Shortest Path Problems

Size: px
Start display at page:

Download "Shortest Path Problems"

Transcription

1 Shortet Path Problem How can we find the hortet route between two point on a road map? Model the problem a a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge weight = road ditance Goal: find a hortet path between two vertice (citie) 1

2 Shortet Path Problem Input: Directed graph G = (V, E) Weight function w : E R Weight of path p = v, v 1,..., v k w( p) k i1 w( v i 1, v i ) Shortet-path weight from u to v: t x δ(u, v) = min w(p) : u p v if there exit a path from u to v otherwie Note: there might be multiple hortet path from u to v

3 Variant of Shortet Path Single-ource hortet path G = (V, E) find a hortet path from a given ource vertex to each vertex v V Single-detination hortet path Find a hortet path to a given detination vertex t from each vertex v Revering the direction of each edge ingle-ource 3

4 Variant of Shortet Path (cont d) Single-pair hortet path Find a hortet path from u to v for given vertice u and v All-pair hortet-path Find a hortet path from u to v for ever pair of vertice u and v 4

5 Negative-Weight Edge Negative-weight edge ma form negative-weight ccle If uch ccle are reachable from 3 5 a b -4 4 c 6 d g the ource, then δ(, v) i not properl defined! Keep going around the ccle, and get w(, v) = - for all v on the ccle e -6 f 5

6 Negative-Weight Edge a: onl one path δ(, a) = w(, a) = 3 b: onl one path δ(, b) = w(, a) + w(a, b) = -1 c: infinitel man path, c,, c, d, c,, c, d, c, d, c 3 5 a b c 6 d g e -6 f ccle ha poitive weight (6-3 = 3), c i hortet path with weight δ(, c) = w(, c) = 5 6

7 Negative-Weight Edge e: infinitel man path:, e,, e, f, e,, e, f, e, f, e ccle e, f, e ha negative weight: 3 + (- 6) = -3 can find path from to e with arbitraril large negative weight δ(, e) = - no hortet path exit between and e Similarl: δ(, f) = -, δ(, g) = a b c 6 d g e -6 f h -8 j δ(, h) = δ(, i) = δ(, j) = i 3 h, i, j not reachable from

8 Ccle Can hortet path contain ccle? Negative-weight ccle Shortet path i not well defined Poitive-weight ccle: B removing the ccle, we can get a horter path Zero-weight ccle No! No! No reaon to ue them Can remove them to obtain a path with ame weight 8

9 Optimal Subtructure Theorem Given: v j A weighted, directed graph G = (V, E) v 1 p jk A weight function w: E R, p 1i p ij p ij v k A hortet path p = v 1, v,..., v k from v 1 to v k v i A ubpath of p: p ij = v i, v i+1,..., v j, with 1 i j k Then: p ij i a hortet path from v i to v j p 1i p ij p jk Proof: p = v 1 v i v j v k w(p) = w(p 1i ) + w(p ij ) + w(p jk ) Aume p ij from v i to v j with w(p ij ) < w(p ij ) w(p ) = w(p 1i ) + w(p ij ) + w(p jk ) < w(p) contradiction! 9

10 Triangle Inequalit For all (u, v) E, we have: δ (, v) δ (, u) + δ (u, v) u v - If u i on the hortet path to v we have the equalit ign u v 1

11 Algorithm Bellman-Ford algorithm Negative weight are allowed Negative ccle reachable from the ource are not allowed. Dijktra algorithm Negative weight are not allowed Operation common in both algorithm: Initialiation Relaxation 11

12 Shortet-Path Notation For each vertex v V: δ(, v): hortet-path weight d[v]: hortet-path weight etimate Initiall, d[v]= d[v]δ(,v) a algorithm progree [v] = predeceor of v on a hortet path from If no predeceor, [v] = NIL induce a tree hortet-path tree t x

13 Initialiation Alg.: INITIALIZE-SINGLE-SOURCE(V, ) 1. for each v V. do d[v] 3. [v] NIL 4. d[] All the hortet-path algorithm tart with INITIALIZE-SINGLE-SOURCE 13

14 Relaxation Step Relaxing an edge (u, v) = teting whether we can improve the hortet path to v found o far b going through u If d[v] > d[u] + w(u, v) we can improve the hortet path to v d[v]=d[u]+w(u,v) [v] u u v 5 9 u v 5 6 After relaxation: d[v] d[u] + w(u, v) RELAX(u, v, w) RELAX(u, v, w) u v 5 u v 5 6 no change 14

15 Bellman-Ford Algorithm Single-ource hortet path problem Compute δ(, v) and [v] for all v V Allow negative edge weight - can detect negative ccle. Return TRUE if no negative-weight ccle are reachable from the ource Return FALSE otherwie no olution exit 15

16 Bellman-Ford Algorithm (cont d) Idea: Each edge i relaxed V 1 time b making V-1 pae over the whole edge et. To make ure that each edge i relaxed exactl V 1 time, it put the edge in an unordered lit and goe over the lit V 1 time. (t, x), (t, ), (t, ), (x, t), (, x), (, ), (, x), (, ), (, t), (, ) 6 t x 9 16

17 BELLMAN-FORD(V, E, w, ) 6 t x Pa 1 6 t x 9 9 E: (t, x), (t, ), (t, ), (x, t), (, x), (, ), (, x), (, ), (, t), (, ) 1

18 Example (t, x), (t, ), (t, ), (x, t), (, x), (, ), (, x), (, ), (, t), (, ) Pa 1 (from previou lide) 6 t 5 x Pa Pa 3 t 5 x Pa t 5 x t 5 x

19 Detecting Negative Ccle (perform extra tet after V-1 iteration) for each edge (u, v) E do if d[v] > d[u] + w(u, v) then return FALSE return TRUE b b t pa nd pa 5 c 3-8 (,b) (b,c) (c,) 5 c 3 b -8 Look at edge (, b): d[b] = -1 d[] + w(, b) = -4 d[b] > d[] + w(, b) c 3 19

20 BELLMAN-FORD(V, E, w, ) 1. INITIALIZE-SINGLE-SOURCE(V, ). for i 1 to V do for each edge (u, v) E 4. do RELAX(u, v, w) 5. for each edge (u, v) E 6. do if d[v] > d[u] + w(u, v). then return FALSE 8. return TRUE (V) O(V) O(VE) O(E) O(E) Running time: O(V+VE+E)=O(VE)

21 Shortet Path Propertie Upper-bound propert We alwa have d[v] δ (, v) for all v. The etimate never goe up relaxation onl lower the etimate 6 v 5 x Relax (x, v) 6 v 5 x

22 Dijktra Algorithm Single-ource hortet path problem: No negative-weight edge: w(u, v) >, (u, v) E Each edge i relaxed onl once! Maintain two et of vertice: d[v]=δ (, v) d[v]>δ (, v)

23 Dijktra Algorithm (cont.) Vertice in V S reide in a min-priorit queue Ke in Q are etimate of hortet-path weight d[u] Repeatedl elect a vertex u V S, with the minimum hortet-path etimate d[u] Relax all edge leaving u 3

24 Dijktra (G, w, ) S=<> Q=<,t,x,,> S=<> Q=<,t,x,> 1 5 t 3 1 x t x 4 6 4

25 Example (cont.) 1 t 1 x t 1 x S=<,> Q=<,t,x> S=<,,> Q=<t,x> 5

26 Example (cont.) S=<,,,t> Q=<x> S=<,,,t,x> Q=<> 1 5 t 1 x t 1 x

27 Dijktra (G, w, ) 1. INITIALIZE-SINGLE-SOURCE(V, ). S 3. Q V[G] 4. while Q 5. do u EXTRACT-MIN(Q) 6. S S {u} O(V) build min-heap. for each vertex v Adj[u] 8. do RELAX(u, v, w) Executed O(V) time O(lgV) 9. Update Q (DECREASE_KEY) (V) O(VlgV) O(E) time (total) O(lgV) O(ElgV) Running time: O(VlgV + ElgV) = O(ElgV)

28 Problem 1 Write down weight for the edge of the following graph, o that Dijktra algorithm would not find the correct hortet path from to t. 1 u 1 w 1 t iteration d[]= d[u]=1 d[v]=1 1-1 v nd iteration 3 rd iteration 4 th iteration d[w]= d[u]= S={} Q={u,v,w} S={,u} Q={v,w} S={,u,v} Q={w} d[w] i not correct! d[u] hould have converged when u wa included in S! S={,u,v,w} Q={} 8

29 Problem (Exercie 4.3-4, page 6) We are given a directed graph G=(V,E) on which each edge (u,v) ha an aociated value r(u,v), which i a real number in the range r(u,v) 1 that repreent the reliabilit of a communication channel from vertex u to vertex v. We interpret r(u,v) a the probabilit that the channel from u to v will not fail, and we aume that thee probabilitie are independent. Give an efficient algorithm to find the mot reliable path between two given vertice. 9

30 Problem (cont.) Solution 1: modif Dijktra algorithm Perform relaxation a follow: if d[v] < d[u] w(u,v) then d[v] = d[u] w(u,v) Ue EXTRACT_MAX intead of EXTRACT_MIN 3

31 Problem (cont.) Solution : ue Dijktra algorithm without an modification! r(u,v)=pr( channel from u to v will not fail) Auming that the probabilitie are independent, the reliabilit of a path p=<v 1,v,,v k > i: r(v 1,v )r(v,v 3 ) r(v k-1,v k ) We want to find the channel with the highet reliabilit, i.e., max r( u, v) p ( u, v) p 31

32 Problem (cont.) But Dijktra algorithm compute ( u, v) p min w( u, v) p Take the lg lg(max r( u, v)) max lg( r( u, v)) p ( u, v) p p ( u, v) p 3

33 Problem (cont.) Turn thi into a minimiation problem b taking the negative: p p ( u, v) p ( u, v) p min lg( r( u, v)) min lg( r( u, v)) Run Dijktra algorithm uing w( u, v) lg( r( u, v)) 33

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms Lecture 18 Graph-Baed Algorithm CSE: Deign and Anali of Algorithm Shortet Path Problem Modeling problem a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge

More information

Outline. (single-source) shortest path. (all-pairs) shortest path. minimum spanning tree. Dijkstra (Section 4.4) Bellman-Ford (Section 4.

Outline. (single-source) shortest path. (all-pairs) shortest path. minimum spanning tree. Dijkstra (Section 4.4) Bellman-Ford (Section 4. Weighted Graphs 1 Outline (single-source) shortest path Dijkstra (Section 4.4) Bellman-Ford (Section 4.6) (all-pairs) shortest path Floyd-Warshall (Section 6.6) minimum spanning tree Kruskal (Section 5.1.3)

More information

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course: Content Shortet path Algorithm and Network 21/211 The hortet path problem: Statement Verion Application Algorithm (for ingle ource p problem) Reminder: relaxation, Dijktra, Variant of Dijktra, Bellman-Ford,

More information

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

COT 6405 Introduction to Theory of Algorithms

COT 6405 Introduction to Theory of Algorithms COT 6405 Introduction to Theory of Algorithms Topic 16. Single source shortest path 11/18/2015 1 Problem definition Problem: given a weighted directed graph G, find the minimum-weight path from a given

More information

COMP251: Single source shortest paths

COMP251: Single source shortest paths COMP51: Single source shortest paths Jérôme Waldispühl School of Computer Science McGill University Based on (Cormen et al., 00) Problem What is the shortest road to go from one city to another? Eample:

More information

Lecture 14: Minimum Spanning Tree I

Lecture 14: Minimum Spanning Tree I COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce

More information

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 20. Example. Shortest Paths Definitions

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 20. Example. Shortest Paths Definitions Taking Stock IE170: Algorithms in Systems Engineering: Lecture 20 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University March 19, 2007 Last Time Minimum Spanning Trees Strongly

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and no

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 07 Single-Source Shortest Paths (Chapter 24) Stephen Scott and Vinodchandran N. Variyam sscott@cse.unl.edu 1/36 Introduction

More information

Graphs: Finding shortest paths

Graphs: Finding shortest paths /0/01 Graph: Finding hortet path Tecniche di Programmazione Summary Definition Floyd-Warhall algorithm Bellman-Ford-Moore algorithm Dijktra algorithm 1 /0/01 Definition Graph: Finding hortet path Definition:

More information

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

Lecture 17: Shortest Paths

Lecture 17: Shortest Paths Lecture 7: Shortet Path CSE 373: Data Structure and Algorithm CSE 373 9 WI - KASEY CHAMPION Adminitrivia How to Ace the Technical Interview Seion today! - 6-8pm - Sieg 34 No BS CS Career Talk Thurday -

More information

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. Shortest Path Problems Algorithms on Graphs: Part III Path in a graph. Let G = V,E be a graph. A path p = e 1,...,e k, e i E,

More information

Single Source Shortest Paths

Single Source Shortest Paths Single Source Shortest Paths Given a connected weighted directed graph G(V, E), associated with each edge u, v E, there is a weight w(u, v). The single source shortest paths (SSSP) problem is to find a

More information

Algorithmic Discrete Mathematics 4. Exercise Sheet

Algorithmic Discrete Mathematics 4. Exercise Sheet Algorithmic Dicrete Mathematic. Exercie Sheet Department of Mathematic SS 0 PD Dr. Ulf Lorenz 0. and. May 0 Dipl.-Math. David Meffert Verion of May, 0 Groupwork Exercie G (Shortet path I) (a) Calculate

More information

Introduction. I Given a weighted, directed graph G =(V, E) with weight function

Introduction. I Given a weighted, directed graph G =(V, E) with weight function ntroduction Computer Science & Engineering 2/82 Design and Analysis of Algorithms Lecture 06 Single-Source Shortest Paths (Chapter 2) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

5.4 Shortest Paths. Jacobs University Visualization and Computer Graphics Lab. CH : Algorithms and Data Structures 456

5.4 Shortest Paths. Jacobs University Visualization and Computer Graphics Lab. CH : Algorithms and Data Structures 456 5.4 Shortest Paths CH08-320201: Algorithms and Data Structures 456 Definitions: Path Consider a directed graph G=(V,E), where each edge e є E is assigned a non-negative weight w: E -> R +. A path is a

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming and data-structures CS/ENGRD 20 SUMMER 208 Lecture 3: Shortest Path http://courses.cs.cornell.edu/cs20/208su Graph Algorithms Search Depth-first search Breadth-first search

More information

Introduction. I Given a weighted, directed graph G =(V, E) with weight function

Introduction. I Given a weighted, directed graph G =(V, E) with weight function ntroduction Computer Science & Engineering 2/82 Design and Analysis of Algorithms Lecture 05 Single-Source Shortest Paths (Chapter 2) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu

More information

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems Chapter 24. Shortest path problems We are given a directed graph G = (V,E) with each directed edge (u,v) E having a weight, also called a length, w(u,v) that may or may not be negative. A shortest path

More information

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Topics Weighted graphs each edge (u, v) has a weight denoted w(u, v) or w uv stored in the adjacency list or adjacency matrix The weight of a path p =

More information

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

CS420/520 Algorithm Analysis Spring 2009 Lecture 14 CS420/520 Algorithm Analysis Spring 2009 Lecture 14 "A Computational Analysis of Alternative Algorithms for Labeling Techniques for Finding Shortest Path Trees", Dial, Glover, Karney, and Klingman, Networks

More information

Introduction to Algorithms. Lecture 11

Introduction to Algorithms. Lecture 11 Introduction to Algorithms Lecture 11 Last Time Optimization Problems Greedy Algorithms Graph Representation & Algorithms Minimum Spanning Tree Prim s Algorithm Kruskal s Algorithm 2 Today s Topics Shortest

More information

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20.

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20. Title Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis Nesrine Damak Fakultät für Informatik TU München 20. September 2010 Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

More information

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico Today Outline CS 362, Lecture 9 Jared Saia Univerity of New Mexico BFS and DFS Wrapup Shortet Path Generic Travere DFS and BFS Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v)

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Unit 2: Algorithmic Graph Theory

Unit 2: Algorithmic Graph Theory Unit 2: Algorithmic Graph Theory Course contents: Introduction to graph theory Basic graph algorithms Reading Chapter 3 Reference: Cormen, Leiserson, and Rivest, Introduction to Algorithms, 2 nd Ed., McGraw

More information

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spanning Tree 1 Minimum Spanning Tree G=(V,E) is an undirected graph, where V is a set of nodes and E is a set of possible interconnections between pairs of nodes. For each edge (u,v) in E, we

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

Shortest Paths. Shortest Path. Applications. CSE 680 Prof. Roger Crawfis. Given a weighted directed graph, one common problem is finding the shortest

Shortest Paths. Shortest Path. Applications. CSE 680 Prof. Roger Crawfis. Given a weighted directed graph, one common problem is finding the shortest Shortest Path Introduction to Algorithms Shortest Paths CS 60 Prof. Roger Crawfis Given a weighted directed graph, one common problem is finding the shortest path between two given vertices Recall that

More information

Single-Source Shortest Paths. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Single-Source Shortest Paths. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Single-Source Shortest Paths CSE Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Terminology A network is a directed graph. We will use both terms interchangeably. The

More information

Theory of Computing. Lecture 7 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 7 MAS 714 Hartmut Klauck Theory of Computing Lecture 7 MAS 714 Hartmut Klauck Shortest paths in weighted graphs We are given a graph G (adjacency list with weights W(u,v)) No edge means W(u,v)=1 We look for shortest paths from

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Communication Speeds in a Computer Network Find fastest way to route a data packet between two computers 6 Kbps 4 0 Mbps 6 6 Kbps 6 Kbps Gbps 00 Mbps 8 6 Kbps

More information

from notes written mostly by Dr. Carla Savage: All Rights Reserved

from notes written mostly by Dr. Carla Savage: All Rights Reserved CSC 505, Fall 2000: Week 9 Objectives: learn about various issues related to finding shortest paths in graphs learn algorithms for the single-source shortest-path problem observe the relationship among

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Finding the Fastest Way to Travel between Two Intersections in Vancouver Granville St and W Hastings St Homer St and W Hastings St 6 Granville St and W Pender

More information

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24 /8/11 Single-Source Shortest Path Chapter 1 Shortest Paths Finding the shortest path between two nodes comes up in many applications o Transportation problems o Motion planning o Communication problems

More information

Part VI Graph algorithms. Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths

Part VI Graph algorithms. Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths Part VI Graph algorithms Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths 1 Chapter 22 Elementary Graph Algorithms Representations of graphs

More information

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992)

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992) Well, ya turn left by the fire tation in the village and take the old pot road by the reervoir and...no, that won t do. Bet to continue traight on by the tar road until you reach the choolhoue and then

More information

Lecture 11: Analysis of Algorithms (CS ) 1

Lecture 11: Analysis of Algorithms (CS ) 1 Lecture 11: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 12, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 2 Dynamic Programming Approach Floyd-Warshall Shortest

More information

Shortest Path Algorithms

Shortest Path Algorithms Shortest Path Algorithms Andreas Klappenecker [based on slides by Prof. Welch] 1 Single Source Shortest Path Given: a directed or undirected graph G = (V,E) a source node s in V a weight function w: E

More information

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang Stochatic Search and Graph Technique for MCM Path Planning Chritine D. Piatko, Chritopher P. Diehl, Paul McNamee, Cheryl Rech and I-Jeng Wang The John Hopkin Univerity Applied Phyic Laboratory, Laurel,

More information

Unit 5F: Layout Compaction

Unit 5F: Layout Compaction Course contents Unit 5F: Layout Compaction Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 5F 1 Design rules: restrictions on the mask patterns to increase the probability

More information

Unit 3: Layout Compaction

Unit 3: Layout Compaction Unit 3: Layout Compaction Course contents Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 3 1 Design rules: restrictions on the mask patterns to increase the probability

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

Classical Shortest-Path Algorithms

Classical Shortest-Path Algorithms DISTANCE PROBLEMS IN NETWORKS - THEORY AND PRACTICE Classical Shortest-Path Algorithms Nesrine Damak October 10, 2010 Abstract In this work, we present four algorithms for the shortest path problem. The

More information

Minimum congestion spanning trees in bipartite and random graphs

Minimum congestion spanning trees in bipartite and random graphs Minimum congetion panning tree in bipartite and random graph M.I. Otrovkii Department of Mathematic and Computer Science St. John Univerity 8000 Utopia Parkway Queen, NY 11439, USA e-mail: otrovm@tjohn.edu

More information

8.1 Shortest Path Trees

8.1 Shortest Path Trees I tudy my Bible a I gather apple. Firt I hake the whole tree, that the ripet might fall. Then I climb the tree and hake each limb, and then each branch and then each twig, and then I look under each leaf.

More information

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution Taking Stock IE170: Algorithms in Systems Engineering: Lecture 26 Jeff Linderoth Last Time Department of Industrial and Systems Engineering Lehigh University April 2, 2007 This Time Review! Jeff Linderoth

More information

CS 151. Graph Algorithms. Wednesday, November 28, 12

CS 151. Graph Algorithms. Wednesday, November 28, 12 CS 151 Graph Algorithm 1 Unweighted Shortet Path Problem input: a graph G=(V,E) and a tart vertex goal: determine the length of the hortet path from to every vertex in V (and while you re at it, compute

More information

Week 12: Minimum Spanning trees and Shortest Paths

Week 12: Minimum Spanning trees and Shortest Paths Agenda: Week 12: Minimum Spanning trees and Shortest Paths Kruskal s Algorithm Single-source shortest paths Dijkstra s algorithm for non-negatively weighted case Reading: Textbook : 61-7, 80-87, 9-601

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Shortest paths in weighted graphs (Bellman-Ford, Floyd-Warshall) Outline 1 Shortest paths in graphs with

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 6 Greedy Graph Algorithms Shortest paths Adam Smith 9/8/14 The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle Does

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 13 December 18, 2013 洪國寶 1 Homework #10 1. 24.1-1 (p. 591 / p. 654) 2. 24.1-6 (p. 592 / p. 655) 3. 24.3-2 (p. 600 / p. 663) 4. 24.3-8 (p. 601) / 24.3-10

More information

Breadth-First Search, 1. Slides for CIS 675 DPV Chapter 4. Breadth-First Search, 3. Breadth-First Search, 2

Breadth-First Search, 1. Slides for CIS 675 DPV Chapter 4. Breadth-First Search, 3. Breadth-First Search, 2 Breadth-First Search, Slides for CIS DPV Chapter Jim Royer EECS October, 00 Definition In an undirected graph, the distance between two vertices is the length of the shortest path between them. (If there

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees 1 Minimum- Spanning Trees 1. Concrete example: computer connection. Definition of a Minimum- Spanning Tree Concrete example Imagine: You wish to connect all the computers in an office

More information

CS2210 Data Structures and Algorithms

CS2210 Data Structures and Algorithms S1 ata Structures and Algorithms Lecture 1 : Shortest Paths A 4 1 5 5 3 4 Goodrich, Tamassia Outline Weighted Graphs Shortest Paths Algorithm (ijkstra s) Weighted Graphs ach edge has an associated numerical

More information

Lecture 17: Weighted Graphs, Dijkstra s Algorithm. Courtesy of Goodrich, Tamassia and Olga Veksler

Lecture 17: Weighted Graphs, Dijkstra s Algorithm. Courtesy of Goodrich, Tamassia and Olga Veksler Lecture 17: Weighted Graphs, Shortest Paths: Dijkstra s Algorithm A 4 B 7 C 1 D 3 5 3 9 5 E Courtesy of Goodrich, Tamassia and Olga Veksler Instructor: Yuzhen Xie Weighted Graphs In a weighted graph, each

More information

Graph Representation

Graph Representation Graph Representation Adjacency list representation of G = (V, E) An array of V lists, one for each vertex in V Each list Adj[u] contains all the vertices v such that there is an edge between u and v Adj[u]

More information

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights Algorithm Shortet path in an edge-weighted digraph R OBERT S EDGEWICK K EVIN W AYNE Given an edge-weighted digraph, find the hortet path from to t. edge-weighted digraph ->. ->. ->7.7 ->7.28 7->.28 ->.2

More information

Laboratory Exercise 2

Laboratory Exercise 2 Laoratory Exercie Numer and Diplay Thi i an exercie in deigning cominational circuit that can perform inary-to-decimal numer converion and inary-coded-decimal (BCD) addition. Part I We wih to diplay on

More information

Partha Sarathi Manal

Partha Sarathi Manal MA 515: Introduction to Algorithms & MA5 : Design and Analysis of Algorithms [-0-0-6] Lecture 20 & 21 http://www.iitg.ernet.in/psm/indexing_ma5/y09/index.html Partha Sarathi Manal psm@iitg.ernet.in Dept.

More information

Lecture Notes for Chapter 23: Minimum Spanning Trees

Lecture Notes for Chapter 23: Minimum Spanning Trees Lecture Notes for Chapter 23: Minimum Spanning Trees Chapter 23 overview Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has

More information

All Shortest Paths. Questions from exercises and exams

All Shortest Paths. Questions from exercises and exams All Shortest Paths Questions from exercises and exams The Problem: G = (V, E, w) is a weighted directed graph. We want to find the shortest path between any pair of vertices in G. Example: find the distance

More information

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis 3.2.12 simas@cs.aau.dk All-pairs shortest paths Main goals of the lecture: to go through one more example of dynamic programming

More information

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley Single Source Shortest Path: The Bellman-Ford Algorithm Slides based on Kevin Wayne / Pearson-Addison Wesley Single Source Shortest Path Problem Shortest path network. Directed graph G = (V, E, w). Weight

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Overview Problem A town has a set of houses and a set of roads. A road connects and only houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and

More information

Dijkstra s Shortest Path Algorithm

Dijkstra s Shortest Path Algorithm Dijkstra s Shortest Path Algorithm DPV 4.4, CLRS 24.3 Revised, October 23, 2014 Outline of this Lecture Recalling the BFS solution of the shortest path problem for unweighted (di)graphs. The shortest path

More information

Chapter 25: All-Pairs Shortest-Paths

Chapter 25: All-Pairs Shortest-Paths Chapter : All-Pairs Shortest-Paths When no negative edges Some Algorithms Using Dijkstra s algorithm: O(V ) Using Binary heap implementation: O(VE lg V) Using Fibonacci heap: O(VE + V log V) When no negative

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Greedy Graph Algorithms Topological sort Shortest paths Adam Smith The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle

More information

Minimum Spanning Trees

Minimum Spanning Trees Chapter 23 Minimum Spanning Trees Let G(V, E, ω) be a weighted connected graph. Find out another weighted connected graph T(V, E, ω), E E, such that T has the minimum weight among all such T s. An important

More information

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X Lecture 37: Global Optimization [Adapted from note by R. Bodik and G. Necula] Topic Global optimization refer to program optimization that encompa multiple baic block in a function. (I have ued the term

More information

CS161 - Minimum Spanning Trees and Single Source Shortest Paths

CS161 - Minimum Spanning Trees and Single Source Shortest Paths CS161 - Minimum Spanning Trees and Single Source Shortest Paths David Kauchak Single Source Shortest Paths Given a graph G and two vertices s, t what is the shortest path from s to t? For an unweighted

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014 COMPSCI 330: Design and Analysis of Algorithms 9/16/2014 Lecturer: Debmalya Panigrahi Lecture #7 Scribe: Nat Kell 1 Introduction In this lecture, we will further examine shortest path algorithms. We will

More information

Greedy Algorithms. At each step in the algorithm, one of several choices can be made.

Greedy Algorithms. At each step in the algorithm, one of several choices can be made. Greedy Algorithms At each step in the algorithm, one of several choices can be made. Greedy Strategy: make the choice that is the best at the moment. After making a choice, we are left with one subproblem

More information

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya CS60020: Foundations of Algorithm Design and Machine Learning Sourangshu Bhattacharya Graphs (review) Definition. A directed graph (digraph) G = (V, E) is an ordered pair consisting of a set V of vertices

More information

Data Structures and Algorithms. Werner Nutt

Data Structures and Algorithms. Werner Nutt Data Structures and Algorithms Werner Nutt nutt@inf.unibz.it http://www.inf.unibz/it/~nutt Chapter 10 Academic Year 2012-2013 1 Acknowledgements & Copyright Notice These slides are built on top of slides

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Introduction to Algorithms November 22, 25 Massachusetts Institute of Technology 6.46J/8.4J Professors Erik D. Demaine and Charles E. Leiserson Handout 27 Problem Set 8 Solutions Problem 8-. No left turns

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J LECTURE 16 Greedy Algorithms (and Graphs) Graph representation Minimum spanning trees Optimal substructure Greedy choice Prim s greedy MST algorithm Prof. Charles

More information

Dijkstra s Single Source Shortest Path Algorithm. Andreas Klappenecker

Dijkstra s Single Source Shortest Path Algorithm. Andreas Klappenecker Dijkstra s Single Source Shortest Path Algorithm Andreas Klappenecker Single Source Shortest Path Given: a directed or undirected graph G = (V,E) a source node s in V a weight function w: E -> R. Problem:!!

More information

Brief Announcement: Distributed 3/2-Approximation of the Diameter

Brief Announcement: Distributed 3/2-Approximation of the Diameter Brief Announcement: Ditributed /2-Approximation of the Diameter Preliminary verion of a brief announcement to appear at DISC 14 Stephan Holzer MIT holzer@mit.edu David Peleg Weizmann Intitute david.peleg@weizmann.ac.il

More information

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths Outline Computer Science 33 Computation of Minimum-Cost Paths Dijkstra s Mike Jacobson Department of Computer Science University of Calgary Lecture #34 Dijkstra s to Find Min-Cost Paths 3 Example 4 5 References

More information

Introduction to Algorithms April 16, 2008 Massachusetts Institute of Technology Spring 2008 Professors Srini Devadas and Erik Demaine Quiz 2

Introduction to Algorithms April 16, 2008 Massachusetts Institute of Technology Spring 2008 Professors Srini Devadas and Erik Demaine Quiz 2 Introduction to Algorithms April 16, 2008 Massachusetts Institute of Technology 6.006 Spring 2008 Professors Srini Devadas and Erik Demaine Quiz 2 Quiz 2 Do not open this quiz booklet until you are directed

More information

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks Localized Minimum Spanning Tree Baed Multicat Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Senor Network Hanne Frey Univerity of Paderborn D-3398 Paderborn hanne.frey@uni-paderborn.de

More information

Multiconstrained QoS Routing: Greedy is Good

Multiconstrained QoS Routing: Greedy is Good Multicontrained QoS Routing: Greed i Good Guoliang Xue and Weii Zhang Abtract A fundamental problem in qualit-of-ervice (QoS) routing i to find a path connecting a ource node to a detination node that

More information

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo

More information

Midterm 2 March 10, 2014 Name: NetID: # Total Score

Midterm 2 March 10, 2014 Name: NetID: # Total Score CS 3 : Algorithm and Model of Computation, Spring 0 Midterm March 0, 0 Name: NetID: # 3 Total Score Max 0 0 0 0 Grader Don t panic! Pleae print your name and your NetID in the boxe above. Thi i a cloed-book,

More information

Fundamental Algorithms CSCI-GA /Summer Solution to Homework 8

Fundamental Algorithms CSCI-GA /Summer Solution to Homework 8 Fundamental Algorithms CSCI-GA.70-00/Summer 206 Solution to Homework 8 Problem (CLRS 23.-6). ( point) Show that a graph has a unique minimum spanning tree if, for every cut of the graph, there is a unique

More information

Sample Solutions to Homework #4

Sample Solutions to Homework #4 National Taiwan University Handout #25 Department of Electrical Engineering January 02, 207 Algorithms, Fall 206 TA: Zhi-Wen Lin and Yen-Chun Liu Sample Solutions to Homework #4. (0) (a) Both of the answers

More information

Minimum Spanning Trees Ch 23 Traversing graphs

Minimum Spanning Trees Ch 23 Traversing graphs Next: Graph Algorithms Graphs Ch 22 Graph representations adjacency list adjacency matrix Minimum Spanning Trees Ch 23 Traversing graphs Breadth-First Search Depth-First Search 11/30/17 CSE 3101 1 Graphs

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms, Lecture 1 /1/200 Introduction to Algorithms.04J/1.401J LECTURE 11 Graphs, MST, Greedy, Prim Graph representation Minimum spanning trees Greedy algorithms hallmarks. Greedy choice

More information

Dijkstra s Algorithm. Single source shortest paths for a directed acyclic graph

Dijkstra s Algorithm. Single source shortest paths for a directed acyclic graph Dijkstra s Algorithm Single source shortest paths for a directed acyclic graph Single-Source Shortest Paths We want to find the shortest paths between Binghamton and New York City, Boston, and Washington

More information