Sparse Distributed Memory Pattern Data Analysis

Size: px
Start display at page:

Download "Sparse Distributed Memory Pattern Data Analysis"

Transcription

1 Sparse Distributed Memory Pattern Data Analysis František Grebeníček * grebenic@dcse.fee.vutbr.cz Abstract: This paper discusses, how some statistical properties of pattern data can affect efficiency of Kanerva's Sparse Distributed Memory (SDM). Then, it suggests an method which should improve SDM efficiency. The method looks for optimal SDM parameters according to properties of pattern data. Results of simple experiment are included. Key Words: Sparse Distributed Memory, neural network, pattern recognition 1 Introduction The SDM was developed by Kanerva [1] and it may be regarded either as an extension of a classical random-access memory (RAM) or as a special type of three layer feedforward neural network. The main SDM alterations to the RAM are: The SDM calculates Hamming distances between the reference address and each location address. For each distance which is less or equal to the given radius the corresponding location is selected. The own memory is represented by n m counters (where n is number of locations and m is the input data length) instead of single-bit storage elements. Writing to the memory, instead of overwriting, is as follows: if the i-bit of the input data is 1, the corresponding counters (counters in the selected locations (rows) and in the i-th columns) are incremented, if the i-bit of the input data is 0, the corresponding counters are decremented. Reading (or recall) from the memory is similar: The contents of the selected locations are summed columnwise. Each sum is thresholded. If the sum is greater than or equal to the threshold value the corresponding output bit is set to 1, in the opposite case it is cleared. Note that the thresholds may be zero, if the training input vectors are closed to orthogonal ones. SDM implements transformation from logical space to physical space using distributed data storing. A value corresponding to a logical address is stored into many physical addresses. This way of storing is robust and not deterministic. A memory cell is not addressed directly. If input data (logical addresses) are partially damaged at all, we can get correct output data. Details about principles and implementation can be found in [2], [3], [4], [5], [6]. 2 SDM Analysis This section introduces some mathematical foundations which are significant for SDM. The concepts and properties of the space {0,1} n are adopted from Kanerva [1]. * Department of Computer Science and Engineering, Božetěchova 2, CZ Brno

2 2.1 The Space {0,1} n The SDM works with n-dimensional vectors with binary components. Depending on the context, the vectors are called points, patterns, addresses, words, memory items, data, or events. This section is mostly about the properties of the vector space [1]. Let n be number of dimensions of the space. The number of points, or possible memory items, is then 2 n. We will denote this number by N and will use N and 2 n to stand also for the space itself. 2.2 Concepts Related to the Space {0,1} n Origin, 0 The point with all coordinates 0 is called the origin, 0 = Complement, 'x Norm, x Difference, x y Distance, d(x, y) The complement, or opposite, of point x is the n-tuple that has ones where x has zeros and vice versa. The norm of point x is the number of ones in its binary representation. The difference of two points x and y is the n-tuple that has ones where x and y differ and zeros elsewhere. It is the bitwise 'exclusive or': x y = x y. The difference commutes: x y = y x. The distance between two points x and y is the number of dimensions at which x and y differ. It is called the Hamming distance (its square root is the Euclidean distance) and is expressed in bits. Distance is the norm of the difference: d(x, y) = x y Betweenness, x:y:z Point y is between points x and z if and only if the distance from x to z is the sum of the distances from x to y and from y to z; that is, x:y:z d(x, z) = d(x, y) + d(y, z). It is easily seen that every bit of a point in between is a copy of the corresponding bit of an endpoint. Orthogonality, x y Point x is orthogonal to point y, or the two are perpendicular or indifferent, if and only if the distance between the two is half the number of dimensions: x y d(x, y) = n/2. The distance n/2 is called indifference distance of {0,1} n. If x is orthogonal to y, it is also orthogonal to its complement 'y (x is halfway between y and 'y). Circle, O(r,x) A circle with radius r and center x is the set of points that are at most r bits from x: O(r,x) = {y d(x, y) r}. 2.3 Some Properties of the Space {0,1} n The space N can be represented by the vertices of the unit cube in n-dimensional Euclidean space. The vertices lie on the surface of an n-dimensional sphere with (Euclidean-metric) radius n 2. This gives rise to the sphere analogy. We will call a space spherical if 1. any point x has a unique opposite 'x, 2. the entire space is between any point x and its opposite 'x, and 3. all points are "equal" (meaning that for any two points x and y there is a distancepreserving automorphism of the space that maps x to y, so that from any of its points the space "looks" the same). The surface of a sphere (in Euclidean 3-space) clearly is spherical. According to definition, N is also spherical, since y x ( ) is an automorphism that maps x to y.

3 Because N is spherical, it is helpful to think of it as the surface of a sphere with circumference 2n. All points of N are equally qualified as points of origin, and a point and its complement are like two poles at distance n from each other, with the entire space in between. The points halfway between the poles and perpendicular to them are like the equator. In addition to N's having a finite number of points and a sphere's being continuous, the spaces differ in other important ways. For example, the points of N between two points x and y are a d(x, y)-dimensional subspace of N, whereas the corresponding set on a sphere is a "straight" line. The segments (i.e., the minimal paths between two points) of N are not even unique. Also, the circles on N, as a rule, are not convex. Distribution of the Space N: The number of points that are exactly d bits form an arbitrary point x (say, from the point 0) is the number of ways to choose d coordinates from a total of n coordinates, and is therefore given by the binomial coefficient n n! = (2.1) d d!( n d)! The distribution of N thus is the binomial distribution with parameters n and p, where p = 1/2. The mean of the binomial distribution is n/2, and the variance is n/4. This distribution function will be denoted by N(d). The normal distribution F with mean n/2 and standard deviation n 2 is a good approximation to it: N(d) = Pr{d(x, y) d} F{( d n / 2) / n / 4} (2.2) Tendency to Orthogonality: An outstanding property of N is that most of it lies at approximately the mean (indifference) distance n/2 from a point (and its complement). In other words, most of the space is nearly orthogonal to any given point, and the larger n is, the more pronounced is this effect. The mathematics of it works out as follows: If we divide the mean distance n/2 by the standard deviation of distance n 2, we get that the distance from a point to the bulk of the space (from a pole to the equator) is n standard deviations. For n = 1000 it is 31.6 standard deviations. According to the normal distribution, over of the space lies within 5 standard deviations of the mean or within ( n ± 5) standard deviations from a point of N. With n = 1000, the mean distance is 500 bits, but only about a millionth of the space is closer to the point than 422 bits or farther from it than 578 bits. 3 Data Analysis In this section we concern to distances between pattern addresses. If pattern data are random, then (respecting tendency of orthogonality of N) most of them lies approximately the mean distance n/2 from a point. In this case we can get optimal radius value r solving equation: N(r) = 0.01, see Cibulka [3]. (3.1) Found value is rounded to integer and SDM working with this radius is maximally efficient. But, pattern data from real applications are not random. It causes less SDM efficiency. So, we look for a way how to find optimal radius for non-random pattern data. Let D is matrix of distances between pairs of pattern addresses:

4 D ij = d(t i, t j ), i,j = 1..T (3.2) It is clear that D ij = 0 for i = j. Now we define the mean pattern distance as a mean value of triangular part of matrix D: d mean 2 = TT ( ) T 1 j= 2 i= 1 j We can define the standard pattern deviation in a similar way: D ij (3.3) d dev = 2 T ( T 1) T j j = 2 i= 1 ( D ij d mean ) 2 (3.4) Hypothesis 1: the optimal radius must be less than the mean pattern distance: r opt < d mean (3.5) In the ideal case pattern data are random, mean pattern distance approximately equals to n/2. Probability N(n/2) = 1/2. Clearly, solving equation (3.1) we get radius less then n/2. In the ideal case the hypothesis 1 is performed. We can constitute stricter hypothesis: Hypothesis 2: the optimal radius must be less than the mean pattern distance minus the standard pattern deviation: r opt < d mean d dev (3.6) If pattern data are random, the standard pattern deviation approximately equals to n 2. Probability N ( n / 2 n 2) = F{ 1} =! We can solve equation F{x} = 0.01 for x and find x =! It means that optimal radius for random pattern data is about d mean 2.33d dev. In the ideal case the hypothesis 2 is performed too. 4 Experiment 4.1 Data Images of digits are used for the experiment. Images are pixels large, black and white, digits are rasterized from standard Microsoft Arial Bold font. Figure 4.1 shows the whole pattern set. Table 4.1 shows a triangular part of distance matrix definition (3.2). Mean value (3.3) of distances equals 64 bits. Standard deviation (3.3) equals approximately 22 bits. There is also an additional property: 99 "unused" bits. The unused bit is a bit which is always white or always black in the pattern set. Figure 4.1 Pattern set

5 Table 4.1 Triangular part of distance matrix (values in bits) 4.2 Used SDM Used SDM has both input and output 256 bits width. For the first measuring, the SDM radius is set to 110 bits. It corresponds to line selection probability around Location count is 10000, therefore mean number of selected locations should be about 122. For the second measuring, the SDM radius is set to the mean value (see Hypothesis 1, section 3), i.e. 64 bits. It corresponds to line selection probability around It means that location count should be minimally This condition is unacceptable for realization of original Kanerva's SDM design. Therefore we use a modified form of SDM (Zbořil [8]) where only part of address space is generated and location count can be reduced to For the third measuring, the SDM radius is set to 42 bits, corresponding to Hypothesis 2. Like in the previous case, the modified form of SDM, location count is Results Pattern set (Figure 4.1) was autoassociatively written to corresponding SDM and then the same patterns were read. Results are shown at following figures: Figure 4.2 Measuring 1: Kanerva's SDM desing, radius 110 Figure 4.3 Measuring 2: Modified SDM design, radius 64 Figure 4.4 Measuring 3: Modified SDM design, radius 42 Differences between written and read data were also computed. Following table shows mean error in bits, mean error relative to data width (256 bits), and mean error relative to "used" bits (data width minus "unused" bits, see section 4.1, i.e = 157 bits):

6 SDM, radius Mean error (bits) Mean error (% of 256) Mean error (% of used bits) Kanerva, Modified, Modified, Table 4.2 Mean errors of reading 5 Conclusions The simple experiment shows that two hypotheses introduced in section 3 can be useful for improving SDM efficiency. The first hypothesis allows SDM to generalize partially. The second hypothesis is more strict and eliminates generalization. The modified SDM was used in the experiment. The modification is similar to RCE (Restricted Coulomb Energy) net, as it was discussed in [8]. The new method of radius estimation can be very useful for the modification and makes it more similar to RCE. The relation between these two still requires further research. This project was supported by the GACR grant No. 102/98/0552 (Research and Applications of Heterogenous Models). References 1. Kanerva, P.: Sparse Distributed Memory, The MIT Press, Cambridge, Massachusetts Rogers, D.: Kanerva s sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine. In Proc. Conference on Scientific Application of the connection machine, Moffet Field, CA, 1988, Vol.1, Cibulka, J.: Sparse Distributed Memory: An Analysis, In: ASIS 1997, MARQ, Ostrava, Krnov, 1997, p , ISBN Grebeníček, F.: Data coding for SDM, In: Mosis'98 Proceedings, Vol. 1, MARQ, Ostrava, Hostýn, Czech Republic, 1998, p , ISBN Grebeníček, F.: Neural Net Applications in Image Processing, In: Asis'98 Proceedings, Vol. 2, MARQ, Ostrava, Krnov, Czech Republic, 1998, p , ISBN Zbořil, F.: An Application of the Sparse Distributed Memory, In: Proceedings of the ASIS 1997, MARQ, Ostrava, Krnov, 1997, p , ISBN Zbořil, F.: Analysis of Neural Networks Applications in Heterogeneous Models, In: Proceedings of the ASIS'98, MARQ Ostrava, Krnov, 1998, p , ISBN Zbořil, F.: Sparse Distributed Memory and Restricted Coulomb Energy Classifier, In: Proceedings of the MOSIS'98, MARQ, Ostrava, Sv. Hostýn - Bystřice pod Hostýnem, 1998, p , ISBN Zbořil, F.: Neural Associative Memories, In: Proceedings of the MOSIS'99, MARQ Ostrava, Rožnov pod Radhoštěm, 1999, p , ISBN X

A. Incorrect! This would be the negative of the range. B. Correct! The range is the maximum data value minus the minimum data value.

A. Incorrect! This would be the negative of the range. B. Correct! The range is the maximum data value minus the minimum data value. AP Statistics - Problem Drill 05: Measures of Variation No. 1 of 10 1. The range is calculated as. (A) The minimum data value minus the maximum data value. (B) The maximum data value minus the minimum

More information

8.B. The result of Regiomontanus on tetrahedra

8.B. The result of Regiomontanus on tetrahedra 8.B. The result of Regiomontanus on tetrahedra We have already mentioned that Plato s theory that the five regular polyhedra represent the fundamental elements of nature, and in supplement (3.D) to the

More information

SECONDARY DRAFT SYLLABUS. 2. Representation of functions. 3. Types of functions. 4. Composition of functions (two and three)

SECONDARY DRAFT SYLLABUS. 2. Representation of functions. 3. Types of functions. 4. Composition of functions (two and three) et et et CLASS IX Topic :Set Language et et 1. Describing and representing sets SECONDARY DRAFT SYLLABUS Able to describe a set in Descriptive, Set- builder and roster forms and through Venn diagram. Use

More information

3.1. Solution for white Gaussian noise

3.1. Solution for white Gaussian noise Low complexity M-hypotheses detection: M vectors case Mohammed Nae and Ahmed H. Tewk Dept. of Electrical Engineering University of Minnesota, Minneapolis, MN 55455 mnae,tewk@ece.umn.edu Abstract Low complexity

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Neural Nets as Associative Memories Sparse Distributed Memory

Neural Nets as Associative Memories Sparse Distributed Memory Brno University of Technology Faculty of Electrical Engineering and Computer Science Department of Computer Science and Engineering Ing. František Grebeníček Neural Nets as Associative Memories Sparse

More information

Computer Graphics. Lecture 2. Doç. Dr. Mehmet Gokturk

Computer Graphics. Lecture 2. Doç. Dr. Mehmet Gokturk Computer Graphics Lecture 2 Doç. Dr. Mehmet Gokturk Mathematical Foundations l Hearn and Baker (A1 A4) appendix gives good review l Some of the mathematical tools l Trigonometry l Vector spaces l Points,

More information

Student Outcomes. Classwork. Opening Exercises 1 2 (5 minutes)

Student Outcomes. Classwork. Opening Exercises 1 2 (5 minutes) Student Outcomes Students use the Pythagorean Theorem to determine an unknown dimension of a cone or a sphere. Students know that a pyramid is a special type of cone with triangular faces and a rectangular

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Scan Converting Lines, Circles and Ellipses Hello everybody, welcome again

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Foundations of Computing

Foundations of Computing Foundations of Computing Darmstadt University of Technology Dept. Computer Science Winter Term 2005 / 2006 Copyright c 2004 by Matthias Müller-Hannemann and Karsten Weihe All rights reserved http://www.algo.informatik.tu-darmstadt.de/

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Use of Shape Deformation to Seamlessly Stitch Historical Document Images

Use of Shape Deformation to Seamlessly Stitch Historical Document Images Use of Shape Deformation to Seamlessly Stitch Historical Document Images Wei Liu Wei Fan Li Chen Jun Sun Satoshi Naoi In China, efforts are being made to preserve historical documents in the form of digital

More information

Statistical Methods in AI

Statistical Methods in AI Statistical Methods in AI Distance Based and Linear Classifiers Shrenik Lad, 200901097 INTRODUCTION : The aim of the project was to understand different types of classification algorithms by implementing

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Scan Converting Lines

Scan Converting Lines Scan Conversion 1 Scan Converting Lines Line Drawing Draw a line on a raster screen between two points What s wrong with the statement of the problem? it doesn t say anything about which points are allowed

More information

Geometric Computations for Simulation

Geometric Computations for Simulation 1 Geometric Computations for Simulation David E. Johnson I. INTRODUCTION A static virtual world would be boring and unlikely to draw in a user enough to create a sense of immersion. Simulation allows things

More information

INTRODUCTION TO 3-MANIFOLDS

INTRODUCTION TO 3-MANIFOLDS INTRODUCTION TO 3-MANIFOLDS NIK AKSAMIT As we know, a topological n-manifold X is a Hausdorff space such that every point contained in it has a neighborhood (is contained in an open set) homeomorphic to

More information

Isometric Diamond Subgraphs

Isometric Diamond Subgraphs Isometric Diamond Subgraphs David Eppstein Computer Science Department, University of California, Irvine eppstein@uci.edu Abstract. We test in polynomial time whether a graph embeds in a distancepreserving

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Module 4. Stereographic projection: concept and application. Lecture 4. Stereographic projection: concept and application

Module 4. Stereographic projection: concept and application. Lecture 4. Stereographic projection: concept and application Module 4 Stereographic projection: concept and application Lecture 4 Stereographic projection: concept and application 1 NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials

More information

Final Exam 1:15-3:15 pm Thursday, December 13, 2018

Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Instructions: Answer all questions in the space provided (or attach additional pages as needed). You are permitted to use pencils/pens, one cheat sheet

More information

A triangle that has three acute angles Example:

A triangle that has three acute angles Example: 1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

26 The closest pair problem

26 The closest pair problem The closest pair problem 1 26 The closest pair problem Sweep algorithms solve many kinds of proximity problems efficiently. We present a simple sweep that solves the two-dimensional closest pair problem

More information

Math 7 Glossary Terms

Math 7 Glossary Terms Math 7 Glossary Terms Absolute Value Absolute value is the distance, or number of units, a number is from zero. Distance is always a positive value; therefore, absolute value is always a positive value.

More information

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective Standard : Number and Computation Benchmark : Number Sense M7-..K The student knows, explains, and uses equivalent representations for rational numbers and simple algebraic expressions including integers,

More information

Weighted Neighborhood Sequences in Non-Standard Three-Dimensional Grids Parameter Optimization

Weighted Neighborhood Sequences in Non-Standard Three-Dimensional Grids Parameter Optimization Weighted Neighborhood Sequences in Non-Standard Three-Dimensional Grids Parameter Optimization Robin Strand and Benedek Nagy Centre for Image Analysis, Uppsala University, Box 337, SE-7505 Uppsala, Sweden

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Study Guide and Review

Study Guide and Review State whether each sentence is or false. If false, replace the underlined term to make a sentence. 1. Euclidean geometry deals with a system of points, great circles (lines), and spheres (planes). false,

More information

PITSCO Math Individualized Prescriptive Lessons (IPLs)

PITSCO Math Individualized Prescriptive Lessons (IPLs) Orientation Integers 10-10 Orientation I 20-10 Speaking Math Define common math vocabulary. Explore the four basic operations and their solutions. Form equations and expressions. 20-20 Place Value Define

More information

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra Pattern Recall Analysis of the Hopfield Neural Network with a Genetic Algorithm Susmita Mohapatra Department of Computer Science, Utkal University, India Abstract: This paper is focused on the implementation

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Algorithms for Grid Graphs in the MapReduce Model

Algorithms for Grid Graphs in the MapReduce Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration.

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration. Objectives 7.1 Find the area of a region between two curves using integration. Find the area of a region between intersecting curves using integration. Describe integration as an accumulation process.

More information

Year 6 Mathematics Overview

Year 6 Mathematics Overview Year 6 Mathematics Overview Term Strand National Curriculum 2014 Objectives Focus Sequence Autumn 1 Number and Place Value read, write, order and compare numbers up to 10 000 000 and determine the value

More information

d) g) e) f) h)

d) g) e) f) h) Tomá»s Skopal, Václav Sná»sel, Michal Krátký Department of Computer Science V»SB-Technical University Ostrava 17. listopadu 15,708 33 Ostrava Czech Republic e-mail: ftomas.skopal, vaclav.snasel, michal.kratkyg@vsb.cz

More information

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998 Density Estimation using Support Vector Machines J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report CSD-TR-97-3 February 5, 998!()+, -./ 3456 Department of Computer Science

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Increasing interconnection network connectivity for reducing operator complexity in asynchronous vision systems

Increasing interconnection network connectivity for reducing operator complexity in asynchronous vision systems Increasing interconnection network connectivity for reducing operator complexity in asynchronous vision systems Valentin Gies and Thierry M. Bernard ENSTA, 32 Bd Victor 75015, Paris, FRANCE, contact@vgies.com,

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM INTRODUCTION In this Unit, we will use the idea of measuring volume that we studied to find the volume of various 3 dimensional figures. We will also learn about

More information

Face Recognition Using Long Haar-like Filters

Face Recognition Using Long Haar-like Filters Face Recognition Using Long Haar-like Filters Y. Higashijima 1, S. Takano 1, and K. Niijima 1 1 Department of Informatics, Kyushu University, Japan. Email: {y-higasi, takano, niijima}@i.kyushu-u.ac.jp

More information

Texture Segmentation and Classification in Biomedical Image Processing

Texture Segmentation and Classification in Biomedical Image Processing Texture Segmentation and Classification in Biomedical Image Processing Aleš Procházka and Andrea Gavlasová Department of Computing and Control Engineering Institute of Chemical Technology in Prague Technická

More information

Smarter Balanced Vocabulary (from the SBAC test/item specifications)

Smarter Balanced Vocabulary (from the SBAC test/item specifications) Example: Smarter Balanced Vocabulary (from the SBAC test/item specifications) Notes: Most terms area used in multiple grade levels. You should look at your grade level and all of the previous grade levels.

More information

Mathematics Curriculum

Mathematics Curriculum 6 G R A D E Mathematics Curriculum GRADE 6 5 Table of Contents 1... 1 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)... 11 Lesson 1: The Area of Parallelograms Through Rectangle Facts...

More information

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below:

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below: Things to Learn (Key words, Notation & Formulae) Complete from your notes Radius- Diameter- Surface Area- Volume- Capacity- Prism- Cross-section- Surface area of a prism- Surface area of a cylinder- Volume

More information

CSCI 4620/8626. Coordinate Reference Frames

CSCI 4620/8626. Coordinate Reference Frames CSCI 4620/8626 Computer Graphics Graphics Output Primitives Last update: 2014-02-03 Coordinate Reference Frames To describe a picture, the world-coordinate reference frame (2D or 3D) must be selected.

More information

X Std. Topic Content Expected Learning Outcomes Mode of Transaction

X Std. Topic Content Expected Learning Outcomes Mode of Transaction X Std COMMON SYLLABUS 2009 - MATHEMATICS I. Theory of Sets ii. Properties of operations on sets iii. De Morgan s lawsverification using example Venn diagram iv. Formula for n( AÈBÈ C) v. Functions To revise

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Scanner Parameter Estimation Using Bilevel Scans of Star Charts

Scanner Parameter Estimation Using Bilevel Scans of Star Charts ICDAR, Seattle WA September Scanner Parameter Estimation Using Bilevel Scans of Star Charts Elisa H. Barney Smith Electrical and Computer Engineering Department Boise State University, Boise, Idaho 8375

More information

Grade 7 Math Curriculum Map Erin Murphy

Grade 7 Math Curriculum Map Erin Murphy Topic 1 Algebraic Expressions and Integers 2 Weeks Summative Topic Test: SWBAT use rules to add and subtract integers, Evaluate algebraic expressions, use the order of operations, identify numerical and

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

Nearest Neighbor Predictors

Nearest Neighbor Predictors Nearest Neighbor Predictors September 2, 2018 Perhaps the simplest machine learning prediction method, from a conceptual point of view, and perhaps also the most unusual, is the nearest-neighbor method,

More information

Prentice Hall Mathematics Course Correlated to: Archdiocese of Chicago (Illinois) Mathematics Curriculum Frameworks (2004) Grades 6-12

Prentice Hall Mathematics Course Correlated to: Archdiocese of Chicago (Illinois) Mathematics Curriculum Frameworks (2004) Grades 6-12 Archdiocese of Chicago (Illinois) Mathematics Curriculum Frameworks (2004) Grades 6-12 Goal Outcome Outcome Statement Priority Code Chapter Topic 6 6.01 6.06.01 - Represent place values from millionths

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

Computer Graphics. Attributes of Graphics Primitives. Somsak Walairacht, Computer Engineering, KMITL 1

Computer Graphics. Attributes of Graphics Primitives. Somsak Walairacht, Computer Engineering, KMITL 1 Computer Graphics Chapter 4 Attributes of Graphics Primitives Somsak Walairacht, Computer Engineering, KMITL 1 Outline OpenGL State Variables Point Attributes t Line Attributes Fill-Area Attributes Scan-Line

More information

Math 734 Aug 22, Differential Geometry Fall 2002, USC

Math 734 Aug 22, Differential Geometry Fall 2002, USC Math 734 Aug 22, 2002 1 Differential Geometry Fall 2002, USC Lecture Notes 1 1 Topological Manifolds The basic objects of study in this class are manifolds. Roughly speaking, these are objects which locally

More information

Computer Graphics D Graphics Algorithms

Computer Graphics D Graphics Algorithms ! Computer Graphics 2014! 2. 2D Graphics Algorithms Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2014-09-26! Screen Nikon D40 Sensors 3 Rasterization - The task of displaying a world modeled

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Notes on Spherical Geometry

Notes on Spherical Geometry Notes on Spherical Geometry Abhijit Champanerkar College of Staten Island & The Graduate Center, CUNY Spring 2018 1. Vectors and planes in R 3 To review vector, dot and cross products, lines and planes

More information

PRE-ALGEBRA PREP. Textbook: The University of Chicago School Mathematics Project. Transition Mathematics, Second Edition, Prentice-Hall, Inc., 2002.

PRE-ALGEBRA PREP. Textbook: The University of Chicago School Mathematics Project. Transition Mathematics, Second Edition, Prentice-Hall, Inc., 2002. PRE-ALGEBRA PREP Textbook: The University of Chicago School Mathematics Project. Transition Mathematics, Second Edition, Prentice-Hall, Inc., 2002. Course Description: The students entering prep year have

More information

A Genus Bound for Digital Image Boundaries

A Genus Bound for Digital Image Boundaries A Genus Bound for Digital Image Boundaries Lowell Abrams and Donniell E. Fishkind March 9, 2005 Abstract Shattuck and Leahy [4] conjectured and Abrams, Fishkind, and Priebe [1],[2] proved that the boundary

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR European Schools Office of the Secretary-General Pedagogical Development Unit Ref.: 011-01-D-7-en- Orig.: EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 4 period/week course APPROVED BY THE JOINT TEACHING

More information

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Tomohiro Tanno, Kazumasa Horie, Jun Izawa, and Masahiko Morita University

More information

1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1.

1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1. 1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1. A. For method 1, the idea is to conduct a binomial experiment using the random number generator:

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Reconfigurable co-processor for Kanerva s sparse distributed memory

Reconfigurable co-processor for Kanerva s sparse distributed memory Microprocessors and Microsystems 28 (2004) 127 134 www.elsevier.com/locate/micpro Reconfigurable co-processor for Kanerva s sparse distributed memory Marcus Tadeu Pinheiro Silva a, Antônio Pádua Braga

More information

Year 8 Review 1, Set 1 Number confidence (Four operations, place value, common indices and estimation)

Year 8 Review 1, Set 1 Number confidence (Four operations, place value, common indices and estimation) Year 8 Review 1, Set 1 Number confidence (Four operations, place value, common indices and estimation) Place value Digit Integer Negative number Difference, Minus, Less Operation Multiply, Multiplication,

More information

Structural and Syntactic Pattern Recognition

Structural and Syntactic Pattern Recognition Structural and Syntactic Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent

More information

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 14 Number/Computation addend Any number being added algorithm A step-by-step method for computing array A picture that shows a number of items arranged in rows and columns to form a rectangle associative

More information

Department: Course: Chapter 1

Department: Course: Chapter 1 Department: Course: 2016-2017 Term, Phrase, or Expression Simple Definition Chapter 1 Comprehension Support Point Line plane collinear coplanar A location in space. It does not have a size or shape The

More information

CLASSIFICATION is one of the most important applications of neural systems. Approximation

CLASSIFICATION is one of the most important applications of neural systems. Approximation Neural minimal distance methods Włodzisław Duch Department of Computer Methods, Nicholas Copernicus University, Grudzia dzka 5, 87-100 Toruń, Poland. E-mail: duch@phys.uni.torun.pl Abstract Minimal distance

More information

Introduction to Geometric Algebra Lecture VI

Introduction to Geometric Algebra Lecture VI Introduction to Geometric Algebra Lecture VI Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br Visgraf - Summer School in Computer Graphics - 2010 CG UFRGS Lecture

More information

TOURNAMENT OF THE TOWNS, Glossary

TOURNAMENT OF THE TOWNS, Glossary TOURNAMENT OF THE TOWNS, 2003 2004 Glossary Absolute value The size of a number with its + or sign removed. The absolute value of 3.2 is 3.2, the absolute value of +4.6 is 4.6. We write this: 3.2 = 3.2

More information

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08 Platonic Solids Jennie Sköld January 21, 2015 Symmetries: Groups Algebras and Tensor Calculus FYAD08 Karlstad University 1 Contents 1 What are Platonic Solids? 3 2 Symmetries in 3-Space 5 2.1 Isometries

More information

USA Mathematical Talent Search Round 2 Solutions Year 23 Academic Year

USA Mathematical Talent Search Round 2 Solutions Year 23 Academic Year 1//3. Find all the ways of placing the integers 1,, 3,..., 16 in the boxes below, such that each integer appears in exactly one box, and the sum of every pair of neighboring integers is a perfect square.

More information

Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts

Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts Geometry Definitions and Theorems Chapter 9 Definitions and Important Terms & Facts A circle is the set of points in a plane at a given distance from a given point in that plane. The given point is the

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

Machine Learning and Pervasive Computing

Machine Learning and Pervasive Computing Stephan Sigg Georg-August-University Goettingen, Computer Networks 17.12.2014 Overview and Structure 22.10.2014 Organisation 22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

More information

Basics: How to Calculate Standard Deviation in Excel

Basics: How to Calculate Standard Deviation in Excel Basics: How to Calculate Standard Deviation in Excel In this guide, we are going to look at the basics of calculating the standard deviation of a data set. The calculations will be done step by step, without

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Foundation. Scheme of Work. Year 9. September 2016 to July 2017

Foundation. Scheme of Work. Year 9. September 2016 to July 2017 Foundation Scheme of Work Year 9 September 06 to July 07 Assessments Students will be assessed by completing two tests (topic) each Half Term. These are to be recorded on Go Schools. There will not be

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Chapter 6 (Lect 3) Counters Continued. Unused States Ring counter. Implementing with Registers Implementing with Counter and Decoder

Chapter 6 (Lect 3) Counters Continued. Unused States Ring counter. Implementing with Registers Implementing with Counter and Decoder Chapter 6 (Lect 3) Counters Continued Unused States Ring counter Implementing with Registers Implementing with Counter and Decoder Sequential Logic and Unused States Not all states need to be used Can

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Analytic Geometry. Affine space. 3D y. Dimensions

Analytic Geometry. Affine space. 3D y. Dimensions y x Analytic Geometry Analytic geometry, usually called coordinate geometry or analytical geometry, is the study of geometry using the principles of algebra The link between algebra and geometry was made

More information

Mathematics 700 Unit Lesson Title Lesson Objectives 1 - INTEGERS Represent positive and negative values. Locate integers on the number line.

Mathematics 700 Unit Lesson Title Lesson Objectives 1 - INTEGERS Represent positive and negative values. Locate integers on the number line. Mathematics 700 Unit Lesson Title Lesson Objectives 1 - INTEGERS Integers on the Number Line Comparing and Ordering Integers Absolute Value Adding Integers with the Same Sign Adding Integers with Different

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

1-1. Points, Lines, and Planes. Lesson 1-1. What You ll Learn. Active Vocabulary

1-1. Points, Lines, and Planes. Lesson 1-1. What You ll Learn. Active Vocabulary 1-1 Points, Lines, and Planes What You ll Learn Scan the text in Lesson 1-1. Write two facts you learned about points, lines, and planes as you scanned the text. 1. Active Vocabulary 2. New Vocabulary

More information