

28 Network echo canceller (NEC)! Signal echo is extracted and subtracted from the received signal! More effective than echo suppressor. Often NEC and NES are however both used

Digital Circuit Multiplexing Equipment DCME (G.763) International exchange (Finland)! DCME Functions 5:1 DCME! Digital speech interpolation (DSI) 2.5:1 + ADPCM of 32 kb/s! Overload handling: Extra system capacity can be allowed to variable bit rate (VBR) channels (capacity taken from unused compressed speech channels)! Option to make conversions! between T1 (1.5 Mb/s, US) and E1 (European 2 Mb/s) connections! between µ- and A-law compressions 1:5 DCME Q.50 signaling DCME International exchange (US) A: Digital line interface B: Time-slot switching C: Voice interpolation (DSI) D: ADPCM E: Variable bit rate (for overload) 29

PSTN operation and maintenance (Q.513) 30! Different alarm classes! Vital functions and circuits (as SS7 and group switch) use secured paths and backups Procedures provided for:! troubleshooting! fault diagnostics! hardware faults can be isolated! Supervision is realized also by connecting maintenance units to the network! Important switches have extensive backup equipment A supervision plan by network levels:

Modern PSTN hierarchy to international level Transit exchange Regional transport leve Local transport level Local exchange Access transport level 31

PSTN Hierarchy cont.! Local (example, within a city)! Subscriber connections! Switching within the local exchange! Switching to other exchanges! Transit (county level, say between Tampere and Helsinki)! Switching traffic between different geographical areas within one country! International! Gateway-type traffic between! different countries! DWDM (Dense Wavelength Division Multiplexing) routes! Rates can follow SONET or SDH standard SDH - transport of 1.5/2/6/34/45/140 Mbps within a transmission rate of 155.52 Mbps - carries for instance ATM and IP within rates that are integer multiples of 155.52 Mbps 32

Subscriber signaling for local calls 33

Inter-exchange signaling! Channel associated signaling (CAS) as No.5, R1, R2! analog and digital connections! Modern ISDN exchanges apply SS7(digital), that is a common channel signaling method (CSS) that is discussed later in its own lecture! CAS is divided into line and register signaling:! Line signaling:! line state between the trunk-links as! answer, clear-forward*, clear-back! Register signaling:! routing information as! B-number, A-category, B-status *A-subscriber s on-hook message transmitted to B exchange 34

35 Inter exchange signaling (cont.)! Three categories of information is transmitted:! setup, supervision clearing! service related information as! forwarding, callback, charging! status change information! transmission network congestion! neighborhood exchange congestion

Example of inter-exchange signaling 36

Inter-exchange signaling (cont.) 37

38 A case study: DX 200 Exchange! Various control units apply common busses to control the exchange SSU PAU CCSU LSU M MFSU DCU CCMU CM CHU STU OMU

A case study: DX 200 Exchange! SSU: Subscriber Signaling Unit: controls access network! CCSU:Common Channel Signaling Unit (SS7).! CCMU: Common Channel Signaling Management Unit: (as MTP, SCCP)! PAU: Primary Rate Access Unit: controls basic (64 kbit/s) system interfaces! LSU: Line Signaling Unit: takes care of signaling between transit exchanges and access networks! MFSU: Multi-Frequency Service Unit: Takes care of signaling when multiple frequency signals are used MTP: Message transfer part of SS7 SCCP: Signaling connection control part } =SS7 bearer part: network service part (NSP) 39

40 A case study: DX 200 Exchange (cont.)! BCDU:Basic Data Communication Unit: Serves various data services to OMU as access to X.25 and LANs! M: Marker Unit: Controls concentrators / space switches! CM: Central Memory: Contains user database, charging, signalling, routing and exchange ensemble.! STU: Statistical Unit: Collects statistical information on traffic and charging.! CHU:Charging Unit: Maintains charging database obtained from signalling units.! OMU:Operation and Maintenance Unit: Allows personnel access to exchange memory, perform tests an traffic measurements.