CONNECTIVITY THROUGH BACKHAUL

Similar documents
CONNECTIVITY THROUGH BACKHAUL

SATELLITE MOBILE BACKHAUL: FROM VOICE TO DOMINANT DATA

Cellular and Satellite: together to serve a fast growing market

SATELLITE MOBILE BACKHAUL: FROM VOICE TO DOMINANT DATA

SATELLITE MOBILE BACKHAUL: FROM VOICE TO DOMINANT DATA

Talk 4: WLAN-GPRS Integration for Next-Generation Mobile Data Networks

Connect rural and remote GSM networks fast and cost-effectively

Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations. Mobile Telephony Networks

Addressing Current and Future Wireless Demand

Satellite-Based Cellular Backhaul in the Era of LTE

White paper. The Path from 2G and 3G to 4G/LTE. Accelerate Mobile Network Operator Revenue Growth with Mobile Broadband Services

Eight Essentials to Implementing Backhaul over Satellite for Mobile Operators. June 2009

Understanding Carrier Wireless Systems

UMTS System Architecture and Protocol Architecture

SES s growth markets: Enterprise. Aslan Tricha, SVP & MSC Leader for Enterprise

Mobile Networks Evolution: Economic Aspects of Evolution towards IMT2000

Optimising 3G Migration

RURAL CONNECTIVITY IN AFRICA. Nicolas BARAVALLE Director Line of Business Data

Nexus8610 Traffic Simulation System. Intersystem Handover Simulation. White Paper

Rab Nawaz Jadoon. Cellular Systems - II DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology

Satellite Services Regulatory Issues and Broadband Internet. Note: Please ask Questions Anytime!

REAP THE BENEFITS OF 4G OVER SATELLITE

Performance Challenge of 3G over Satellite Methods for Increasing Revenue & Quality of Experience. February 2018

Mobile systems: an overview

Running GPRS/EDGE Data Services with Osmocom

Evolution from GSM to UMTS

Session 6: Satellite Integration into 5G. Bashir Patel Global Spectrum and Regulatory Policy, ESOA

ITU Open Consultation Building an Enabling Environment for Access to the Internet - 22 September 2016

INTRODUCTION OUR SERVICES

Celtic-Plus Award winning projects present their results CIER

TECHNOLOGY OPTIONS FOR EVOLUTION FROM EXISTING MOBILE SYSTEMS TO IMT-2000

GSM. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides) GPRS

Networking: A Key Driver for Globalization. Krishan K. Sabnani Networking Research, Bell Labs August 27, 2007

Cellular Communication

3GPP. 3GPP Roadmap. Release 99 Release 4 Release 5 Release 6 Release 7 Release 8. Khaled Alutaibi

Delivering faster broadband, further...

THE ALTOBRIDGE LITE SITE MOBILE CONNECTIVITY FOR THE LAST FRONTIERS

Broadband Wireless Access (BWA) and Satellite Services

Cost of Ownership: CDMA 2000 Competitive Advantage. Paul Edwards Chairman Starcomms, Nigeria

Last time?! Block 3: Lecture 1! Wireless networks! Ingredients 2: Antennas! Ingredients 1: Mobile Phones, PDAs & Co.! 20/05/14. Part 3: lecture 3!

Expanding the reach of Broadband: Getting people online. Integrating Satellite use in 5G Ecosystem 15 June 2016:

5G Network Architecture

Hands-On Modern Mobile and Long Term Evolution LTE

SATELLITE-BASED CELLULAR BACKHAUL: MYTHS & FACTS

Convergent Offers and NGN

RF OPTIMIZATION FOR QUALITY IMPROVEMENT IN GSM NETWORK

White Paper. Massive Capacity Can Be Easier with 4G-Optimized Microwave Backhaul

Growing the VSAT Potential: Deep-diving on Cellular Backhaul Capabilities

VOLTE and the IP/MPLS Cell Site Evolution

Basics of GSM in depth

IMT-2020 NETWORK HIGH LEVEL REQUIREMENTS, HOW AFRICAN COUNTRIES CAN COPE

Mobile Telephony and Broadband services

Fiber in the backhaul : Powering mobile Broadband

A New Satellite Paradigm. Ronald van der Breggen Chief Commercial Officer LeoSat

A New Satellite Paradigm

Satellite Services Regulatory Issues and Broadband Internet

Chapter 2 The 3G Mobile Communications

Building a Profitable Data Future. Monetizing Data Traffic

ITU/BDT Regional Seminar on Mobile and Fixed Wireless Access for Broadband Applications for the Arab Region

RADWIN IP Backhaul Solutions. Application Brochure. Meeting the escalating demand for IP backhaul

Satellites and 5G. Architectural experience. Avanti Simon Watts. Page 1

Opportunities and Challenges in India s Growing Computing and Wireless Broadband Market

Enhanced EMBB for 5G Services Thales-Alenia Space Focus 5G-Satellite future services KeeTae KIM, Business Development Director / Thales Korea

WHITE PAPER. The 450 MHz Band Ecosystem

Wireless Data Mobile Network Architecture and Technology

GPRS and UMTS T

E1-E2 UPGRADATION COURSE CONSUMER MOBILITY. 3G Concept

Vivada Empowering Rural Telephony in Africa.

What is Needed from your Satellite Ground Infrastructure to Support 2G, 3G and LTE Backhaul with Superior Quality of Experience for End Users?

Nokia AirGile cloud-native core: shaping networks to every demand

EtherHaul. Use All-Silicon Backhaul to Ease the Capacity Crunch. in Remote Cellsite Wireless Aggregation Hubs. LTE BackHaul Application Note

Internal. GSM Fundamentals.

NATIONAL SATELLITE COMMUNICATION SYSTEM

wi4 Fixed Point-to-Multipoint Canopy Solutions

E3-E4 (CM MODULE) CDMA x & EV-DO. For internal circulation of BSNL only

Network Sharing Scenarios & Challenges

SEVEN Networks Open Channel Traffic Optimization

Signaling for the Internet of Things. Michael Senn Principal Technologist

STREET READY SMALL CELL & Wi-Fi BACKHAUL

The challenges, opportunities and setting the framework for 5G EMF and Health

And MTN said: Let there be SPEED!...

Corporate Overview. LeoSat is changing the rules of the game.

Chapter 3. 3G Operational Issues. For internal circulation of BSNL only Page 1

E2-E3: CONSUMER MOBILITY. CHAPTER-5 CDMA x OVERVIEW (Date of Creation: )

CBNL. High speed enterprise networks. VectaStar Gigabit. The ultimate in multipoint microwave for enterprise access networks

Transform your bottom line: 5G Fixed Wireless Access

4G Mobile Communications

TECHNOLOGY OPTIONS FOR EVOLUTION FROM EXISTING MOBILE SYSTEMS

ELEC-E7230 Mobile Communication Systems

Multiband Capacity utilization Compact design SMALL CELL SOLUTION

LEVERAGE A WIRELESS BROADBAND INFRASTRUCTURE TO Open New Revenue Streams

Metro Ethernet for Government Enhanced Connectivity Drives the Business Transformation of Government

Broadband Backhaul Asymmetric Wireless Transmission

WIRELESS SYSTEM AND NETWORKING

IPv6 the Catalyst for Convergence

5G radio access. ericsson White paper Uen June research and vision

Connecting the Unconnected Via Satellite: From Mobiles to Money

INTRODUCTION TO WIRELESS COMMUNICATION

Introduction Mobile Broadband Market, HSPA+/LTE and frequency bands

LTE : The Future of Mobile Broadband Technology

Transcription:

The Critical Role of Satellite Services in Supporting Mobile Connectivity Through Backhaul. The importance of mobile connectivity cannot be overstated in today s world, whether for the most developed economies or emerging ones. This is especially true as the networks of today prepare to transition to the 5G network of networks. Important challenges remain about how to provide coverage and connectivity to all populations around the globe. Whilst there are many different ways to accomplish this, utilizing satellites as the backhaul component for mobile terrestrial connectivity remains one of the best ways to support the world s growing need for mobile communications. By incorporating satellites into the mobile terrestrial infrastructure, terrestrial mobile operators are able to quickly deploy scalable, reliable, and cost-effective means to bring mobile connectivity to the world s citizens, no matter where they are located. Mobile Network Operators (MNOs) Mobile Network Operators (MNOs) already use several transmission means (fibre, microwave, satellite) to connect their cell sites to the backbone and/or to back-up unreliable terrestrial connections. In developed markets (Asia and North America), satellite is already playing a key role as MNOs deploy satellite enabled backhaul to improve their 4G coverage and relieve congestion in metro areas. In regions with poor or challenged terrestrial infrastructure (Africa, South America, etc.), MNOs rely extensively on satellite services to connect 2G, 3G and 4G/LTE cells to the central infrastructure. This will be even more important as 5G infrastructure is being deployed, as an increasing number of more and more consumers will demand reliable, wide-coverage, cost-effective mobile communications no matter where they are located. Without satellite, overcoming this challenge is commercially unviable. The use of satellite to support wireless terrestrial backhaul began in the early 2000s and has increased as many countries adopted universal service policies and mobile operators had to cover more and more remote locations where terrestrial backhaul was not available in many cases, or could not be deployed on a timely or cost-effective basis. Today satellite connections are still a quick, low CAPEX and OPEX solution to the problem of connecting remote cell sites and there is significant satellite connectivity capacity to support the needs of MNOs globally.

Source: https://mybroadband.co.za/news/internet/172964-what-the-world-looks-likein-2g-3g-and-4g.html citing Facebook Connectivity Lab report of February 2016. If the UN s 2030 Sustainable Development Goals are to be reached and digital, education, health and social divides are to be bridged, then cooperation between terrestrial and satellite operators must increase considerably. Types of Satellite Backhaul The most common satellite backhaul technologies have been either a dedicated point-to-point satellite link known as single channel per carrier (SCPC), or a shared link using time-division multiplexing access (TDMA). An SCPC connection consists of an antenna and a modem located in the central mobile switching centre (MSC) site connected to another antenna with a modem in the remote base transceiver station (BTS) site belonging to the MNO. The satellite bandwidth is dedicated to this connection and the throughput is guaranteed. This type of connection is more appropriate to serve higher data rate connectivity requirements. Dedicated Bandwidth MNO Network BSC Modem Belongs to MNO Figure 1: Satellite Backhauling using Dedicated Bandwidth Modem BTS (belongs to MNO)

When multiple sites are to be connected, either TDMA or some other point-to-multipoint link may be the most economical solution. TDMA systems are able to deploy and support hundreds of sites at one time, saving on capacity which is the biggest cost element in OPEX. Point-to-multipoint links involve installing an intelligent satellite hub in the central site and an intelligent modem together with an antenna at each remote BTS site. This intelligent IP connectivity optimizes the bandwidth as it is dynamically allocated in real time depending on the transmission need of each remote site; For instance, 50Mbps can be dedicated to a pool of 100 sites and then dynamically allocated to the different sites depending on demand. This architecture is increasingly being used for 3G and 4G/LTE mixing voice and data in a single link as the data traffic is essentially asymmetric and opens up further multiplexing capabilities to help reduce both CAPEX and OPEX. Shared Bandwidth Sat + IP modem BTS belongs to MNO Dynamic bandwidth allocation Sat + IP modem BTS belongs to MNO MNO Network BSC Sat + IP modem Sat + IP hub BTS belongs to MNO Figure 2: Satellite Backhauling using Shared Bandwidth How 2G - 3G - 4G Backhaul Works 2G GSM Networks MNOs use satellite to connect their GSM/GPRS remote Base Transceiver Stations (BTS) to their central Base Station Controller (BSC) or Mobile Switching Centre (MSC). VLR ME: Mobile CS: Circuit Switched MT/TE MSC: Mobile Switching Centre Abis Nb E A Mc SIM - ME BTS: Base Transceiver Station BSC: Base Station Controller UE: User GERAN: GSM EDGE Radio Access Newtwork BSS: Base Station System MS: Mobile Station AN: Access Network Figure 3: Structure of a GSM Network B GMSC G D Um SIM ICC PTSN CS-MGW HSS Nc C HLR MSC server AuC F Gb Gc Gf, Sv Gd EIR SMS-GMSC PS & CS Gn Gi GPRS PS: Packet Switched H Gp Internet GGSN CN: Core Network

3G/UMTS Networks Similarly, MNOs operating 3G/UMTS networks in remote regions use satellite to connect so called Node B to the central infrastructure. PTSN VLR ME: Mobile Iur MT/TE CS: Circuit Switched G D Uu MSC: Mobile Switching Centre Iub Cu Node B USIM UICC B GMSC RNC UE: User UTRAN: Universal Terrestril Radio Access Network / RNS:: Radio MS: Mobile Station AN: Access Network Figure 4: Structure of a UMTS Network Nb E A Mc CS-MGW HSS Nc C H HLR MSC server F Gb Gc Gf, Sv Gd EIR SMS-GMSC PS & CS Gn Gi GPRS PS: Packet Switched AuC Gp GGSN CN: Core Network Internet 4G Networks Similarly, MNOs operating 3G/UMTS networks in remote regions use satellite to connect so called Node B to the central infrastructure. Access Network Core Network HSS MME SGW PDNGW Figure 5: Structure of a 4G Network Internet

Satellite Technologies for 2G, 3G, and 4G/LTE 2G Satellite backhaul technology is widely used in the 2G environment, and GSM calls and SMS text messaging are fully compatible with satellite connectivity. The low CAPEX requirement combined with bandwidth optimization techniques such as Abis and a low OPEX cost ensure a profitable solution in the most scarcely populated areas. 3G For 3G, optimisation solutions process incoming voice traffic and apply mobile-aware intelligent packetization techniques to ensure the network is using the least bandwidth possible while prioritizing the resources for real-time voice and signalling. Some of these techniques can also enforce the use of the most efficient voice codecs. Higher throughput satellites in GEO and MEO have accelerated deployment of 3G as they offer the bandwidth required to serve data users. 4G The proliferation of data over mobile has spurred the adoption of higher communications standards such as 4G/LTE. For 4G, the simplified architecture of 4G makes it easier to deploy backhaul over satellite. Innovative technologies including acceleration, compression, caching and traffic shaping help enhance the user experience, which is key, as traffic becomes more data and video centric. MEO systems (not to mention the upcoming LEOs) are well aligned with the performance benefits of 4G/LTE technology to provide a true broadband experience, with speeds up to 2Gbps and RTT latency below 150 ms. Satellite backhaul is also frequently used to backup critical sites served by a single fibre or by unreliable terrestrial connections, as well as in cases of emergency response. In case of outage of the main connection, traffic is instantly swapped over to the always-on satellite connection resulting in little or no traffic loss. Recent innovations allow voice and data traffic to be separated so that lighter voice traffic can be routed over terrestrial connections while bandwidth hungry data traffic is routed via satellite. This provides MNOs with options by which to implement step-by-step bandwidth increases, as they are needed when extending data services to remote cell sites. Innovations are being done to improve return capacity since new 4G/LTE traffic profiles are driving users to upload content. Also, as innovations in technology such as High Throughput Satellites at geostationary orbit and non-geostationary constellations at medium and low orbits continue to be deployed, the cost of satellite service for backhaul has dramatically reduced in price. 5G and the Future of Satellite in Cellular networks The cellular industry is currently driving towards the adoption of the 5th Generation of global cellular standards (5G) with the first version of the standards due to be available in 2018, with an updated broader version expected in 2019/20. The Next Generation Mobile Networks (NGMN) group which represents the views of the world s major global operators defines 8 goals for 5G: 5G Goals 1) Broadband access in dense areas, 2) Broadband access everywhere, 3) Higher user mobility, 4) Massive internet of things (IoT), 5) Extreme real-time communications, 6) Lifeline communications, 7) Ultra-reliable communications, and 8) Broadcast-like services. Goal 2 clearly can only be met by including satellite technology, which offers true geographic ubiquity. Equally, goals 3), 4), 6) and 8) will also benefit greatly from the contribution of satellite services. Global mobile coverage can only be achieved through the deployment of a combination of cellular and satellite technologies. This is the vision for the role of satellite in cellular networks for 2020 and beyond.

Business Models Satellite backhaul is a critical component of the wireless terrestrial infrastructure today, and will continue to be vital for 5G as well. Business models should include consumption-based billing, which matches how consumers are procuring their mobile services, and which reduces the risk and the exposure of the MNO and closely ties OPEX to revenue. There are several business models available for MNOs who wish to make use of satellite services for back haul. These include: 1 Directly contracting with satellite operators for raw capacity. In this case, the MNO leases satellite capacity, buys a hub, and runs its own satellite network. 2 Directly contracting with satellite operators for an end-to-end managed service solution ( one stop shopping ). In this case, the satellite operator provides and manages the ground equipment, bandwidth, and support, based on a Service Level Agreement (SLA). 3 Entering into a service agreement with a service provider or who provides end-to-end connectivity solutions and operates the satellite network. And of course, business models can always be tailored to the particular needs of an MNO. Conclusion Satellite backhaul is being used extensively today supporting MNO efforts to extend their network coverage, both for cellular and mobility applications. Urban and semi-urban areas enjoy congestion relief and seamless connectivity by using satellite backhaul (which is key to 5G). But rural coverage worldwide remains poor and governments and MNOs often have competing priorities for their investments. High performance mobile data is the future of revenues for mobile networks, and satellite are the ideal choice to deploy in challenging or remote areas, or to increase the capacity provision in the network to address the surge in traffic demand. Customer demand for data-hungry applications creates an opportunity for operators to close the business case for 3G and 4G/LTE in remote markets. With a lowered cost/mb, there is increased data usage resulting in higher average revenue per user (ARPU) and an increase in market share and subscribers resulting in overall higher profitability. Given the technological and business options available for using satellite backhaul and recent technology innovations such as High Throughput Satellites and new constellations of lower orbit satellites, there is good reason for MNOs to make more intensive use of satellite service for backhaul. In addition to the dramatic socioeconomic impact, cellular backhaul via satellite significantly increases the MNO subscriber base and allows them to guarantee full reach.