Ethernet Switch. WAN Gateway. Figure 1: Switched LAN Example

Similar documents
1GbEth. Access Switch. 1GbEth. Workgroup Switch. 10MbEth. Figure 1: Enterprise LAN Topology Example

1GbEth. Access Switch. Workgroup Switch. 10MbEth. Figure 1: Enterprise LAN Topology Example

Gigabit Fibre Channel B_Port Controller Core. 1 Introduction. Product Brief V1.0- September Overview. Optimized for Actel LAN WAN

10 Gigabit XGXS/XAUI PCS Core. 1 Introduction. Product Brief Version April 2005

10 Gigabit Ethernet 10GBase-R PCS Core. 1 Introduction. Product Brief Version August 2004

High-Speed SDR SDRAM Controller Core for Actel FPGAs. Introduction. Features. Product Brief Version 1.0 November 2002

Upper Level Protocols (ULP) Mapping. Common Services. Signaling Protocol. Transmission Protocol (Physical Coding) Physical Interface (PI)

10 Gigabit Ethernet 10GBase-W PHY. 1 Introduction. Product Brief Version May 2005

C H A P T E R GIGABIT ETHERNET PROTOCOL

Designing Embedded Processors in FPGAs

APEX Devices APEX 20KC. High-Density Embedded Programmable Logic Devices for System-Level Integration. Featuring. All-Layer Copper.

Technology Roadmap 2002

POS-PHY Level 2 and 3 Compiler User Guide

Intel Stratix 10 Low Latency 40G Ethernet Design Example User Guide

Low Latency 100G Ethernet Intel Stratix 10 FPGA IP Design Example User Guide

10-Gbps Ethernet Hardware Demonstration Reference Design

H-tile Hard IP for Ethernet Intel Stratix 10 FPGA IP Design Example User Guide

Early Models in Silicon with SystemC synthesis

DE2 Board & Quartus II Software

INT-1010 TCP Offload Engine

INT 1011 TCP Offload Engine (Full Offload)

10-Gbps Ethernet Reference Design

10-Gbps Ethernet Reference Design

NIOS CPU Based Embedded Computer System on Programmable Chip

HSMC-NET. Terasic HSMC-NET Daughter Board. User Manual

SerialLite III Streaming IP Core Design Example User Guide for Intel Stratix 10 Devices

Introduction to the Qsys System Integration Tool

100G Interlaken MegaCore Function User Guide

System-on-a-Programmable-Chip (SOPC) Development Board

SerialLite III Streaming IP Core Design Example User Guide for Intel Arria 10 Devices

DDR and DDR2 SDRAM Controller Compiler User Guide

Excalibur Device Overview

DG0633 Demo Guide IGLOO2 FPGA CoreTSE MAC 1000 Base-T Loopback Demo - Libero SoC v11.7 SP2

Stratix. High-Density, High-Performance FPGAs. Available in Production Quantities

ASIX Multi-Port Embedded Ethernet Product Introduction

Broadcom BCM5600 StrataSwitch

HSMC Ethernet 2-Port 1588 Precision Timing

S2C K7 Prodigy Logic Module Series

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim

Monitor Commands. monitor session source, page 2 monitor session destination, page 4

Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC Wrapper v1.4

Designing with ALTERA SoC Hardware

APEX II The Complete I/O Solution

AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design

Altera Product Overview. Altera Product Overview

AN 830: Intel FPGA Triple-Speed Ethernet and On-Board PHY Chip Reference Design

Extreme Low Latency 10G Ethernet IP Solution Product Brief (HTK-ELL10G-ETH-FPGA)

MAX II CPLD Applications Brochure

2001 Altera Corporation (1)

4. Selectable I/O Standards in Stratix & Stratix GX Devices

White Paper Enabling Quality of Service With Customizable Traffic Managers

4K Format Conversion Reference Design

DE4 NetFPGA Reference Router User Guide

Topics C-Ware TM Software Toolset release timeline C-Ware TM Tools Overview C-Ware TM Applications Library Overview

24 GE with 4 Shared SFP Web Smart Switch

9. Building Memory Subsystems Using SOPC Builder

Intel Stratix 10 H-tile Hard IP for Ethernet Design Example User Guide

Applying the Benefits of Network on a Chip Architecture to FPGA System Design

White Paper The Need for a High-Bandwidth Memory Architecture in Programmable Logic Devices

LatticeSCM SPI4.2 Interoperability with PMC-Sierra PM3388

Cover TBD. intel Quartus prime Design software

DDR & DDR2 SDRAM Controller Compiler

Field Programmable Gate Array (FPGA) Devices

HSMC Ethernet Quad-PHY Daughter Board

Low Latency 100G Ethernet Design Example User Guide

Non-Volatile Configuration Scheme for the Stratix II EP2S60 DSP Development Board

Nios II Embedded Design Suite 7.1 Release Notes

Chapter 2 Getting Hands on Altera Quartus II Software

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

Digital Systems Design. System on a Programmable Chip

Intel FPGA Triple-Speed Ethernet IP Core User Guide

Triple-Speed Ethernet MegaCore Function

Cover TBD. intel Quartus prime Design software

SETTING UP A GB-X3 LINK FOR 2 or 3 Gbps OPERATION

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC Wrapper v1.7

Designing with Nios II Processor for Hardware Engineers

INT G bit TCP Offload Engine SOC

FPGAs Provide Reconfigurable DSP Solutions

25G Ethernet Intel Stratix 10 FPGA IP Design Example User Guide

3. What could you use if you wanted to reduce unnecessary broadcast, multicast, and flooded unicast packets?

Embedded Design Handbook

Arria 10 Transceiver PHY User Guide

DSP Builder Handbook Volume 1: Introduction to DSP Builder

Low Latency 40G Ethernet Example Design User Guide

SOLO NETWORK (11) (21) (31) (41) (48) (51) (61)

9. PIO Core. Core Overview. Functional Description

PCI Express Compiler User Guide

The world s most reliable and mature full hardware ultra-low latency TCP, MAC and PCS IP Cores.

Laboratory Exercise 5

NIOS CPU Based Embedded Computer System on Programmable Chip

Cisco ONS Port 10/100 Ethernet Module

Introduction to VHDL Design on Quartus II and DE2 Board

Turbo Encoder Co-processor Reference Design

1. Overview for the Arria V Device Family

Fujitsu SOC Fujitsu Microelectronics America, Inc.

SOLO NETWORK (11) (21) (31) (41) (48) (51) (61)

AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

ADPCM-LCO Voice Compression Logic Core

I 2 C Bus Interface - Slave ver 3.08

Transcription:

1 Introduction An Ethernet switch is used to interconnect a number of Ethernet LANs (Local Area Networks), forming a large Ethernet network. Different ports of the switch are connected to different LAN segments. The purpose of the switch is to forward the packets intelligently, only to the desired destination segment of the network whenever possible, instead of flooding the network for every frame. The switch stores the MAC addresses observed from frames received through each port and uses this information to learn which MAC belongs to which segment of the network. With this information, the switch can forward the frames from the source network segment to only the destination, instead of forwarding the frame to all the connected ports, reducing the network load. LAN1 LAN3 Ethernet LAN2 LAN4 WAN Gateway Figure 1: ed LAN Example While standard Ethernet multi-port Ethernet es can be used to meet a number of applications, MorethanIP programmable switch platform can be configured to provide more flexibility. For example, standard Ethernet es typically only implement physical Ethernet interfaces such as MII (Fast Ethernet ports) or GMII (Gigabit Ethernet port) and therefore require an adaptation device (e.g. FPGA, ASIC) if one port needs to be connected to, for example, a PCI bus, a SONET / SDH framer for POS (Packet Over SONET / SDH) or EOS (Ethernet Over SONET / SDH) applications or voice processors for VoIP (Voice over IP) applications. 1

LAN1 Ethernet Adaptation FPGA SONET / SDH Framer PMD GMII POS-PHY L3 LAN2 Figure 2: POS Application Example The MorethanIP Ethernet switching solution provides a flexible and unique solution allowing designers to implement any additional function (e.g. PCI interface, POS-PHY / SPI packet interfaces, ) to complement the Ethernet switch and to provide connectivity to a large number of standard parts (e.g. SONET / SDH framers, VoIP processor) or systems (e.g. Proprietary backplane, host computer via PCI / PCI-X) with a single chip solution. LAN1 Ethernet SONET / SDH Framer PMD LAN2 Figure 3: POS Application Example with MorethanIP ing Solution The MorethanIP switch implement a programmable number of ports, which can be seamlessly connected to any Telecom Core from MorethanIP or to any third party Core supporting the SOC (System on a Chip) standard. Each port is 32-Bit wide. 2

MII / GMII 10/100/1000 Ethernet MAC MII / GMII 10/100/1000 Ethernet MAC P6GX Core POS-PHY L2 Master POS-PHY L2 MII / GMII 10/100/1000 Ethernet MAC Figure 4: Integrated Solution Example In addition, standard Ethernet switches typically implement a large number of ports (12, 24) and implement a fixed distribution of ports (e.g. eight 10/100 Ethernet ports + 1 Gigabit Ethernet port) and therefore can provide an oversized or not adapted solution for applications that require only a few ports or a different repartition of ports. The MorethanIP P6GESX programmable switch provides up 8Gbps-switching capability, which can be used as required by the User application. MorethanIP switch is implemented as a System on Chip (SOC) and it embeds a Hardware switch engine, for performance, and a 32-Bit processor, which performs learning, ageing, migration tasks and which can be programmed to implement any other high function such as Spanning Tree or any user specific task. The MorethanIP P6GESX Core is available on Altera Stratix FPGAs (Field Programmable Gate Array), which provides a quick time-to-market. The Core can be migrated to Altera Hardcopy or ASIC devices to reduce costs. 3

2 P6GESX 6Gbps Ethernet Features Integrated Ethernet engine with programmable number of SOC (System on Chip) ports 32-bit switching engine operating at frequencies up to 260MHz on Altera Stratix-II FPGA providing 8Gbps non-blocking switching capacity Implements hardware three-stage switching look-up mechanism providing a learning capacity of up to 2K MAC addresses Configurable broadcast domain resolution to forward broadcast frames or unknown destination frames to dedicated ports only instead of all Configurable multicast domain resolution to forward multicast frames to dedicated ports only instead of all Individual port enable/disable Configurable Mirror port which, when enabled, receives all traffic from all ports, for debug purposes ing table range can be reduced, for optimized Firmware operation, to support 700 or 1K MAC addresses Programmable firmware operation with Static or Dynamic (learning, aging) switching tables Embedded NIOS 32-Bit processor with 64K-Byte internal program memory sufficient for MorethanIP standard switching firmware (Learning, Aging, Migration and look-up management) and user specific tasks Support Ethernet Multicast, Broadcast with flooding control to avoid unnecessary duplication of frames Supports VLAN frames reception and transmission Programmable number of IP Core interconnect ports which can be connected to up to 16 Ethernet MACs, packet interface queues or custom logic Can be used in managed implementations, with an external configuration and control processor, or in unmanaged implementations with external configuration and control pins Event and status signals which can be used to monitor port activity, severe error conditions or any user specific event Available on Altera Stratix, Stratix-II FPGAs, Altera Hardcopy Structured ASIC and Generic ASIC SDK (Software Development Kit) available to provide customer specific software development capability Fully Integrated in Altera SOPC Builder 4

3 Block Diagram P6GESX Programmable Multiport Ethernet Engine Receive Ports Transmit Ports Programming / Learning s 32-Bit Embedded Processor De-Queuing Control Flash Program SRAM Three Stage Look Up Control Timer Control Figure 5: P6GESX L2 Block Diagram 5

4 Implementation Summary Table 1: P6GESX L2 Complexity Summary P6GESX Programmable Multiport Ethernet Device Family Speed Grade L2 Engine Complexity L2 Engine with Embedded NIOS Processor Maximum Clock Frequency Performances ing Capacity STRATIX II STRATIX -5 190MHz 6Gbps 2100 LEs (1) 5800 LEs (1) -3 260MHz 8Gbps -7 145MHz 4.6Gbps 2300 LEs 6200 LEs -5 200MHz 6.4Gbps 1. The Logic Element count for Stratix II devices is based on the number of adaptive look-up tables (ALUTs) used for the design as reported by the Quartus II software. 5 10/100/1000Mbps Ethernet MAC Design Kit Overview Table 2: Design Kit Overview Design and Simulation Language Source Code VHDL, Enrypted VHDL or Verilog Netlist Simulation Verification Configurable VHDL / Verilog Testbench with embedded frame generator and checker providing an easy to use and robust de-bugging environment. Comprehensive test environment with Ethernet frame generator and verification models for standard compliant and errored frame generation and automated core behavior verification. Supported Design Tools Simulation Modelsim Version 5.7a or higher. Synthesis Quartus II 4.1 or higher Implementation Quartus II 4.1 higher 6

6 Contact MorethanIP GmbH An der Steinernen Bruecke 1 85757 Karlsfeld Germany Tel : +49 (0) 81313339390 FAX : +49 (0) 81313339391 E-Mail : info@morethanip.com Internet : www.morethanip.com 7