Image Registration and Mosaicking Based on the Criterion of Four Collinear Points Chen Jinwei 1,a*, Guo Bin b, Guo Gangxiang c

Size: px
Start display at page:

Download "Image Registration and Mosaicking Based on the Criterion of Four Collinear Points Chen Jinwei 1,a*, Guo Bin b, Guo Gangxiang c"

Transcription

1 nd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2016) ISBN: Image Registration and Mosaicking Based on the Criterion of Four Collinear Points Chen Jinwei 1,a*, Guo Bin b, Guo Gangxiang c Institute of Metrology, Zhejiang Province, Hangzhou , China a chenjinwei_1987@126.com b urchinbin@gmail.com c guanagu@163.com Keywords: Mismatching; Cross-Ratio; Collinear; Image mosaicking Abstract. In order to avoid the influence caused by mismatching, improve the stitching accuracy, image registration based on refined feature points has been proposed. First, Harris corner detection is utilized to extract the feature points. Then the collinear points set have been selected from all of the feature points. Select the number of collinear points which are greater than or equal to 4. The collinear points from two images have been estimated by Cross-Ratio criterion. If the value of Cross-Ratio meets a certain threshold, these collinear points will be retained. 4 groups of points which are extracted from collinear points set will be used to calculate equation solution of projection transformation. Finally, fusion method combining optimal seam with feathering has been used to stitch images. An increase in the number of mismatching will cause a decline of image registration precision. There is a fall of 14.7% accuracy when one group of mismatching appears. There is a fall of 36% accuracy when three group of mismatching appears. However, the accuracy of our method has almost been unaffected. The collinear points extracted by Cross-Ratio rule are a good way to avoid the interference of mismatching. The precision can be guaranteed in the experimental process. 1. Instruction Image mosaicking is to stitch two or more images together which contain overlap area, form a wider scene image. Wide coverage and high resolution are very important in the process of the image application. The high resolution can improve the target scene detail which makes the feature information extraction and analysis easier. Larger coverage can make image covers more of the target scene, which help to study global content. In the application process, high resolution and large coverage can t be required at the same time. Image stitching technology can make use of a single sensor for many times or multiple sensor imaging for once to overcome the contradiction. Early image stitching technology is mainly using the Fourier transform method to estimate translation and rotation parameters [1, 2]. This method can only estimate simple mode l, such as translation, rotation or scaling, so it is hard to handle some complicated situation, such as affine transformation. Algorithm based on feature points now achieve excellent result, such as Scale-invariant Feature Transform(SIFT) [3] Harris-Corner [4] and Speed Up Robust Features (SURF) [5]. Besides point features, line features and regional characteristics in the field of remote sensing [6, 7] and biomedical field [8-13] have very good application prospect. Domestic and foreign scholars [14-17] use this characteristic information to greatly improve the efficiency and quality. In this paper, we choose Harris to extract feature points. 78

2 2 The criteria of Cross-Ratio Some algebraic measures structure do not change under projective transformation such as the cross ratio of four collinear points and five coplanar points which can be selected as the criterion to filtrate outliers. The cross ratio of four collinear points is chosen in this paper to select the pair of matching feature points. Figure 1. Four collinear projective invariant. The cross ratio of four collinear points is shown in figure 1. Firstly, four points of object plane ( A,B,C,D )are respectively imaged on the camera 1 and camera 2 which are represented by ( A1,B2,C1,D1)and( A2,B2,C2,D2). If the four points are on a straight line, the two groups of four points ( A1,B2,C1,D1)and ( A2,B2,C2,D2)are collinear on their respective focal plane. The reason is that the linear features and the Cross-Ratio Cr are not change in the projection transformation. d( AB) d( CD) Cr d( AC) d( BD) 3 The optimization of refined feature points The optimization of control points is mainly making use of the Cross-ratio criterion to select a little of precise matching feature points, which can avoid the interference of mismatch. Figure 2 (a) is common stitching algorithm flow chart. In the process of the global error optimization, the goal is to reduce all the registration error of feature points. If there is a certain amount of error matching, the optimization results will affect the final image stitching quality. Figure 2 (b) is the flow chart of our algorithm, which utilize the Cross - ratio rule to select a small amount of optimal matching pairs to these feature points to estimate the transformation parameters between images, and realize the optimization of image stitching. (1) (a) The flow chart of normal stitching algorithm (b) The flow chart of our method Figure 2. The flow chart of two methods. 79

3 The optimal matching pairs are the result of the rule of Cross-ratio after optimization, the principle is selecting matching pairs under projection transformation from two groups of feature points. The specific algorithm process is as follows 1) Suppose that the set of feature points is { C i } i 1,2,... n from conference image I C, we choose two points C k and C l to build linear equation. 2) We choose the feature points set { V j which can meet the equation. If the number of set { V j } is less than two, repeat the step one. If the number of set { V j } is more than two, we select the feature points T k, T l and { W j form test image I T which are Corresponding to C k, l C and { V j. 3) The equation will be built according to points T k and T l, we should judge the collinear equation between the equation and the set{ W j. If the number is less than two, repeat the step one; If the number is more than two, we calculate the cross-ratio for the straight lines respectively to obtain the values Cr( ) and Cr( ). 4) We select a threshold, If Cr( ) Cr( ), The collection of four collinear meet the requirements, otherwise the selection is failed, return to the step one. 5) Repeat this step for k times, then choose a 2 or 3 groups with minimum value. Build the sets and according to the feature points. We select four matching pairs from the sets and to calculate the transformation relationship between images. 6) Using the transformation matrix to stitch the images IC and I T. We choose the average difference of the pixel to assess the quality of stitching images. E IC( x, y) IT( x, y) /( M * N) (2) Where (, ) C ( x, y ), M * registration. I x y and I (, ) 4. Analysis of stitching T M, N x y are the gray value of the conference and test image on the coordinates N is the pixel number of overlap area, the value of E represents the stitching 4.1 Stitching experiment The goal of image mosaic is to stitch two or more images together which contain overlapping areas. In this paper, we choose two images stitching to demonstrate our new algorithm. Figure 3 are two images, (a) is conference image, (b) is the test image. 80

4 (a) Conference image (b) Test image Figure 3. Two images for stitching. Figure 4 is the stitching result of two images.(a)is the result of Harris, (b)is the result of Random Sample Consensus(RANSAC), we have found the method of RANSAC can t remove all the wrong matching. (a) Original Harris feature point matching pairs (b) Feature point matching pairs after RANSAC Figure 4. The result of feature points matching. We select the collinear feature points in the feature set which are optimized by the method of RANSC, and the number of this feature set should be larger than four. Then the Cross-Ratio of the collinear of two images are calculated and compared. If the value of Cr has meet the range of threshold, the straight lines are the result which we need. The process of result is shown in figure 5. 81

5 (a) Four collinear points of conference image (b) Four collinear points of test image Figure 5. Extraction of four collinear points. If several groups of straight lines have found to meet the criteria of cross-ratio, we can choose four pairs of feature points to obtain the transformation relationship between images. The stitching result is shown in figure 6. Figure 6. image mosaic Analysis of error The key factor of image registration is the matching accuracy of feature points. The images for stitching maybe come from different sensors, different position or different time. The wrong matching is hard to remove in the real stitching environment. These mismatching will easy affect the result of mosaicking when processing the global optimization. The method in this paper is based on the criterion of four collinear points, the advantage of which can select refined matching feature points, so the result of stitching will not be affect by the mismatching. (a) Conference image (b) Test image Figure 7. Two images for stitching. The figure 7 contains two images captured in different viewpoints. A lot of mismatching will appear in the processing of feature matching, the number of mismatching is still large even 82

6 if applied with RANSAC. The result is shown in Figure 8. Figure 8. Feature matching image. When mismatching appeared, we still can select collinear feature points which are accurately matching. When the number of mismatching is 1 to 10, the algorithm in this paper can further eliminate these false matching, the extraction results are shown in figure 9. (a) Four collinear points of conference (b) Four collinear points of test image Figure 9. Result of four collinear points when there is mismatching. In the ordinary stitching algorithm, the mismatching feature points are also the constrained optimization condition, so the registration error will expand when the number of mismatching are increasing. Because of the existence of mismatching pairs, the registration accuracy for figure 8 is vulnerable to pollution. The figure 10 is t the relationship between the matching number and registration accuracy. If we use the equation (10) for comparative analysis, the result shows that the global registration accuracy has decreased by 14.7% when there is one group of mismatching; decreased by 36% when 3 groups of mismatching, however the result of our method is almost unaffected. Figure 10. Relation between precision and the number of mismatching. 5 Summary The accuracy of registration algorithm based on feature points depends on the matching precision. With development of imaging technology, the image size and the detail resolution has been increased, the number of feature points extracted from an image is also growing. However the 83

7 increased number of feature points, the number of mismatching is also increasing. The optimization algorithm based on global feature points will be strongly affected by this mismatching. In this paper, we use the criteria of cross ratio to extract a small amount of precise feature points, which is a good way to avoid false matching caused by the interference. The result shows that the global registration accuracy has decreased by 14.7% when there is one group of mismatching; decreased by 36% when 3 groups of mismatching, however the result of our method is almost unaffected. Reference [1] Reddy B.S., Chatterji B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration [J]. IEEE transactions on image processing. 1996, 5(8): [2] De Castro E., Morandi C. Registration of translated and rotated images using finite fourier transforms. [J]. IEEE transactions on pattern analysis and machine intelligence. 1987, 9(5): [3] Lowe D.G. Distinctive image features from scale-invariant keypoints[j]. International journal of computer vision. 2004, 60(2): [4] Harris C., Stephens M. A combined corner and edge detector. [C]. Manchester, UK, [5] Bay H., Tuytelaars T., Van Gool L. Surf: Speeded up robust features [M]. Springer, 2006, [6] Chen J., Feng H., Pan K., et al. An optimization method for registration and mosaicking of remote sensing images [J]. Optik-International Journal for Light and Electron Optics. 2014, 125(2): [7] Yu X. C.H., L.V. Z.H. H., Hu D. Review of Remote sensing image registration techniques [J]. Optics and Precision Engineering, 2013(11): (in Chinese). [8] Oliveira F.P., Tavares J.M.R. Medical image registration: a review [J]. Computer methods in biomechanics and biomedical engineering. 2014, 17(2): [9] Kessler M. TU-A-19A-01: Image Registration I: Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201 [J]. Medical Physics. 2014, 41(6): 444. [10] Valsecchi A., Damas S., Santamaría J., et al. Intensity-based image registration using scatter search [J]. Artificial intelligence in medicine. 2014, 60(3): [11] Rivaz H., Karimaghaloo Z., Collins D.L. Self-similarity weighted mutual information: A new nonrigid image registration metric[j]. Medical image analysis. 2014, 18(2): [12] Onofrey J.A., Staib L.H., Papademetris X. Semi-supervised learning of nonrigid deformations for image registration[m]. Springer, 2014, [13] Zhang H.Y., Z.H. J. W., S.J.Z. Non-rigid medical image registration based on improved Demons algorithm [J]. Optics and Precision Engineering, 2007(01): (in Chinese) [14] Gao J., Kim S.J., Brown M.S. Constructing image panoramas using dual-homography warping [C]. IEEE, [15] Holtkamp D.J., Goshtasby A.A. Precision registration and mosaicking of multicamera images [J]. Geoscience and Remote Sensing, IEEE Transactions on. 2009, 47(10): [16] Qin F. Q., He X.H., CHNE W.L., et al. Super-resolution reconstruction method of image registration[j]. Optics and Precision Engineering, 2009, 47(10): (in Chinese) [17]. NIE H.B., Hou Q.Y., Zhao M., et al. IR/visible image registration based on EM iteration of log-likehood function [J]. Optics and Precision Engineering, 2011(03): (in Chinese) 84

Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis

Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis 1 Xulin LONG, 1,* Qiang CHEN, 2 Xiaoya

More information

Research on Multi-sensor Image Matching Algorithm Based on Improved Line Segments Feature

Research on Multi-sensor Image Matching Algorithm Based on Improved Line Segments Feature ITM Web of Conferences, 0500 (07) DOI: 0.05/ itmconf/070500 IST07 Research on Multi-sensor Image Matching Algorithm Based on Improved Line Segments Feature Hui YUAN,a, Ying-Guang HAO and Jun-Min LIU Dalian

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

III. VERVIEW OF THE METHODS

III. VERVIEW OF THE METHODS An Analytical Study of SIFT and SURF in Image Registration Vivek Kumar Gupta, Kanchan Cecil Department of Electronics & Telecommunication, Jabalpur engineering college, Jabalpur, India comparing the distance

More information

Infrared Image Stitching Based on Immune Memory Clonal Selection Algorithm

Infrared Image Stitching Based on Immune Memory Clonal Selection Algorithm Infrared Image Stitching Based on Immune Memory Clonal Selection Algorithm by Tong Hejun, Fu Dongmei, Dong Lin and Yang Tao School of Automation and Electrical Engineering, University of Science and Technology

More information

A Comparison of SIFT, PCA-SIFT and SURF

A Comparison of SIFT, PCA-SIFT and SURF A Comparison of SIFT, PCA-SIFT and SURF Luo Juan Computer Graphics Lab, Chonbuk National University, Jeonju 561-756, South Korea qiuhehappy@hotmail.com Oubong Gwun Computer Graphics Lab, Chonbuk National

More information

A Rapid Automatic Image Registration Method Based on Improved SIFT

A Rapid Automatic Image Registration Method Based on Improved SIFT Available online at www.sciencedirect.com Procedia Environmental Sciences 11 (2011) 85 91 A Rapid Automatic Image Registration Method Based on Improved SIFT Zhu Hongbo, Xu Xuejun, Wang Jing, Chen Xuesong,

More information

3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor Hai-Qing YANG a,*, Li HE b, Geng-Xin GUO c and Yong-Jun XU d

3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor Hai-Qing YANG a,*, Li HE b, Geng-Xin GUO c and Yong-Jun XU d 2017 International Conference on Mechanical Engineering and Control Automation (ICMECA 2017) ISBN: 978-1-60595-449-3 3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor

More information

A Method to Eliminate Wrongly Matched Points for Image Matching

A Method to Eliminate Wrongly Matched Points for Image Matching 2017 2nd International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2017) ISBN: 978-1-60595-522-3 A Method to Eliminate Wrongly Matched Points for Image Matching Xiao-fei AI * ABSTRACT

More information

Acquisition of high resolution geo objects Using image mosaicking techniques

Acquisition of high resolution geo objects Using image mosaicking techniques OPEN JOURNAL SISTEMS ISSN:2237-2202 Available on line at Directory of Open Access Journals Journal of Hyperspectral Remote Sensing v.6, n.3 (2016) 125-129 DOI: 10.5935/2237-2202.20160013 Journal of Hyperspectral

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

Feature Matching and RANSAC

Feature Matching and RANSAC Feature Matching and RANSAC Recognising Panoramas. [M. Brown and D. Lowe,ICCV 2003] [Brown, Szeliski, Winder, CVPR 2005] with a lot of slides stolen from Steve Seitz, Rick Szeliski, A. Efros Introduction

More information

Panoramic Image Stitching

Panoramic Image Stitching Mcgill University Panoramic Image Stitching by Kai Wang Pengbo Li A report submitted in fulfillment for the COMP 558 Final project in the Faculty of Computer Science April 2013 Mcgill University Abstract

More information

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES Jie Shao a, Wuming Zhang a, Yaqiao Zhu b, Aojie Shen a a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

An Algorithm for Seamless Image Stitching and Its Application

An Algorithm for Seamless Image Stitching and Its Application An Algorithm for Seamless Image Stitching and Its Application Jing Xing, Zhenjiang Miao, and Jing Chen Institute of Information Science, Beijing JiaoTong University, Beijing 100044, P.R. China Abstract.

More information

Automatic Feature Extraction of Pose-measuring System Based on Geometric Invariants

Automatic Feature Extraction of Pose-measuring System Based on Geometric Invariants Automatic Feature Extraction of Pose-measuring System Based on Geometric Invariants Yan Lin 1,2 Bin Kong 2 Fei Zheng 2 1 Center for Biomimetic Sensing and Control Research, Institute of Intelligent Machines,

More information

CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry

CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry Some material taken from: David Lowe, UBC Jiri Matas, CMP Prague http://cmp.felk.cvut.cz/~matas/papers/presentations/matas_beyondransac_cvprac05.ppt

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

SURF applied in Panorama Image Stitching

SURF applied in Panorama Image Stitching Image Processing Theory, Tools and Applications SURF applied in Panorama Image Stitching Luo Juan 1, Oubong Gwun 2 Computer Graphics Lab, Computer Science & Computer Engineering, Chonbuk National University,

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 5 - Class 1: Matching, Stitching, Registration September 26th, 2017 ??? Recap Today Feature Matching Image Alignment Panoramas HW2! Feature Matches Feature

More information

Algorithm research of 3D point cloud registration based on iterative closest point 1

Algorithm research of 3D point cloud registration based on iterative closest point 1 Acta Technica 62, No. 3B/2017, 189 196 c 2017 Institute of Thermomechanics CAS, v.v.i. Algorithm research of 3D point cloud registration based on iterative closest point 1 Qian Gao 2, Yujian Wang 2,3,

More information

Combining Appearance and Topology for Wide

Combining Appearance and Topology for Wide Combining Appearance and Topology for Wide Baseline Matching Dennis Tell and Stefan Carlsson Presented by: Josh Wills Image Point Correspondences Critical foundation for many vision applications 3-D reconstruction,

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

A Novel Real-Time Feature Matching Scheme

A Novel Real-Time Feature Matching Scheme Sensors & Transducers, Vol. 165, Issue, February 01, pp. 17-11 Sensors & Transducers 01 by IFSA Publishing, S. L. http://www.sensorsportal.com A Novel Real-Time Feature Matching Scheme Ying Liu, * Hongbo

More information

Mosaics. Today s Readings

Mosaics. Today s Readings Mosaics VR Seattle: http://www.vrseattle.com/ Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2_mars97.html Today s Readings Szeliski and Shum paper (sections

More information

Implementation and Comparison of Feature Detection Methods in Image Mosaicing

Implementation and Comparison of Feature Detection Methods in Image Mosaicing IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 07-11 www.iosrjournals.org Implementation and Comparison of Feature Detection Methods in Image

More information

E27 Computer Vision - Final Project: Creating Panoramas David Nahmias, Dan Spagnolo, Vincent Stigliani Professor Zucker Due 5/10/13

E27 Computer Vision - Final Project: Creating Panoramas David Nahmias, Dan Spagnolo, Vincent Stigliani Professor Zucker Due 5/10/13 E27 Computer Vision - Final Project: Creating Panoramas David Nahmias, Dan Spagnolo, Vincent Stigliani Professor Zucker Due 5/10/13 Sources Brown, M.; Lowe, D.G., "Recognising panoramas," Computer Vision,

More information

Local features and image matching. Prof. Xin Yang HUST

Local features and image matching. Prof. Xin Yang HUST Local features and image matching Prof. Xin Yang HUST Last time RANSAC for robust geometric transformation estimation Translation, Affine, Homography Image warping Given a 2D transformation T and a source

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

A Comparison and Matching Point Extraction of SIFT and ISIFT

A Comparison and Matching Point Extraction of SIFT and ISIFT A Comparison and Matching Point Extraction of SIFT and ISIFT A. Swapna A. Geetha Devi M.Tech Scholar, PVPSIT, Vijayawada Associate Professor, PVPSIT, Vijayawada bswapna.naveen@gmail.com geetha.agd@gmail.com

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Today s lecture. Image Alignment and Stitching. Readings. Motion models

Today s lecture. Image Alignment and Stitching. Readings. Motion models Today s lecture Image Alignment and Stitching Computer Vision CSE576, Spring 2005 Richard Szeliski Image alignment and stitching motion models cylindrical and spherical warping point-based alignment global

More information

A New Representation for Video Inspection. Fabio Viola

A New Representation for Video Inspection. Fabio Viola A New Representation for Video Inspection Fabio Viola Outline Brief introduction to the topic and definition of long term goal. Description of the proposed research project. Identification of a short term

More information

Invariant Features from Interest Point Groups

Invariant Features from Interest Point Groups Invariant Features from Interest Point Groups Matthew Brown and David Lowe {mbrown lowe}@cs.ubc.ca Department of Computer Science, University of British Columbia, Vancouver, Canada. Abstract This paper

More information

Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data

Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data Xue Mei, Fatih Porikli TR-19 September Abstract We

More information

Fast Image Matching Using Multi-level Texture Descriptor

Fast Image Matching Using Multi-level Texture Descriptor Fast Image Matching Using Multi-level Texture Descriptor Hui-Fuang Ng *, Chih-Yang Lin #, and Tatenda Muindisi * Department of Computer Science, Universiti Tunku Abdul Rahman, Malaysia. E-mail: nghf@utar.edu.my

More information

Prof. Feng Liu. Spring /26/2017

Prof. Feng Liu. Spring /26/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/26/2017 Last Time Re-lighting HDR 2 Today Panorama Overview Feature detection Mid-term project presentation Not real mid-term 6

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

A REAL-TIME REGISTRATION METHOD OF AUGMENTED REALITY BASED ON SURF AND OPTICAL FLOW

A REAL-TIME REGISTRATION METHOD OF AUGMENTED REALITY BASED ON SURF AND OPTICAL FLOW A REAL-TIME REGISTRATION METHOD OF AUGMENTED REALITY BASED ON SURF AND OPTICAL FLOW HONGBO LI, MING QI AND 3 YU WU,, 3 Institute of Web Intelligence, Chongqing University of Posts and Telecommunications,

More information

Research of Image Registration Algorithm By corner s LTS Hausdorff Distance

Research of Image Registration Algorithm By corner s LTS Hausdorff Distance Research of Image Registration Algorithm y corner s LTS Hausdorff Distance Zhou Ai-jun,YuLiu-fang Lecturer,Nanjing Normal University Taizhou college, Taizhou, 225300,china ASTRACT: Registration Algorithm

More information

Octree-Based Obstacle Representation and Registration for Real-Time

Octree-Based Obstacle Representation and Registration for Real-Time Octree-Based Obstacle Representation and Registration for Real-Time Jaewoong Kim, Daesik Kim, Junghyun Seo, Sukhan Lee and Yeonchool Park* Intelligent System Research Center (ISRC) & Nano and Intelligent

More information

Map-Enhanced UAV Image Sequence Registration and Synchronization of Multiple Image Sequences

Map-Enhanced UAV Image Sequence Registration and Synchronization of Multiple Image Sequences Map-Enhanced UAV Image Sequence Registration and Synchronization of Multiple Image Sequences Yuping Lin and Gérard Medioni Computer Science Department, University of Southern California 941 W. 37th Place,

More information

Accurate Image Registration from Local Phase Information

Accurate Image Registration from Local Phase Information Accurate Image Registration from Local Phase Information Himanshu Arora, Anoop M. Namboodiri, and C.V. Jawahar Center for Visual Information Technology, IIIT, Hyderabad, India { himanshu@research., anoop@,

More information

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-21 April 2012, Tallinn, Estonia LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS Shvarts, D. & Tamre, M. Abstract: The

More information

Video Processing for Judicial Applications

Video Processing for Judicial Applications Video Processing for Judicial Applications Konstantinos Avgerinakis, Alexia Briassouli, Ioannis Kompatsiaris Informatics and Telematics Institute, Centre for Research and Technology, Hellas Thessaloniki,

More information

Image Stitching using Harris Feature Detection

Image Stitching using Harris Feature Detection Image Stitching using Harris Feature Detection Shreyas Mistry 1, Prof. Arpita Patel 2 1M. Tech. Student, Electronics & Communication, Chandubhai S. Patel Institute of Technology 2Assi. Professor, Electronics

More information

An Overview of Matchmoving using Structure from Motion Methods

An Overview of Matchmoving using Structure from Motion Methods An Overview of Matchmoving using Structure from Motion Methods Kamyar Haji Allahverdi Pour Department of Computer Engineering Sharif University of Technology Tehran, Iran Email: allahverdi@ce.sharif.edu

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Image warping and stitching

Image warping and stitching Image warping and stitching Thurs Oct 15 Last time Feature-based alignment 2D transformations Affine fit RANSAC 1 Robust feature-based alignment Extract features Compute putative matches Loop: Hypothesize

More information

IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas

IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas 162 International Journal "Information Content and Processing", Volume 1, Number 2, 2014 IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas Abstract:

More information

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang International Science Index, Electrical and Computer Engineering waset.org/publication/0007607

More information

Non-rigid Image Registration

Non-rigid Image Registration Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration

More information

Fast Outlier Rejection by Using Parallax-Based Rigidity Constraint for Epipolar Geometry Estimation

Fast Outlier Rejection by Using Parallax-Based Rigidity Constraint for Epipolar Geometry Estimation Fast Outlier Rejection by Using Parallax-Based Rigidity Constraint for Epipolar Geometry Estimation Engin Tola 1 and A. Aydın Alatan 2 1 Computer Vision Laboratory, Ecóle Polytechnique Fédéral de Lausanne

More information

A Comparison of SIFT and SURF

A Comparison of SIFT and SURF A Comparison of SIFT and SURF P M Panchal 1, S R Panchal 2, S K Shah 3 PG Student, Department of Electronics & Communication Engineering, SVIT, Vasad-388306, India 1 Research Scholar, Department of Electronics

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Fast, Unconstrained Camera Motion Estimation from Stereo without Tracking and Robust Statistics

Fast, Unconstrained Camera Motion Estimation from Stereo without Tracking and Robust Statistics Fast, Unconstrained Camera Motion Estimation from Stereo without Tracking and Robust Statistics Heiko Hirschmüller, Peter R. Innocent and Jon M. Garibaldi Centre for Computational Intelligence, De Montfort

More information

Deep Learning: Image Registration. Steven Chen and Ty Nguyen

Deep Learning: Image Registration. Steven Chen and Ty Nguyen Deep Learning: Image Registration Steven Chen and Ty Nguyen Lecture Outline 1. Brief Introduction to Deep Learning 2. Case Study 1: Unsupervised Deep Homography 3. Case Study 2: Deep LucasKanade What is

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 4 th, 2017 Yong Jae Lee UC Davis Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 2 Alignment problem In alignment, we will

More information

Computer Vision. Exercise 3 Panorama Stitching 09/12/2013. Compute Vision : Exercise 3 Panorama Stitching

Computer Vision. Exercise 3 Panorama Stitching 09/12/2013. Compute Vision : Exercise 3 Panorama Stitching Computer Vision Exercise 3 Panorama Stitching 09/12/2013 Compute Vision : Exercise 3 Panorama Stitching The task Compute Vision : Exercise 3 Panorama Stitching 09/12/2013 2 Pipeline Compute Vision : Exercise

More information

Local features: detection and description May 12 th, 2015

Local features: detection and description May 12 th, 2015 Local features: detection and description May 12 th, 2015 Yong Jae Lee UC Davis Announcements PS1 grades up on SmartSite PS1 stats: Mean: 83.26 Standard Dev: 28.51 PS2 deadline extended to Saturday, 11:59

More information

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery 1 Charles TOTH, 1 Dorota BRZEZINSKA, USA 2 Allison KEALY, Australia, 3 Guenther RETSCHER,

More information

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision Zhiyan Zhang 1, Wei Qian 1, Lei Pan 1 & Yanjun Li 1 1 University of Shanghai for Science and Technology, China

More information

A COMPREHENSIVE TOOL FOR RECOVERING 3D MODELS FROM 2D PHOTOS WITH WIDE BASELINES

A COMPREHENSIVE TOOL FOR RECOVERING 3D MODELS FROM 2D PHOTOS WITH WIDE BASELINES A COMPREHENSIVE TOOL FOR RECOVERING 3D MODELS FROM 2D PHOTOS WITH WIDE BASELINES Yuzhu Lu Shana Smith Virtual Reality Applications Center, Human Computer Interaction Program, Iowa State University, Ames,

More information

Local features: detection and description. Local invariant features

Local features: detection and description. Local invariant features Local features: detection and description Local invariant features Detection of interest points Harris corner detection Scale invariant blob detection: LoG Description of local patches SIFT : Histograms

More information

A Hybrid Feature Extractor using Fast Hessian Detector and SIFT

A Hybrid Feature Extractor using Fast Hessian Detector and SIFT Technologies 2015, 3, 103-110; doi:10.3390/technologies3020103 OPEN ACCESS technologies ISSN 2227-7080 www.mdpi.com/journal/technologies Article A Hybrid Feature Extractor using Fast Hessian Detector and

More information

Image-based Modeling and Rendering: 8. Image Transformation and Panorama

Image-based Modeling and Rendering: 8. Image Transformation and Panorama Image-based Modeling and Rendering: 8. Image Transformation and Panorama I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung Univ, Taiwan Outline Image transformation How to represent the

More information

An Improved Optical Flow Method for Image Registration with Large-scale Movements

An Improved Optical Flow Method for Image Registration with Large-scale Movements Vol. 34, No. 7 ACTA AUTOMATICA SINICA July, 2008 An Improved Optical Flow Method for Image Registration with Large-scale Movements XIONG Jing-Yi 1 LUO Yu-Pin 1 TANG Guang-Rong 1 Abstract In this paper,

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 5 th, 2015 Yong Jae Lee UC Davis PS2 due next Friday Announcements 2 Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 3 Alignment

More information

Viewpoint Invariant Features from Single Images Using 3D Geometry

Viewpoint Invariant Features from Single Images Using 3D Geometry Viewpoint Invariant Features from Single Images Using 3D Geometry Yanpeng Cao and John McDonald Department of Computer Science National University of Ireland, Maynooth, Ireland {y.cao,johnmcd}@cs.nuim.ie

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation , pp.162-167 http://dx.doi.org/10.14257/astl.2016.138.33 A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation Liqiang Hu, Chaofeng He Shijiazhuang Tiedao University,

More information

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS M. Hassanein a, *, A. Moussa a,b, N. El-Sheimy a a Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares Biomedical Image Analysis based on Computational Registration Methods João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Methods a) Spatial Registration of (2D

More information

Matching Interest Points Using Projective Invariant Concentric Circles

Matching Interest Points Using Projective Invariant Concentric Circles Matching Interest Points Using Projective Invariant Concentric Circles Han-Pang Chiu omás Lozano-Pérez Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of echnology Abstract

More information

A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM INTRODUCTION

A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM INTRODUCTION A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM Karthik Krish Stuart Heinrich Wesley E. Snyder Halil Cakir Siamak Khorram North Carolina State University Raleigh, 27695 kkrish@ncsu.edu sbheinri@ncsu.edu

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Rotation Invariant Image Registration using Robust Shape Matching

Rotation Invariant Image Registration using Robust Shape Matching International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 2 (2014), pp. 125-132 International Research Publication House http://www.irphouse.com Rotation Invariant

More information

Outline. Introduction System Overview Camera Calibration Marker Tracking Pose Estimation of Markers Conclusion. Media IC & System Lab Po-Chen Wu 2

Outline. Introduction System Overview Camera Calibration Marker Tracking Pose Estimation of Markers Conclusion. Media IC & System Lab Po-Chen Wu 2 Outline Introduction System Overview Camera Calibration Marker Tracking Pose Estimation of Markers Conclusion Media IC & System Lab Po-Chen Wu 2 Outline Introduction System Overview Camera Calibration

More information

Fundamental matrix estimation for binocular vision measuring system used in wild field

Fundamental matrix estimation for binocular vision measuring system used in wild field Fundamental matrix estimation for binocular vision measuring system used in wild field Yan Nian 12 and Wang Xiang-jun 12 and Liu Feng 12 1 State Key Laboratory of Precision Measuring Technology and Instruments,

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability Midterm Wed. Local features: detection and description Monday March 7 Prof. UT Austin Covers material up until 3/1 Solutions to practice eam handed out today Bring a 8.5 11 sheet of notes if you want Review

More information

URBAN STRUCTURE ESTIMATION USING PARALLEL AND ORTHOGONAL LINES

URBAN STRUCTURE ESTIMATION USING PARALLEL AND ORTHOGONAL LINES URBAN STRUCTURE ESTIMATION USING PARALLEL AND ORTHOGONAL LINES An Undergraduate Research Scholars Thesis by RUI LIU Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 6: Feature matching and alignment Szeliski: Chapter 6.1 Reading Last time: Corners and blobs Scale-space blob detector: Example Feature descriptors We know

More information

A System of Image Matching and 3D Reconstruction

A System of Image Matching and 3D Reconstruction A System of Image Matching and 3D Reconstruction CS231A Project Report 1. Introduction Xianfeng Rui Given thousands of unordered images of photos with a variety of scenes in your gallery, you will find

More information

521466S Machine Vision Assignment #3 Image Features

521466S Machine Vision Assignment #3 Image Features 521466S Machine Vision Assignment #3 Image Features Spring 2018 This assignment explores feature detection, extraction, and matching. We will implement the well-known Harris corner detector and use Matlab

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Table of Contents Page No. 1 INTRODUCTION 1.1 Problem overview 2 1.2 Research objective 3 1.3 Thesis outline 7 2 1. INTRODUCTION 1.1 PROBLEM OVERVIEW The process of mapping and

More information

ON-MACHINE MEASUREMENT OF LARGE-SCALE WORKPIECE BASED ON MACHINE VISION

ON-MACHINE MEASUREMENT OF LARGE-SCALE WORKPIECE BASED ON MACHINE VISION ON-MACHINE MEASUREMENT OF LARGE-SCALE WORKPIECE BASED ON MACHINE VISION 1 ZHONGREN WANG, XIAOYU WANG 1 School of Mechanical and Automotive Engineering, Hubei University of Arts and Science, Xiangyang 44103,

More information

Application of Geometry Rectification to Deformed Characters Recognition Liqun Wang1, a * and Honghui Fan2

Application of Geometry Rectification to Deformed Characters Recognition Liqun Wang1, a * and Honghui Fan2 6th International Conference on Electronic, Mechanical, Information and Management (EMIM 2016) Application of Geometry Rectification to Deformed Characters Liqun Wang1, a * and Honghui Fan2 1 School of

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Thin Plate Spline Feature Point Matching for Organ Surfaces in Minimally Invasive Surgery Imaging

Thin Plate Spline Feature Point Matching for Organ Surfaces in Minimally Invasive Surgery Imaging Thin Plate Spline Feature Point Matching for Organ Surfaces in Minimally Invasive Surgery Imaging Bingxiong Lin, Yu Sun and Xiaoning Qian University of South Florida, Tampa, FL., U.S.A. ABSTRACT Robust

More information

Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski

Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Today Go over Midterm Go over Project #3

More information

Available online at ScienceDirect. Procedia Computer Science 22 (2013 )

Available online at   ScienceDirect. Procedia Computer Science 22 (2013 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 22 (2013 ) 945 953 17 th International Conference in Knowledge Based and Intelligent Information and Engineering Systems

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Camera Pose Measurement from 2D-3D Correspondences of Three Z Shaped Lines

Camera Pose Measurement from 2D-3D Correspondences of Three Z Shaped Lines International Journal of Intelligent Engineering & Systems http://www.inass.org/ Camera Pose Measurement from 2D-3D Correspondences of Three Z Shaped Lines Chang Liu 1,2,3,4, Feng Zhu 1,4, Jinjun Ou 1,4,

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

A Survey on Image Mosaicing Techniques

A Survey on Image Mosaicing Techniques A Survey on Image Mosaicing Techniques Hemlata Joshi 1 M. Tech. Scholar, Department of Computer Science and Engg. CSIT, Durg (CG) INDIA Mr.KhomLal Sinha 2 Assistant Professor, Department of Computer Science

More information