Matlab5 5.3 symbolisches Lösen von DGLn

Similar documents
1.4 Application Separable Equations and the Logistic Equation

Numerical Solution of ODE

It is easier to visualize plotting the curves of cos x and e x separately: > plot({cos(x),exp(x)},x = -5*Pi..Pi,y = );

Gauss-Jordan Algorithm

Mass-Spring Systems and Resonance

ME 406 Assignment #1 Solutions

Engineering Mathematics 2018

MATH Differential Equations September 15, 2008 Project 1, Fall 2008 Due: September 24, 2008

Boyce - DiPrima 8.4, Multistep Methods

Coded Caching with Multiple File Requests

Data Structures and Algorithms. The material for this lecture is drawn, in part, from The Practice of Programming (Kernighan & Pike) Chapter 2

Project #1 Math 285 Name:

CENG 477 Introduction to Computer Graphics. Modeling Transformations

Sam knows that his MP3 player has 40% of its battery life left and that the battery charges by an additional 12 percentage points every 15 minutes.

COMP26120: Algorithms and Imperative Programming

NEWTON S SECOND LAW OF MOTION

7.2 Puiseux Expansions

Motor Control. 5. Control. Motor Control. Motor Control

THERMAL PHYSICS COMPUTER LAB #3 : Stability of Dry Air and Brunt-Vaisala Oscillations

DEFINITION OF THE LAPLACE TRANSFORM

MARSS Reference Sheet

Real Time Integral-Based Structural Health Monitoring

the marginal product. Using the rule for differentiating a power function,

Scattering at an Interface: Normal Incidence

Image segmentation. Motivation. Objective. Definitions. A classification of segmentation techniques. Assumptions for thresholding

Quantitative macro models feature an infinite number of periods A more realistic (?) view of time

A Matching Algorithm for Content-Based Image Retrieval

Lecture 18: Mix net Voting Systems

Data Structures and Algorithms

Chapter Six Chapter Six

Fill in the following table for the functions shown below.

tr_lisp.asc Page 1 McESE-FranzLISP: McMASTER EXPERT SYSTEM EXTENSION OF FranzLISP F. Franek Technical Report no TR-22/88

Computer representations of piecewise

Constant-Work-Space Algorithms for Shortest Paths in Trees and Simple Polygons

A Principled Approach to. MILP Modeling. Columbia University, August Carnegie Mellon University. Workshop on MIP. John Hooker.

Mobile Robots Mapping

4. Minimax and planning problems

The Laplace Transform

Streamline Pathline Eulerian Lagrangian

Piecewise Linear Models

AML710 CAD LECTURE 11 SPACE CURVES. Space Curves Intrinsic properties Synthetic curves

Design Alternatives for a Thin Lens Spatial Integrator Array

The Roots of Lisp paul graham

TUTORING TEXTS IN MATHCAD

An Improved Square-Root Nyquist Shaping Filter

A Formalization of Ray Casting Optimization Techniques

CAMERA CALIBRATION BY REGISTRATION STEREO RECONSTRUCTION TO 3D MODEL

Hybrid Equations (HyEQ) Toolbox v2.02 A Toolbox for Simulating Hybrid Systems in MATLAB/Simulink R

Principles of MRI EE225E / BIO265. Lecture 10. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley

Implementing Ray Casting in Tetrahedral Meshes with Programmable Graphics Hardware (Technical Report)

Spline Curves. Color Interpolation. Normal Interpolation. Last Time? Today. glshademodel (GL_SMOOTH); Adjacency Data Structures. Mesh Simplification

COSC 3213: Computer Networks I Chapter 6 Handout # 7

STEREO PLANE MATCHING TECHNIQUE

Hands on Lab Manual Coherence Introduction

Precise Voronoi Cell Extraction of Free-form Rational Planar Closed Curves

PART 1 REFERENCE INFORMATION CONTROL DATA 6400 SYSTEMS CENTRAL PROCESSOR MONITOR

An Efficient Delivery Scheme for Coded Caching

A METHOD OF MODELING DEFORMATION OF AN OBJECT EMPLOYING SURROUNDING VIDEO CAMERAS

In Proceedings of CVPR '96. Structure and Motion of Curved 3D Objects from. using these methods [12].

EECS 487: Interactive Computer Graphics

Optimal Crane Scheduling

THE EQUIVALENCE OF MODELS OF TASKING + by Daniel M. Berry Brown University

Feature-Preserving Reconstruction of Singular Surfaces

ENDA ETM442 DIGITAL TIMER

RULES OF DIFFERENTIATION LESSON PLAN. C2 Topic Overview CALCULUS

Shortest Path Algorithms. Lecture I: Shortest Path Algorithms. Example. Graphs and Matrices. Setting: Dr Kieran T. Herley.

MIC2569. Features. General Description. Applications. Typical Application. CableCARD Power Switch

Exercise 3: Bluetooth BR/EDR

Packet Scheduling in a Low-Latency Optical Interconnect with Electronic Buffers

Assignment 2. Due Monday Feb. 12, 10:00pm.

Ins Net2 plus control unit

Chapter 4 Sequential Instructions

Today. Curves & Surfaces. Can We Disguise the Facets? Limitations of Polygonal Meshes. Better, but not always good enough

Optimal trajectory approximation by cubic splines on fed-batch control problems

Curves & Surfaces. Last Time? Today. Readings for Today (pick one) Limitations of Polygonal Meshes. Today. Adjacency Data Structures

Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences of SQL Queries

Dimmer time switch AlphaLux³ D / 27

ETD-BL-1T-OFF-CC-... Timer relay with off delay (with control contact) and adjustable time. INTERFACE Data sheet _en_01. 1 Description.

Integro-differential splines and quadratic formulae

Probabilistic Detection and Tracking of Motion Discontinuities

Collision-Free and Curvature-Continuous Path Smoothing in Cluttered Environments

ENDA ETM742 DIGITAL TIMER

Experiments in Generalizing Geometry Theorems Stephen B. Gray

Outline. EECS Components and Design Techniques for Digital Systems. Lec 06 Using FSMs Review: Typical Controller: state

Network management and QoS provisioning - QoS in Frame Relay. . packet switching with virtual circuit service (virtual circuits are bidirectional);

Chapter 3 MEDIA ACCESS CONTROL

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Fall 2012)

Location. Electrical. Loads. 2-wire mains-rated. 0.5 mm² to 1.5 mm² Max. length 300 m (with 1.5 mm² cable). Example: Belden 8471

Scheduling. Scheduling. EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4 Updated March 16, 2012

MB86297A Carmine Timing Analysis of the DDR Interface

DAGM 2011 Tutorial on Convex Optimization for Computer Vision

A Numerical Study on Impact Damage Assessment of PC Box Girder Bridge by Pounding Effect

Midterm Exam Announcements

Rule-Based Multi-Query Optimization

FIELD PROGRAMMABLE GATE ARRAY (FPGA) AS A NEW APPROACH TO IMPLEMENT THE CHAOTIC GENERATORS

On Continuity of Complex Fuzzy Functions

M y. Image Warping. Targil 7 : Image Warping. Image Warping. 2D Geometric Transformations. image filtering: change range of image g(x) = T(f(x))

4 Error Control. 4.1 Issues with Reliable Protocols

Nearest Keyword Search in XML Documents

Why not experiment with the system itself? Ways to study a system System. Application areas. Different kinds of systems

Transcription:

C:\Si5\Ingmah\symbmalab\DGLn_N4_2.doc, Seie /5 Prof. Dr. R. Kessler, Homepage: hp://www.home.hs-karlsruhe.de/~kero/ Malab5 5.3 symbolisches Lösen von DGLn % Beispiele aus Malab 4.3 Suden Ediion Handbuch Seie 222»» dsolve('dy=+y^2') % find he general soluion ans =an(+c)» % OK Jez mi iniial condiion y()=:» y=dsolve('dy=+y^2','y()=') % add he iniial condiion y = an(+/4*pi)» % les ry an second order differenial equaion wih wo iniial condiions:» y=dsolve('d2y=cos(2*x)-y','dy()=','y()=') ergib y = 2*cos(x)^2-+(-2*cos(x)^2+2)*cos()» y = simple(y) % looks like i can be simplified ergib y = 2*cos(x)^2-+(-2*cos(x)^2+2)*cos()» % Im Tex S. 223 (Suden ediion handbook) seh eine andere Formel:» % -/3*cos(2*x)+4/3*cos(x) % Applying he iniial condiion y() and y()= gives» y=dsolve('d2y-2*dy-3*y=','y()=','y()=') => y =/(exp(-)-exp(3))*exp(-)-/(exp(-)-exp(3))*exp(3*)» y=simple(y) => y =(exp(-)-exp(3*))/(exp(-)-exp(3))» ezplo(y,[-6,2]) ( e x p ( - ) - e x p ( 3 ) ) / ( e x p ( - ) - e x p ( 3 ) ) 5-5 - - 5-6 - 5-4 - 3-2 - 2

C:\Si5\Ingmah\symbmalab\DGLn_N4_2.doc, Seie 2/5 Jez Beispiele Jeweils vorher clear und symbolische Variable deklarieren : clear; =sym('') % symbolic variable, Nr» % Nr : y +2*y +2*y = /( exp()*cos() )» y=dsolve('d2y+2*dy+2*y = /( exp()*cos() )') y=*exp(-)*sin()+log(cos())*exp(-)*cos()+c*exp(-)*sin()+c2*exp(-)*cos() clear; =sym(''), a=sym('a'), b=sym('b') % creaes symbolic variables,,a,b % DGL Nr 2 is y' + a*y = 2*exp(b*x); y() = 2 y=dsolve('dy+a*y = 2*exp(b*)', 'y()=2') % DGL Nr 2 clear; =sym(''), %symbolic variable, % DGL Nr 3: *y''-(+)*y'-2*(-)*y = **, y=dsolve('*d2y-(+)*dy-2*(-)*y = **') y = -/2*^2+C*(exp(-)+3**exp(-))+C2*(-+exp(-3*)+3*exp(-3*)*)*exp(2*) % DGL Nr 4: (*-)*y'+2**y = cos(), y()=; y=dsolve('(*-)*dy + 2**y = cos() ') % Alg. Lös. Nr 4 y=dsolve('(*-)*dy + 2**y = cos() ', 'y()=') % Spez. Lös. Nr 4 y = (sin()-)/(^2-) ezplo(y) ( s i n ( ) - ) / ( 2 - ). 5. 5 -. 5 - - 6-4 - 2 2 4 6 % DGL Nr 5: **y''-2**y' +2*y = 2***-x y=dsolve('**d2y-2**dy+2*y = 2***-') % DGL Nr 5 y = ^3+*log()++C*+C2*^2 ans =*(^2+log()++C+C2*) clear; =sym(''),a=sym('a') % symbolic variables,, a Nr 6 % DGL Nr 6: *y'+a*y =2***, a reell, y()= y=dsolve('*dy+a*y =2***','y()=') % Nr 6 y = 2*^3/(3+a)+^(-a)*(a+)/(3+a) % Nr 7 : (+)*( 2*y*y -exp(2*) + y*y = y=dsolve('(+)*( 2*y*Dy-exp(2*) + y*y = ','y()=-') % Nr 7 clear; =sym('') % symbolic variable, % Nr 8: **y'' +(4**-2*)*y' + (4**-4*+2)*y=***exp(-2*). y=dsolve('**d2y +(4**-2*)*Dy + (4**-4*+2)*y=***exp(-2*)') % Nr. 8 => y = /2*^3*exp(-2*)+C**exp(-2*)+C2*^2*exp(-2*)

C:\Si5\Ingmah\symbmalab\DGLn_N4_2.doc, Seie 3/5 clear; =sym('') % symbolic variable,» % Nr 9: y' +(5-4*)*y + (-)*y*y +4'-6 =. y=dsolve(' Dy +(5-4*)*y + (-)*y*y +4*-6 =') % Nr 9 y = (2*C*exp(*(-2))+(2*-)*exp(*(-3)))/(C*exp(*(-2))+*exp(*(-3))) clear; =sym(''); a=sym('a'); % symbolic variable,,a Nr % Nr : *y''-(2*a*+)*y'+a*(a*+)*y=* y=dsolve('*d2y-(2*a*+)*dy+a*(a*+)*y=*') % Nr. => y = (a*+)/a^3+c*exp(a*)+c2*^2*exp(a*) clear; =sym(''); % symbolic variable, Nr % Nr : y''' + 4*y'' + 5*y' + 2*y = cos(); y=dsolve(' D3y + 4*D2y + 5*Dy + 2*y = cos()') % Nr y = -/*cos()+/5*sin()+c*exp(-2*)+c2*exp(-)+c3*exp(-)* clear; =sym(''); % symbolic variable, Nr 2 : (*-)*y'+2**y = sin(), y()=; y=dsolve('(*-)*dy+2**y = sin()','y()='), % Nr 2 y = (-cos()+)/(^2-)» ezplo(y) ( - c o s ( ) + ) / ( 2 - ). 8. 6. 4. 2 -. 2 -. 4 -. 6-5 - 4-3 - 2-2 3 4 5 clear; =sym(''); % symbolic variable, Nr 3 % **y' - 2**y + y*y =, y()=2 y=dsolve('**dy - 2**y + y*y = ', 'y()=2'), % Nr. 2 y = ^2/(-/2)» ezplo(y) 2 / ( - / 2 ) 5-5 - - 6-4 - 2 2 4 6 clear; =sym(''); % symbolic variable, Nr 4 % Nr 4: **y'' + *y' -y= * y()=7/3; y'()=2/3 y=dsolve('**d2y + *Dy -y= *',' Dy()=2/3', 'y()=7/3'), % Nr 4 y = /3*^2+(^2+)/ clear; =sym(''); % symbolic variable, Nr 5

C:\Si5\Ingmah\symbmalab\DGLn_N4_2.doc, Seie 4/5» % Nr 5: *(-)*y' -(2*+)*y + y*y =-2*,» y= dsolve('*(-)*dy -(2*+)*y + y*y =-2*'), % Nr 5 => y = (C+^2)/(+C) clear; =sym(''); % symbolic variable, Nr 6» % Nr 6 ***y'' -**y' +*y= ***ln(x), y = ^2*log()-2*^2+C*+C2**log()» y=simple(y) => y = *(*log()-2*+c+c2*log()) clear; =sym(''); % symbolic variable, Nr 7 % Nr 7: y'+ (2*-) *y + (-x)* y*y =x, y()= y=dsolve(' Dy+ (2*-) *y + (-)* y*y =', 'y()='), % Nr 7 y = -2*exp(-)/(2-2*exp(-)*)» ezplo(y) - 2 e x p ( - ) / ( 2-2 e x p ( - ) ). 9. 8. 7. 6. 5. 4. 3. 2. - 6-5 - 4-3 - 2-2 3 4 clear; =sym(''); % symbolic variable, Nr 8 % Nr 8: **y'' + (4**-2*)*y' + (4**-4*+2)*y = ** Hinweis:mi» y=dsolve('** D2y + (4**-2*)* Dy + (4**-4*+2)* y = **' ), % Nr 8 y = /4*+C**exp(-2*)+C2*^2*exp(-2*) clear; =sym(''); % symbolic variable, Nr 9 % Nr 9: y''' +3 *y'' -4*y = exp()*cos() y= dsolve(' D3y +3 * D2y -4*y = exp()*cos()'), % Nr. 9 y = 2/25*sin()*exp()-3/5*exp()*cos()+C*exp()+C2*exp(-2*)+C3**exp(-2*) clear; =sym(''); % symbolic variable, Nr 2 % Nr 2: *(-) * y' -(2*+) * y + y*y = -2*, y=dsolve(' *(-) * Dy -(2*+) * y + y*y = -2*'), % Nr 2 => y = (C+^2)/(+C) clear; =sym(''); % symbolic variable, Nr 2 % Nr 2: ** y''+(4**-2*)*y'+(4** -4* +2) * y= ** * exp(-2*) * sin() y=dsolve(' ** D2y + (4** -2*) * Dy + (4** -4* +2) * y = ** * exp(-2*) * sin() '), % Nr 2 y = -*exp(-2*)*sin()+c**exp(-2*)+c2*^2*exp(-2*) Help-Infos in Malab 5.3» help dsolve DSOLVE Symbolic soluion of ordinary differenial equaions. DSOLVE('eqn','eqn2',...) acceps symbolic equaions represening ordinary differenial equaions and iniial condiions. Several

C:\Si5\Ingmah\symbmalab\DGLn_N4_2.doc, Seie 5/5 equaions or iniial condiions may be grouped ogeher, separaed by commas, in a single inpu argumen. By defaul, he independen variable is ''. The independen variable may be changed from '' o some oher symbolic variable by including ha variable as he las inpu argumen. The leer 'D' denoes differeniaion wih respec o he independen variable, i.e. usually d/d. A "D" followed by a digi denoes repeaed differeniaion; e.g., D2 is d^2/d^2. Any characers immediaely following hese differeniaion operaors are aken o be he dependen variables; e.g., D3y denoes he hird derivaive of y(). Noe ha he names of symbolic variables should no conain he leer "D". Iniial condiions are specified by equaions like 'y(a)=b' or 'Dy(a) = b' where y is one of he dependen variables and a and b are consans. If he number of iniial condiions given is less han he number of dependen variables, he resuling soluions will obain arbirary consans, C, C2, ec. Three differen ypes of oupu are possible. For one equaion and one oupu, he resuling soluion is reurned, wih muliple soluions o a nonlinear equaion in a symbolic vecor. For several equaions and an equal number of oupus, he resuls are sored in lexicographic order and assigned o he oupus. For several equaions and a single oupu, a srucure conaining he soluions is reurned. If no closed-form (explici) soluion is found, an implici soluion is aemped. When an implici soluion is reurned, a warning is given. If neiher an explici nor implici soluion can be compued, hen a warning is given and he empy sym is reurned. In some cases concerning nonlinear equaions, he oupu will be an equivalen lower order differenial equaion or an inegral. Examples: dsolve('dx = -a*x') reurns ans = exp(-a*)*c x = dsolve('dx = -a*x','x() = ','s') reurns x = exp(-a*s) y = dsolve('(dy)^2 + y^2 = ','y() = ') reurns y =[ sin()] [ -sin()] S = dsolve('df = f + g','dg = -f + g','f() = ','g() = 2') reurns a srucure S wih fields S.f = exp()*cos()+2*exp()*sin() S.g = -exp()*sin()+2*exp()*cos() Y = dsolve('dy = y^2*(-y)') Warning: Explici soluion could no be found; implici soluion reurned. Y = +/y-log(y)+log(-+y)+c= dsolve('df = f + sin()', 'f(pi/2) = ') dsolve('d2y = -a^2*y', 'y() =, Dy(pi/a) = ') S = dsolve('dx = y', 'Dy = -x', 'x()=', 'y()=') S = dsolve('du=v, Dv=w, Dw=-u','u()=, v()=, w()=') w = dsolve('d3w = -w','w()=, Dw()=, D2w()=') y = dsolve('d2y = sin(y)'); prey(y) See also SOLVE, SUBS.