Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms

Size: px
Start display at page:

Download "Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms"

Transcription

1 Lecture 18 Graph-Baed Algorithm CSE: Deign and Anali of Algorithm

2 Shortet Path Problem Modeling problem a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge weight = road ditance Goal: find a hortet path between two vertice (citie)

3 Shortet Path Problem What i hortet path? hortet length between two vertice for an unweighted graph: mallet cot between two vertice for a weighted graph: B 1 B A 6 A 19 4 E C D unweighted graph E C 1 D weighted graph

4 Shortet Path Problem Input: Directed graph G = (V, E) Weight funcon w : E R Weight of path p = v, v 1,..., v k w( p) k i1 w( v i 1, v i ) t x z Shortet path weight from u to v: p δ(u, v) = min w(p) : u v if there exit a path from u to v otherwie

5 Variant of Shortet Path Single ource hortet path Given G = (V, E), find a hortet path from a given ource vertex to each vertex v V Single detination hortet path Find a hortet path to a given detination vertex t from each vertex v Revere the direction of each edge ingle ource Single pair hortet path Find a hortet path from u to v for given vertice u and v Solve the ingle ource problem All pair hortet path Find a hortet path from u to v for ever pair of vertice u and v

6 Shortet Path Repreentation For each vertex v V: d[v] = δ(, v): a hortet path etimate Iniall, d[v]= Reduce a algorithm progre [v] = predeceor of v on a hortet path from If no predeceor, [v] = NIL induce a tree hortet path tree Shortet path & hortet path tree are not unique

7 Initialization Alg.: INITIALIZE SINGLE SOURCE(V, ) 1. for each v V. do d[v]. [v] NIL 4. d[] All the hortet path algorithm tart with INITIALIZE SINGLE SOURCE

8 Relaxation Relaxing an edge (u, v) = teting whether we can improve the hortet path to v found o far b going through u If d[v] > d[u] + w(u, v) we can improve the hortet path to v update d[v] and [v] u v 9 u v 6 RELAX(u, v, w) RELAX(u, v, w) u v u v 6 After relaxation: d[v] d[u] + w(u, v)

9 RELAX(u, v, w) 1. if d[v] > d[u] + w(u, v). then d[v] d[u] + w(u, v). [v] u All the ingle ource hortet path algorithm tart b calling INIT SINGLE SOURCE then relax edge The algorithm differ in the order and how man time the relax each edge

10 Dijktra Algorithm Single ource hortet path problem: No negative weight edge: w(u, v) > (u, v) E Maintain two et of vertice: S = vertice whoe final hortet path weight have alread been determined Q = vertice in V S: min priorit queue Ke in Q are etimate of hortet path weight (d[v]) Repeatedl elect a vertex u V S, with the minimum hortet path etimate d[v]

11 Dijktra (G, w, ) 1. INITIALIZE SINGLE SOURCE(V, ). S. Q V[G] 4. while Q. do u EXTRACT MIN(Q) 6. S S {u}. for each vertex v Adj[u] 8. do RELAX(u, v, w) 1 1 t t x 4 6 z x 4 6 z

12 Example 1 t 1 x t 1 x z z 1 t 1 x z 1 t 1 x z

13 Dijktra Peudo Code Graph G, weight function w, root relaxing edge

14 Dijktra (G, w, ) 1. INITIALIZE SINGLE SOURCE(V, ) (V). S. Q V[G] O(V) build min-heap 4. while Q Executed O(V) time. do u EXTRACT MIN(Q) O(lgV) 6. S S {u}. for each vertex v Adj[u] 8. do RELAX(u, v, w) O(E) time; O(lgV) Running time: O(VlgV + ElgV) = O(ElgV)

15 Dijktra Running Time Q T(Extract -Min) T(Decreae- Ke) Total arra (V) (1) (V ) binar heap (lg V) (lg V) (E lg V)

16 Negative Weight Edge What if we have negative weight edge? a b c 6 d g e -6 f h -8 j i

17 Negative Weight Edge a: onl one path (, a) = w(, a) = b: onl one path (, b) = w(, a) + w(a, b) = 1 a b c 6 d g e -6 f h -8 j i

18 Negative Weight Edge c: infinitel man path, c,, c, d, c,, c, d, c, d, c ccle c, d, c ha poitive weight (6 = ), c i hortet path with weight (, b) = w(, c) = a b c 6 d g e -6 f h -8 j i

19 Negative Weight Edge e: infinitel man path:, e,, e, f, e,, e, f, e, f, e ccle e, f, e ha negative weight: + ( 6) = man path from to e with arbitraril large negative weight (, e) = no hortet path exit between and e Similarl: (, f) =, (, g) = a b c 6 d g e -6 f h -8 i h, i, j not reachable from j (, h) = (, i) = (, j) =

20 Negative Weight Edge Negative weight edge ma form negative weight ccle If uch ccle are reachable from the ource: (, v) i not properl defined a b c 6 d g e -6 f h -8 j i

21 Ccle Can hortet path contain ccle? Negative weight ccle Poitive weight ccle: No! No! B removing the ccle we can get a horter path We will aume that when we are finding hortet path, the path will have no ccle

22 Bellman Ford Algorithm Single ource hortet path problem Compute d[v] and [v] for all v V Allow negative edge weight Return: TRUE if no negative weight ccle are reachable from the ource FALSE otherwie no olution exit Idea: Travere all the edge V 1 time, ever time performing a relaxation tep of each edge

23 BELLMAN-FORD(V, E, w, ) 1. INITIALIZE-SINGLE-SOURCE(V, ). for i 1 to V - 1. do for each edge (u, v) E 4. do RELAX(u, v, w). for each edge (u, v) E 6. do if d[v] > d[u] + w(u, v). then return FALSE 8. return TRUE

24 Example 6 t x 9 z E: (t, x), (t, ), (t, z), (x, t), (, x), (, z), (z, x), (z, ), (, t), (, )

25 Example Pa 1 t x 6 Pa z Pa t x Pa z t x z t x z E: (t, x), (t, ), (t, z), (x, t), (, x), (, z), (z, x), (z, ), (, t), (, )

26 Detecting Negative Ccle for each edge (u, v) E do if d[v] > d[u] + w(u, v) then return FALSE return TRUE b b b c c c Oberve edge (, b): d[b] = -1, d[] + w(, b) = -4 d[b] > d[] + w(, b)

27 BELLMAN FORD(V, E, w, ) 1. INITIALIZE-SINGLE-SOURCE(V, ). for i 1 to V - 1. do for each edge (u, v) E 4. do RELAX(u, v, w). for each edge (u, v) E 6. do if d[v] > d[u] + w(u, v). then return FALSE 8. return TRUE (V) O(V) O(E) O(E) O(VE) Running time: O(VE)

28 Single Source Shortet Path in DAG Given a weighted DAG: G = (V, E) olve the hortet path problem Idea: Topologicall ort the vertice of the graph Relax the edge according to the order given b the topological ort for each vertex, we relax each edge that tart from that vertex Are hortet path well defined in a DAG? Ye, (negative weight) ccle cannot exit

29 DAG SHORTEST PATHS(G, w, ) 1. topologicall ort the vertice of G. INITIALIZE-SINGLE-SOURCE(V, ) (V+E) (V). for each vertex u, taken in topologicall orted order 4. do for each vertex v Adj[u]. do RELAX(u, v, w) (V) (E) (V+E) Running time: (V+E)

30 Example 6 1 r t x z r t x z r t x z

31 Example 6 1 r t x z r t x z r t x z

32 Example 6 1 r t x z

Shortest Path Problems

Shortest Path Problems Shortet Path Problem How can we find the hortet route between two point on a road map? Model the problem a a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie

More information

Outline. (single-source) shortest path. (all-pairs) shortest path. minimum spanning tree. Dijkstra (Section 4.4) Bellman-Ford (Section 4.

Outline. (single-source) shortest path. (all-pairs) shortest path. minimum spanning tree. Dijkstra (Section 4.4) Bellman-Ford (Section 4. Weighted Graphs 1 Outline (single-source) shortest path Dijkstra (Section 4.4) Bellman-Ford (Section 4.6) (all-pairs) shortest path Floyd-Warshall (Section 6.6) minimum spanning tree Kruskal (Section 5.1.3)

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and no

More information

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 20. Example. Shortest Paths Definitions

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 20. Example. Shortest Paths Definitions Taking Stock IE170: Algorithms in Systems Engineering: Lecture 20 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University March 19, 2007 Last Time Minimum Spanning Trees Strongly

More information

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course: Content Shortet path Algorithm and Network 21/211 The hortet path problem: Statement Verion Application Algorithm (for ingle ource p problem) Reminder: relaxation, Dijktra, Variant of Dijktra, Bellman-Ford,

More information

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Single Source Shortest Paths

Single Source Shortest Paths Single Source Shortest Paths Given a connected weighted directed graph G(V, E), associated with each edge u, v E, there is a weight w(u, v). The single source shortest paths (SSSP) problem is to find a

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 07 Single-Source Shortest Paths (Chapter 24) Stephen Scott and Vinodchandran N. Variyam sscott@cse.unl.edu 1/36 Introduction

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

Lecture 17: Shortest Paths

Lecture 17: Shortest Paths Lecture 7: Shortet Path CSE 373: Data Structure and Algorithm CSE 373 9 WI - KASEY CHAMPION Adminitrivia How to Ace the Technical Interview Seion today! - 6-8pm - Sieg 34 No BS CS Career Talk Thurday -

More information

Lecture 14: Minimum Spanning Tree I

Lecture 14: Minimum Spanning Tree I COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce

More information

COMP251: Single source shortest paths

COMP251: Single source shortest paths COMP51: Single source shortest paths Jérôme Waldispühl School of Computer Science McGill University Based on (Cormen et al., 00) Problem What is the shortest road to go from one city to another? Eample:

More information

Single-Source Shortest Paths. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Single-Source Shortest Paths. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Single-Source Shortest Paths CSE Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Terminology A network is a directed graph. We will use both terms interchangeably. The

More information

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24 /8/11 Single-Source Shortest Path Chapter 1 Shortest Paths Finding the shortest path between two nodes comes up in many applications o Transportation problems o Motion planning o Communication problems

More information

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

COT 6405 Introduction to Theory of Algorithms

COT 6405 Introduction to Theory of Algorithms COT 6405 Introduction to Theory of Algorithms Topic 16. Single source shortest path 11/18/2015 1 Problem definition Problem: given a weighted directed graph G, find the minimum-weight path from a given

More information

Graphs: Finding shortest paths

Graphs: Finding shortest paths /0/01 Graph: Finding hortet path Tecniche di Programmazione Summary Definition Floyd-Warhall algorithm Bellman-Ford-Moore algorithm Dijktra algorithm 1 /0/01 Definition Graph: Finding hortet path Definition:

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

Introduction. I Given a weighted, directed graph G =(V, E) with weight function

Introduction. I Given a weighted, directed graph G =(V, E) with weight function ntroduction Computer Science & Engineering 2/82 Design and Analysis of Algorithms Lecture 06 Single-Source Shortest Paths (Chapter 2) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Introduction. I Given a weighted, directed graph G =(V, E) with weight function

Introduction. I Given a weighted, directed graph G =(V, E) with weight function ntroduction Computer Science & Engineering 2/82 Design and Analysis of Algorithms Lecture 05 Single-Source Shortest Paths (Chapter 2) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu

More information

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Topics Weighted graphs each edge (u, v) has a weight denoted w(u, v) or w uv stored in the adjacency list or adjacency matrix The weight of a path p =

More information

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution Taking Stock IE170: Algorithms in Systems Engineering: Lecture 26 Jeff Linderoth Last Time Department of Industrial and Systems Engineering Lehigh University April 2, 2007 This Time Review! Jeff Linderoth

More information

Introduction to Algorithms. Lecture 11

Introduction to Algorithms. Lecture 11 Introduction to Algorithms Lecture 11 Last Time Optimization Problems Greedy Algorithms Graph Representation & Algorithms Minimum Spanning Tree Prim s Algorithm Kruskal s Algorithm 2 Today s Topics Shortest

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

from notes written mostly by Dr. Carla Savage: All Rights Reserved

from notes written mostly by Dr. Carla Savage: All Rights Reserved CSC 505, Fall 2000: Week 9 Objectives: learn about various issues related to finding shortest paths in graphs learn algorithms for the single-source shortest-path problem observe the relationship among

More information

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. Shortest Path Problems Algorithms on Graphs: Part III Path in a graph. Let G = V,E be a graph. A path p = e 1,...,e k, e i E,

More information

Lecture 11: Analysis of Algorithms (CS ) 1

Lecture 11: Analysis of Algorithms (CS ) 1 Lecture 11: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 12, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 2 Dynamic Programming Approach Floyd-Warshall Shortest

More information

Unit 2: Algorithmic Graph Theory

Unit 2: Algorithmic Graph Theory Unit 2: Algorithmic Graph Theory Course contents: Introduction to graph theory Basic graph algorithms Reading Chapter 3 Reference: Cormen, Leiserson, and Rivest, Introduction to Algorithms, 2 nd Ed., McGraw

More information

Unit 5F: Layout Compaction

Unit 5F: Layout Compaction Course contents Unit 5F: Layout Compaction Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 5F 1 Design rules: restrictions on the mask patterns to increase the probability

More information

Unit 3: Layout Compaction

Unit 3: Layout Compaction Unit 3: Layout Compaction Course contents Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 3 1 Design rules: restrictions on the mask patterns to increase the probability

More information

Algorithmic Discrete Mathematics 4. Exercise Sheet

Algorithmic Discrete Mathematics 4. Exercise Sheet Algorithmic Dicrete Mathematic. Exercie Sheet Department of Mathematic SS 0 PD Dr. Ulf Lorenz 0. and. May 0 Dipl.-Math. David Meffert Verion of May, 0 Groupwork Exercie G (Shortet path I) (a) Calculate

More information

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico Today Outline CS 362, Lecture 9 Jared Saia Univerity of New Mexico BFS and DFS Wrapup Shortet Path Generic Travere DFS and BFS Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v)

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 13 December 18, 2013 洪國寶 1 Homework #10 1. 24.1-1 (p. 591 / p. 654) 2. 24.1-6 (p. 592 / p. 655) 3. 24.3-2 (p. 600 / p. 663) 4. 24.3-8 (p. 601) / 24.3-10

More information

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems Chapter 24. Shortest path problems We are given a directed graph G = (V,E) with each directed edge (u,v) E having a weight, also called a length, w(u,v) that may or may not be negative. A shortest path

More information

Part VI Graph algorithms. Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths

Part VI Graph algorithms. Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths Part VI Graph algorithms Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths 1 Chapter 22 Elementary Graph Algorithms Representations of graphs

More information

Shortest Paths. Shortest Path. Applications. CSE 680 Prof. Roger Crawfis. Given a weighted directed graph, one common problem is finding the shortest

Shortest Paths. Shortest Path. Applications. CSE 680 Prof. Roger Crawfis. Given a weighted directed graph, one common problem is finding the shortest Shortest Path Introduction to Algorithms Shortest Paths CS 60 Prof. Roger Crawfis Given a weighted directed graph, one common problem is finding the shortest path between two given vertices Recall that

More information

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

CS420/520 Algorithm Analysis Spring 2009 Lecture 14 CS420/520 Algorithm Analysis Spring 2009 Lecture 14 "A Computational Analysis of Alternative Algorithms for Labeling Techniques for Finding Shortest Path Trees", Dial, Glover, Karney, and Klingman, Networks

More information

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights Algorithm Shortet path in an edge-weighted digraph R OBERT S EDGEWICK K EVIN W AYNE Given an edge-weighted digraph, find the hortet path from to t. edge-weighted digraph ->. ->. ->7.7 ->7.28 7->.28 ->.2

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

Shortest Path Algorithms

Shortest Path Algorithms Shortest Path Algorithms Andreas Klappenecker [based on slides by Prof. Welch] 1 Single Source Shortest Path Given: a directed or undirected graph G = (V,E) a source node s in V a weight function w: E

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Communication Speeds in a Computer Network Find fastest way to route a data packet between two computers 6 Kbps 4 0 Mbps 6 6 Kbps 6 Kbps Gbps 00 Mbps 8 6 Kbps

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Finding the Fastest Way to Travel between Two Intersections in Vancouver Granville St and W Hastings St Homer St and W Hastings St 6 Granville St and W Pender

More information

8.1 Shortest Path Trees

8.1 Shortest Path Trees I tudy my Bible a I gather apple. Firt I hake the whole tree, that the ripet might fall. Then I climb the tree and hake each limb, and then each branch and then each twig, and then I look under each leaf.

More information

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20.

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20. Title Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis Nesrine Damak Fakultät für Informatik TU München 20. September 2010 Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

More information

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992)

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992) Well, ya turn left by the fire tation in the village and take the old pot road by the reervoir and...no, that won t do. Bet to continue traight on by the tar road until you reach the choolhoue and then

More information

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spanning Tree 1 Minimum Spanning Tree G=(V,E) is an undirected graph, where V is a set of nodes and E is a set of possible interconnections between pairs of nodes. For each edge (u,v) in E, we

More information

Introduction to Algorithms April 16, 2008 Massachusetts Institute of Technology Spring 2008 Professors Srini Devadas and Erik Demaine Quiz 2

Introduction to Algorithms April 16, 2008 Massachusetts Institute of Technology Spring 2008 Professors Srini Devadas and Erik Demaine Quiz 2 Introduction to Algorithms April 16, 2008 Massachusetts Institute of Technology 6.006 Spring 2008 Professors Srini Devadas and Erik Demaine Quiz 2 Quiz 2 Do not open this quiz booklet until you are directed

More information

Dijkstra s Algorithm. Single source shortest paths for a directed acyclic graph

Dijkstra s Algorithm. Single source shortest paths for a directed acyclic graph Dijkstra s Algorithm Single source shortest paths for a directed acyclic graph Single-Source Shortest Paths We want to find the shortest paths between Binghamton and New York City, Boston, and Washington

More information

Handling Degenerate Cases in Exact Geodesic Computation on Triangle Meshes

Handling Degenerate Cases in Exact Geodesic Computation on Triangle Meshes The Viual Computer manucript. (will be inerted b the editor) Yong-Jin Liu Qian-Yi Zhou Shi-Min Hu Degenerate Cae in Eact Geodeic Computation on Triangle Mehe Abtract The computation of eact geodeic on

More information

5.4 Shortest Paths. Jacobs University Visualization and Computer Graphics Lab. CH : Algorithms and Data Structures 456

5.4 Shortest Paths. Jacobs University Visualization and Computer Graphics Lab. CH : Algorithms and Data Structures 456 5.4 Shortest Paths CH08-320201: Algorithms and Data Structures 456 Definitions: Path Consider a directed graph G=(V,E), where each edge e є E is assigned a non-negative weight w: E -> R +. A path is a

More information

Minimum Spanning Trees Ch 23 Traversing graphs

Minimum Spanning Trees Ch 23 Traversing graphs Net: Graph Algorithms Graphs Ch 22 Graph representations adjacenc list adjacenc matri Minimum Spanning Trees Ch 23 Traersing graphs Breadth-First Search Depth-First Search 7/16/2013 CSE 3101 1 Graphs Definition

More information

Week 12: Minimum Spanning trees and Shortest Paths

Week 12: Minimum Spanning trees and Shortest Paths Agenda: Week 12: Minimum Spanning trees and Shortest Paths Kruskal s Algorithm Single-source shortest paths Dijkstra s algorithm for non-negatively weighted case Reading: Textbook : 61-7, 80-87, 9-601

More information

Dijkstra s Single Source Shortest Path Algorithm. Andreas Klappenecker

Dijkstra s Single Source Shortest Path Algorithm. Andreas Klappenecker Dijkstra s Single Source Shortest Path Algorithm Andreas Klappenecker Single Source Shortest Path Given: a directed or undirected graph G = (V,E) a source node s in V a weight function w: E -> R. Problem:!!

More information

ECE250: Algorithms and Data Structures Single Source Shortest Paths Bellman-Ford Algorithm

ECE250: Algorithms and Data Structures Single Source Shortest Paths Bellman-Ford Algorithm ECE250: Algorithms and Data Structures Single Source Shortest Paths Bellman-Ford Algorithm Ladan Tahvildari, PEng, SMIEEE Associate Professor Software Technologies Applied Research (STAR) Group Dept. of

More information

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang Stochatic Search and Graph Technique for MCM Path Planning Chritine D. Piatko, Chritopher P. Diehl, Paul McNamee, Cheryl Rech and I-Jeng Wang The John Hopkin Univerity Applied Phyic Laboratory, Laurel,

More information

Lecture 10: Analysis of Algorithms (CS ) 1

Lecture 10: Analysis of Algorithms (CS ) 1 Lecture 10: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 05, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 Topological Sort Strongly Connected Components 2

More information

6.006 Introduction to Algorithms Spring 2008

6.006 Introduction to Algorithms Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.006 Introduction to Algorithms Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction to Algorithms:

More information

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks Localized Minimum Spanning Tree Baed Multicat Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Senor Network Hanne Frey Univerity of Paderborn D-3398 Paderborn hanne.frey@uni-paderborn.de

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J LECTURE 16 Greedy Algorithms (and Graphs) Graph representation Minimum spanning trees Optimal substructure Greedy choice Prim s greedy MST algorithm Prof. Charles

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 6 Greedy Graph Algorithms Shortest paths Adam Smith 9/8/14 The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle Does

More information

Dijkstra s Algorithm

Dijkstra s Algorithm Dijkstra s Algorithm 7 1 3 1 Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances, costs, etc. Example:

More information

Fundamental Algorithms CSCI-GA /Summer Solution to Homework 8

Fundamental Algorithms CSCI-GA /Summer Solution to Homework 8 Fundamental Algorithms CSCI-GA.70-00/Summer 206 Solution to Homework 8 Problem (CLRS 23.-6). ( point) Show that a graph has a unique minimum spanning tree if, for every cut of the graph, there is a unique

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming and data-structures CS/ENGRD 20 SUMMER 208 Lecture 3: Shortest Path http://courses.cs.cornell.edu/cs20/208su Graph Algorithms Search Depth-first search Breadth-first search

More information

1 Summation Formulae, Induction and Bounding. 2 How to compare functions: o, ω, O, Ω, Θ. 3 How to count the running time of algorithms

1 Summation Formulae, Induction and Bounding. 2 How to compare functions: o, ω, O, Ω, Θ. 3 How to count the running time of algorithms What We ve Learned Part One IE170: Algorithms in Systems Engineering: Lecture 33 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University April 25, 2007 1 Summation Formulae, Induction

More information

Dijkstra s Shortest Path Algorithm

Dijkstra s Shortest Path Algorithm Dijkstra s Shortest Path Algorithm DPV 4.4, CLRS 24.3 Revised, October 23, 2014 Outline of this Lecture Recalling the BFS solution of the shortest path problem for unweighted (di)graphs. The shortest path

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS45-05S-7 Shortest Path Dijkstra s Algorithm David Galles Department of Computer Science University of San Francisco 7-0: Computing Shortest Path Given a directed weighted

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Data Structures and Algorithms. Werner Nutt

Data Structures and Algorithms. Werner Nutt Data Structures and Algorithms Werner Nutt nutt@inf.unibz.it http://www.inf.unibz/it/~nutt Chapter 10 Academic Year 2012-2013 1 Acknowledgements & Copyright Notice These slides are built on top of slides

More information

1 Start with each vertex being its own component. 2 Merge two components into one by choosing the light edge

1 Start with each vertex being its own component. 2 Merge two components into one by choosing the light edge Taking Stock IE170: in Systems Engineering: Lecture 19 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University March 16, 2007 Last Time Minimum This Time More Strongly Connected

More information

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths Outline Computer Science 33 Computation of Minimum-Cost Paths Dijkstra s Mike Jacobson Department of Computer Science University of Calgary Lecture #34 Dijkstra s to Find Min-Cost Paths 3 Example 4 5 References

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions Google map Shortet Path Dijktra' algorithm implementation negatie eight Reference: Algorithm in Jaa, Chapter http://.c.princeton.edu/alg/p Algorithm in Jaa, th Edition Robert Sedgeick and Kein Wayne Copyright

More information

Minimum Spanning Trees Ch 23 Traversing graphs

Minimum Spanning Trees Ch 23 Traversing graphs Next: Graph Algorithms Graphs Ch 22 Graph representations adjacency list adjacency matrix Minimum Spanning Trees Ch 23 Traversing graphs Breadth-First Search Depth-First Search 11/30/17 CSE 3101 1 Graphs

More information

Sample Solutions to Homework #4

Sample Solutions to Homework #4 National Taiwan University Handout #25 Department of Electrical Engineering January 02, 207 Algorithms, Fall 206 TA: Zhi-Wen Lin and Yen-Chun Liu Sample Solutions to Homework #4. (0) (a) Both of the answers

More information

Graph Representation

Graph Representation Graph Representation Adjacency list representation of G = (V, E) An array of V lists, one for each vertex in V Each list Adj[u] contains all the vertices v such that there is an edge between u and v Adj[u]

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Overview Problem A town has a set of houses and a set of roads. A road connects and only houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

Brief Announcement: Distributed 3/2-Approximation of the Diameter

Brief Announcement: Distributed 3/2-Approximation of the Diameter Brief Announcement: Ditributed /2-Approximation of the Diameter Preliminary verion of a brief announcement to appear at DISC 14 Stephan Holzer MIT holzer@mit.edu David Peleg Weizmann Intitute david.peleg@weizmann.ac.il

More information

ISSN: (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Iue 4, April 2015 International Journal Advance Reearch in Computer Science and Management Studie Reearch Article / Survey Paper / Cae Study Available online at: www.ijarcm.com

More information

Outlines: Graphs Part-2

Outlines: Graphs Part-2 Elementary Graph Algorithms PART-2 1 Outlines: Graphs Part-2 Graph Search Methods Breadth-First Search (BFS): BFS Algorithm BFS Example BFS Time Complexity Output of BFS: Shortest Path Breath-First Tree

More information

Classical Shortest-Path Algorithms

Classical Shortest-Path Algorithms DISTANCE PROBLEMS IN NETWORKS - THEORY AND PRACTICE Classical Shortest-Path Algorithms Nesrine Damak October 10, 2010 Abstract In this work, we present four algorithms for the shortest path problem. The

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

Routing Protocols and the IP Layer

Routing Protocols and the IP Layer Routing Protocols and the IP Layer CS244A Review Session 2/0/08 Ben Nham Derived from slides by: Paul Tarjan Martin Casado Ari Greenberg Functions of a router Forwarding Determine the correct egress port

More information

Introductory Computer Programming: Shortest Path Algorithms

Introductory Computer Programming: Shortest Path Algorithms Introductory Computer Programming: 2017-18 Shortest Path Algorithms Soumik Purkayastha MD-1710 Contents 1 Project Proposal 1 2 Report 3 2.1 Introduction........................................ 3 2.2 Basic

More information

Introduction Single-source shortest paths All-pairs shortest paths. Shortest paths in graphs

Introduction Single-source shortest paths All-pairs shortest paths. Shortest paths in graphs Shortest paths in graphs Remarks from previous lectures: Path length in unweighted graph equals to edge count on the path Oriented distance (δ(u, v)) between vertices u, v equals to the length of the shortest

More information

Shortest Paths with Single-Point Visibility Constraint

Shortest Paths with Single-Point Visibility Constraint Shortet Path with Single-Point Viibility Contraint Ramtin Khoravi Mohammad Ghodi Department of Computer Engineering Sharif Univerity of Technology Abtract Thi paper tudie the problem of finding a hortet

More information

xy-monotone path existence queries in a rectilinear environment

xy-monotone path existence queries in a rectilinear environment CCCG 2012, Charlottetown, P.E.I., Augut 8 10, 2012 xy-monotone path exitence querie in a rectilinear environment Gregory Bint Anil Mahehwari Michiel Smid Abtract Given a planar environment coniting of

More information

Lecture Notes for Chapter 23: Minimum Spanning Trees

Lecture Notes for Chapter 23: Minimum Spanning Trees Lecture Notes for Chapter 23: Minimum Spanning Trees Chapter 23 overview Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has

More information

CS 151. Graph Algorithms. Wednesday, November 28, 12

CS 151. Graph Algorithms. Wednesday, November 28, 12 CS 151 Graph Algorithm 1 Unweighted Shortet Path Problem input: a graph G=(V,E) and a tart vertex goal: determine the length of the hortet path from to every vertex in V (and while you re at it, compute

More information

CS350: Data Structures Dijkstra s Shortest Path Alg.

CS350: Data Structures Dijkstra s Shortest Path Alg. Dijkstra s Shortest Path Alg. James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Shortest Path Algorithms Several different shortest path algorithms exist

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J LECTURE 13 Graph algorithms Graph representation Minimum spanning trees Greedy algorithms Optimal substructure Greedy choice Prim s greedy MST algorithm Prof.

More information

Graph Algorithms: Chapters Part 1: Introductory graph concepts

Graph Algorithms: Chapters Part 1: Introductory graph concepts UMass Lowell Computer Science 91.503 Algorithms Dr. Haim Levkowitz Fall, 2007 Graph Algorithms: Chapters 22-25 Part 1: Introductory graph concepts 1 91.404 Graph Review Elementary Graph Algorithms Minimum

More information

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search Informed Search ay 2/3 of Search hap. 4, Ruel & Norvig FS IFS US PFS MEM FS IS Uninformed Search omplexity N = Total number of tate = verage number of ucceor (branching factor) L = Length for tart to goal

More information

Graphs II - Shortest paths

Graphs II - Shortest paths Graphs II - Shortest paths Single Source Shortest Paths All Sources Shortest Paths some drawings and notes from prof. Tom Cormen Single Source SP Context: directed graph G=(V,E,w), weighted edges The shortest

More information

Quiz 2 Solutions. (a) T F Topological sort requires Ω(V lg V ) if the edge weights are unbounded. Explain:

Quiz 2 Solutions. (a) T F Topological sort requires Ω(V lg V ) if the edge weights are unbounded. Explain: Introduction to Algorithms April 15, 2009 Massachusetts Institute of Technology 6.006 Spring 2009 Professors Sivan Toledo and Alan Edelman Quiz 2 Solutions Problem 1. Quiz 2 Solutions True or False [20

More information

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Greedy Graph Algorithms Topological sort Shortest paths Adam Smith The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle

More information