Algorithmic Discrete Mathematics 4. Exercise Sheet

Size: px
Start display at page:

Download "Algorithmic Discrete Mathematics 4. Exercise Sheet"

Transcription

1 Algorithmic Dicrete Mathematic. Exercie Sheet Department of Mathematic SS 0 PD Dr. Ulf Lorenz 0. and. May 0 Dipl.-Math. David Meffert Verion of May, 0 Groupwork Exercie G (Shortet path I) (a) Calculate the hortet path from to all other vertice by uing the Dijtra algorithm. Determine the hortet path tree. (b) I the hortet path tree unique? (c) Now change the weight of the edge (, ) to. Show that the Dijktra algorithm doe not work in thi cae. (a) The olution i given by the followig picture. The number next to vertice are the ditance to the tarting vertex and croing out a number mean that there ha been an update. The number in quare indicate the final ditance (hortet ditance). The hortet path tree i indicated by the thick line. The order of viiting the vertice i,,,,,, or,,,,,. 0 7 (b) No the hortet path tree i not unique. By ubtituting the edge (, ) with the edge (, ) one get another poible hortet path tree. (c) The Dijktra algorithm will give the ame olution a in part (a) although the path (,,,, ) (dit ) ha a horter ditance than the path (,, ) (dit ). Thi i what happen: After viiting the vertice,, the algorithm will look for the hortet path to a not yet viited vertex. Thi will be vertex with ditance. After viiting vertex the algorithm will not make an update on vertex becaue it wa already viited and for thi reaon not find the hortet path (ditance ). 7

2 Exercie G (Shortet path II) Show that the problem finding a hortet odd cycle in a imple digraph G = (V, E) with nonnegative weight c e on the edge can be olved by uing a hortet path algorithm. We look at the graph G = (V, E) with weight c e for e E and contruct another copy of it vertex et to get the graph G = (V, E ). The et V i definde by V := V {0} V {}. We connect two vertice (v, σ ) and (v, σ ) by a directed edge iff (σ = σ ) and (v, v ) E. Thi mean v and v are in different copie of V and they are adjacent in G. For the weight of thee edge we chooe the original weight of the correponding edge in E. The problem to find a hortet odd cycle in the orginal graph G can now be olved by looking at hortet path from (v, 0) to (v, ) in the graph G for every vertex v V. All thee path in G yield odd cycle in the original graph G by contruction of G. Thi hold becaue we have an odd number of changing between the two component V {0} and V {}. Hence by taking the hortet path we found we get the hortet odd cycle. Exercie G (Croing the river) A man ha to tranport a wolf, a goat and a cabbage to the other ide of a river. He ha one boat to do thi but it i o mall that he can only take one of the three thing with him each time. I it poible to bring all three thing to the other ide of the river afely? Notice that the wolf and the goat or goat and the cabbage mut never be on the ame ide of the river without urveillance of the man. At leat the wolf i no vegeterian and doe not like to eat cabbage. We contruct a graph for thi problem where every legal tate i repreented by a vertex in the graph and look for a hortet path in that graph. So let S = {M, W, G, C} where M, W, G, C repreent the man, the wolf, the goat and the cabbage. A tate for thi problem i a pair (X, Y ) where {X, Y } i a partition of S. The element in X are till on the tarting ide of the river and the element in Y are already on the other ide. A tate i a legal tate if W, G X, Y M X, Y and G, C X, Y M X, Y. Thi repreent that you may not leave alone the cabbage and the wolf or the goat and the cabbage without urveillance. Now contruct a graph G = (V, E) which ha a vertex for every legal tate of thi problem. We have the directed edge (v, v ) E if we can get from the tate v = (X, Y ) to the tate v = (X, Y ) by jut one boat trip acro the river. All edge get the weight c e =. Now the problem can be olved by calculating the hortet path from the tate (vertex) = (S, ) to the tate (vertex) t = (, S). We get 7 a the olution for the hortet path. Homework Exercie H0 (Algorithm) (0 point) We are looking for an algorithm which get an undirected, connected graph G given a an adjacency lit and determine whether the graph i bipartite or not in runtime O( V + E ). (a) Contruct uch an algorithm. (b) Prove it correctne and analye it runtime. (a) We modify the depth firt earch algorithm uch that it aign every vertex to one of the et V or V. The tarting vertex will be aigned to the et V. One of the neighbour, which i not yet viited, will be aigned to the et V and o on. If the algorithm get to a neighbour of the actual vertex which ha already been viited it check whether the actual vertex and the neighbour are in the ame et. If thi i the cae it return fale otherwie nothing happen. The algorithm keep on doing thi till all vertice are viited once.

3 Algorithm DFS(G) for each vertex u V do do color[u] white G-bipartit true for each vertex u V do if color[u]= white then BIP-et[u] V if DFS-Viit(u)=fale then G-bipartit fale return G-bipartit Algorithm DFS-Viit(u) color[u] GRAY for each vertex v Adj[u] do if color[v] = white then if BIP-et[u] = V then BIP-et[v]=V ele BIP-et[v]=V DFS-Viit(v) ele if BIP-et[u] = BIP-et[v] then return fale return true (b) Now be prove the correctne of the algorithm and claim that G i bipartite iff the algorithm return true. firt cae: G i bipartite. We have to how that the algorithm return true. The firt vertex will be aigned to V. Every neighbour of that vertex will be aigned to V (ee line - in DFS-Viit). So two adjacent vertice will never be aigned to ame et. In the end the algorithm will correctly return true, ince G i bipartite and aigning all neighbour to other et a the vertex itelf i neceary for getting a bipartition. econd cae: G i not bipartite. We have to how that the algorithm doe not return true. Since G i not bipartite we know that it contain a cycle C of odd length. Let ay C conit of n + vertice with n being even. The algorithm will aign n vertice correctly by alway aigning the adjacent vertex in the cycle to the oppoite et. When it viit the n + vertex in the cycle it will realize that one adjacent vertex wa already viited and wa aigned to the ame et a itelf. Therefore it will return fale a deired. The runtime of the algorithm i the ame a for the DFS algorithm becaue we only made modification adding contant running time in each relevant part of the algorithm (for each part). So the runtime i O( V + E ).

4 Exercie H (Graph) Given the graph G in Figure. (0 point) Figure : a graph (a) I the graph G eulerian? Jutify your anwer. (b) Doe the graph G contain a Hamiltonian cycle? Thi a cycle that contain each vertex exactly once. Jutify your anwer. (c) Determine the adjacency matrix and adjacency lit of the graph G. (a) The graph i not eulerian ince it contain vertice not having an even degree. (b) The graph contain no Hamiltonian cycle ince the vertex number ha to be viiited at leat two time to viit the vertex. (c) The adjacency matrix look a follow: A = For the adjacency lit we have the following information in the given order. Number of vertice Number of edge For each vertex the degree and the incident edge So the lit look a follow: 0 ; ;,,, ;,, ;,7, ;,9 ;,,9 ;,0 ;,0

5 ;, ;7, Exercie H (Shortet path) (0 point) (a) Let G = (V, E) be a directed graph. i. Aume G ha no negative cycle and ( = i 0, i,..., i k = t) i a hortet imple path from to t. Then every ubpath from to i j with j {0,..., k} i a hortet imple path from to i j. ii. Show that thi tatement i wrong for general graph which may contain negative cycle. (b) Given a directed graph G = (V, E) we want to calculate the hortet path from the tart to the detination. The problem i that tart conit of n vertice and the detination conit of m vertice. So we are looking for the hortet path poibly tarting at any i with i {,..., n} and poibly going to any detination t j with j {,..., m}. How can thi be done efficiently? Jutify your anwer. Hint: (a) i. Aume there i a horter imple path P from to i j. By connecting the path P and (i j, i j+,..., t) we get a path from to t which i horter than the original hortet imple path from to t. Thi path doe not need to be imple. By eliminating all cycle in thi path, which make it ever horter becaue we aumed no negative cycle, we get a horter imple path from to t than the original one. Thi i a contradiction ii. Here i an example how the tatement i not true for negative cycle. The hortet imple path from to t i (, v, t) with ditance. Taking the ubpath to (, v ) with ditance we find a horter imple path from to v namely (, t, v ) with ditance. t v (b) We modify the given graph G = (V, E) to a graph G = (V, E ). The vertex et i definded by V := V {, t} and the edge et i defined by E := E {(, i ) : i n} {(t j, t) : j m}. All the weight for the additional edge are et to zero. Notice that any weight would do the job. It i jut important that they all get the ame weight. Now we determine the hortet path from to t in the graph G which we will be (, i,..., t j, t) for ome i {,..., n} and j {,..., m}. The ubpath ( i,..., t j ) i the deired hortet path we wanted to find. If there would be a horter path than thi one we would have found it by uing the hortet path algorithm on the graph G, ince the edge (, i ) and (t j, t) will not add any weight to the path (or add the ame amount for every path from to t if we have choen nonzero weight).

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

Lecture 14: Minimum Spanning Tree I

Lecture 14: Minimum Spanning Tree I COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce

More information

Lecture 17: Shortest Paths

Lecture 17: Shortest Paths Lecture 7: Shortet Path CSE 373: Data Structure and Algorithm CSE 373 9 WI - KASEY CHAMPION Adminitrivia How to Ace the Technical Interview Seion today! - 6-8pm - Sieg 34 No BS CS Career Talk Thurday -

More information

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico Today Outline CS 362, Lecture 9 Jared Saia Univerity of New Mexico BFS and DFS Wrapup Shortet Path Generic Travere DFS and BFS Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v)

More information

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X Lecture 37: Global Optimization [Adapted from note by R. Bodik and G. Necula] Topic Global optimization refer to program optimization that encompa multiple baic block in a function. (I have ued the term

More information

Minimum congestion spanning trees in bipartite and random graphs

Minimum congestion spanning trees in bipartite and random graphs Minimum congetion panning tree in bipartite and random graph M.I. Otrovkii Department of Mathematic and Computer Science St. John Univerity 8000 Utopia Parkway Queen, NY 11439, USA e-mail: otrovm@tjohn.edu

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract Mot Graph are Edge-Cordial Karen L. Collin Dept. of Mathematic Weleyan Univerity Middletown, CT 6457 and Mark Hovey Dept. of Mathematic MIT Cambridge, MA 239 Abtract We extend the definition of edge-cordial

More information

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization Lecture Outline Global flow analyi Global Optimization Global contant propagation Livene analyi Adapted from Lecture by Prof. Alex Aiken and George Necula (UCB) CS781(Praad) L27OP 1 CS781(Praad) L27OP

More information

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course: Content Shortet path Algorithm and Network 21/211 The hortet path problem: Statement Verion Application Algorithm (for ingle ource p problem) Reminder: relaxation, Dijktra, Variant of Dijktra, Bellman-Ford,

More information

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS A SIMPLE IMPERATIVE LANGUAGE Eventually we will preent the emantic of a full-blown language, with declaration, type and looping. However, there are many complication, o we will build up lowly. Our firt

More information

arxiv: v1 [cs.ds] 27 Feb 2018

arxiv: v1 [cs.ds] 27 Feb 2018 Incremental Strong Connectivity and 2-Connectivity in Directed Graph Louka Georgiadi 1, Giueppe F. Italiano 2, and Niko Parotidi 2 arxiv:1802.10189v1 [c.ds] 27 Feb 2018 1 Univerity of Ioannina, Greece.

More information

1 The secretary problem

1 The secretary problem Thi i new material: if you ee error, pleae email jtyu at tanford dot edu 1 The ecretary problem We will tart by analyzing the expected runtime of an algorithm, a you will be expected to do on your homework.

More information

CS 151. Graph Algorithms. Wednesday, November 28, 12

CS 151. Graph Algorithms. Wednesday, November 28, 12 CS 151 Graph Algorithm 1 Unweighted Shortet Path Problem input: a graph G=(V,E) and a tart vertex goal: determine the length of the hortet path from to every vertex in V (and while you re at it, compute

More information

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz Operational emantic Page Operational emantic Cla note for a lecture given by Mooly agiv Tel Aviv Univerity 4/5/7 By Roy Ganor and Uri Juhaz Reference emantic with Application, H. Nielon and F. Nielon,

More information

Shortest Path Problems

Shortest Path Problems Shortet Path Problem How can we find the hortet route between two point on a road map? Model the problem a a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie

More information

Graphs: Finding shortest paths

Graphs: Finding shortest paths /0/01 Graph: Finding hortet path Tecniche di Programmazione Summary Definition Floyd-Warhall algorithm Bellman-Ford-Moore algorithm Dijktra algorithm 1 /0/01 Definition Graph: Finding hortet path Definition:

More information

Brief Announcement: Distributed 3/2-Approximation of the Diameter

Brief Announcement: Distributed 3/2-Approximation of the Diameter Brief Announcement: Ditributed /2-Approximation of the Diameter Preliminary verion of a brief announcement to appear at DISC 14 Stephan Holzer MIT holzer@mit.edu David Peleg Weizmann Intitute david.peleg@weizmann.ac.il

More information

Shortest Paths with Single-Point Visibility Constraint

Shortest Paths with Single-Point Visibility Constraint Shortet Path with Single-Point Viibility Contraint Ramtin Khoravi Mohammad Ghodi Department of Computer Engineering Sharif Univerity of Technology Abtract Thi paper tudie the problem of finding a hortet

More information

Delaunay Triangulation: Incremental Construction

Delaunay Triangulation: Incremental Construction Chapter 6 Delaunay Triangulation: Incremental Contruction In the lat lecture, we have learned about the Lawon ip algorithm that compute a Delaunay triangulation of a given n-point et P R 2 with O(n 2 )

More information

A note on degenerate and spectrally degenerate graphs

A note on degenerate and spectrally degenerate graphs A note on degenerate and pectrally degenerate graph Noga Alon Abtract A graph G i called pectrally d-degenerate if the larget eigenvalue of each ubgraph of it with maximum degree D i at mot dd. We prove

More information

Quadrilaterals. Learning Objectives. Pre-Activity

Quadrilaterals. Learning Objectives. Pre-Activity Section 3.4 Pre-Activity Preparation Quadrilateral Intereting geometric hape and pattern are all around u when we tart looking for them. Examine a row of fencing or the tiling deign at the wimming pool.

More information

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu CERIAS Tech Report 2003-15 EFFICIENT PARALLEL ALGORITHMS FOR PLANAR t-graphs by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daecu Center for Education and Reearch in Information Aurance and Security,

More information

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992)

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992) Well, ya turn left by the fire tation in the village and take the old pot road by the reervoir and...no, that won t do. Bet to continue traight on by the tar road until you reach the choolhoue and then

More information

Drawing Lines in 2 Dimensions

Drawing Lines in 2 Dimensions Drawing Line in 2 Dimenion Drawing a traight line (or an arc) between two end point when one i limited to dicrete pixel require a bit of thought. Conider the following line uperimpoed on a 2 dimenional

More information

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms Lecture 18 Graph-Baed Algorithm CSE: Deign and Anali of Algorithm Shortet Path Problem Modeling problem a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge

More information

Advanced Encryption Standard and Modes of Operation

Advanced Encryption Standard and Modes of Operation Advanced Encryption Standard and Mode of Operation G. Bertoni L. Breveglieri Foundation of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) i a ymmetric cryptographic algorithm AES

More information

CORRECTNESS ISSUES AND LOOP INVARIANTS

CORRECTNESS ISSUES AND LOOP INVARIANTS The next everal lecture 2 Study algorithm for earching and orting array. Invetigate their complexity how much time and pace they take Formalize the notion of average-cae and wort-cae complexity CORRECTNESS

More information

Midterm 2 March 10, 2014 Name: NetID: # Total Score

Midterm 2 March 10, 2014 Name: NetID: # Total Score CS 3 : Algorithm and Model of Computation, Spring 0 Midterm March 0, 0 Name: NetID: # 3 Total Score Max 0 0 0 0 Grader Don t panic! Pleae print your name and your NetID in the boxe above. Thi i a cloed-book,

More information

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang Stochatic Search and Graph Technique for MCM Path Planning Chritine D. Piatko, Chritopher P. Diehl, Paul McNamee, Cheryl Rech and I-Jeng Wang The John Hopkin Univerity Applied Phyic Laboratory, Laurel,

More information

AVL Tree. The height of the BST be as small as possible

AVL Tree. The height of the BST be as small as possible 1 AVL Tree re and Algorithm The height of the BST be a mall a poible The firt balanced BST. Alo called height-balanced tree. Introduced by Adel on-vel kii and Landi in 1962. BST with the following condition:

More information

A Linear Interpolation-Based Algorithm for Path Planning and Replanning on Girds *

A Linear Interpolation-Based Algorithm for Path Planning and Replanning on Girds * Advance in Linear Algebra & Matrix Theory, 2012, 2, 20-24 http://dx.doi.org/10.4236/alamt.2012.22003 Publihed Online June 2012 (http://www.scirp.org/journal/alamt) A Linear Interpolation-Baed Algorithm

More information

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart.

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart. Univerität Augburg à ÊÇÅÍÆ ËÀǼ Approximating Optimal Viual Senor Placement E. Hörter, R. Lienhart Report 2006-01 Januar 2006 Intitut für Informatik D-86135 Augburg Copyright c E. Hörter, R. Lienhart Intitut

More information

See chapter 8 in the textbook. Dr Muhammad Al Salamah, Industrial Engineering, KFUPM

See chapter 8 in the textbook. Dr Muhammad Al Salamah, Industrial Engineering, KFUPM Goal programming Objective of the topic: Indentify indutrial baed ituation where two or more objective function are required. Write a multi objective function model dla a goal LP Ue weighting um and preemptive

More information

Online Motion Planning

Online Motion Planning RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INSTITUT FÜR INFORMATIK I Elmar Langetepe Online Motion Planning MA INF 1314 Summeremeter 017 Manucript: c Elmar Langetepe CONTENTS Content 1 Labyrinth,

More information

On successive packing approach to multidimensional (M-D) interleaving

On successive packing approach to multidimensional (M-D) interleaving On ucceive packing approach to multidimenional (M-D) interleaving Xi Min Zhang Yun Q. hi ankar Bau Abtract We propoe an interleaving cheme for multidimenional (M-D) interleaving. To achieved by uing a

More information

xy-monotone path existence queries in a rectilinear environment

xy-monotone path existence queries in a rectilinear environment CCCG 2012, Charlottetown, P.E.I., Augut 8 10, 2012 xy-monotone path exitence querie in a rectilinear environment Gregory Bint Anil Mahehwari Michiel Smid Abtract Given a planar environment coniting of

More information

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search Informed Search ay 2/3 of Search hap. 4, Ruel & Norvig FS IFS US PFS MEM FS IS Uninformed Search omplexity N = Total number of tate = verage number of ucceor (branching factor) L = Length for tart to goal

More information

Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic

Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic Exercie 4: Marko rocee, Cellular Automata and Fuzzy Logic Formal Method II, Fall Semeter 203 Solution Sheet Marko rocee Theoretical Exercie. (a) ( point) 0.2 0.7 0.3 tanding 0.25 lying 0.5 0.4 0.2 0.05

More information

Shortest Path Routing in Arbitrary Networks

Shortest Path Routing in Arbitrary Networks Journal of Algorithm, Vol 31(1), 1999 Shortet Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vöcking Department of Mathematic and Computer Science and Heinz Nixdorf Intitute,

More information

8.1 Shortest Path Trees

8.1 Shortest Path Trees I tudy my Bible a I gather apple. Firt I hake the whole tree, that the ripet might fall. Then I climb the tree and hake each limb, and then each branch and then each twig, and then I look under each leaf.

More information

An Intro to LP and the Simplex Algorithm. Primal Simplex

An Intro to LP and the Simplex Algorithm. Primal Simplex An Intro to LP and the Simplex Algorithm Primal Simplex Linear programming i contrained minimization of a linear objective over a olution pace defined by linear contraint: min cx Ax b l x u A i an m n

More information

Laboratory Exercise 2

Laboratory Exercise 2 Laoratory Exercie Numer and Diplay Thi i an exercie in deigning cominational circuit that can perform inary-to-decimal numer converion and inary-coded-decimal (BCD) addition. Part I We wih to diplay on

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercie 6 Adder, Subtractor, and Multiplier The purpoe of thi exercie i to examine arithmetic circuit that add, ubtract, and multiply number. Each circuit will be decribed in Verilog and implemented

More information

CENTER-POINT MODEL OF DEFORMABLE SURFACE

CENTER-POINT MODEL OF DEFORMABLE SURFACE CENTER-POINT MODEL OF DEFORMABLE SURFACE Piotr M. Szczypinki Iintitute of Electronic, Technical Univerity of Lodz, Poland Abtract: Key word: Center-point model of deformable urface for egmentation of 3D

More information

Minimum Energy Reliable Paths Using Unreliable Wireless Links

Minimum Energy Reliable Paths Using Unreliable Wireless Links Minimum Energy Reliable Path Uing Unreliable Wirele Link Qunfeng Dong Department of Computer Science Univerity of Wiconin-Madion Madion, Wiconin 53706 qunfeng@c.wic.edu Micah Adler Department of Computer

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercie 6 Adder, Subtractor, and Multiplier a a The purpoe of thi exercie i to examine arithmetic circuit that add, ubtract, and multiply number. Each b c circuit will be decribed in Verilog

More information

Distance Optimal Formation Control on Graphs with a Tight Convergence Time Guarantee

Distance Optimal Formation Control on Graphs with a Tight Convergence Time Guarantee Ditance Optimal Formation Control on Graph with a Tight Convergence Time Guarantee Jingjin Yu Steven M. LaValle Abtract For the tak of moving a et of inditinguihable agent on a connected graph with unit

More information

Chapter S:II (continued)

Chapter S:II (continued) Chapter S:II (continued) II. Baic Search Algorithm Sytematic Search Graph Theory Baic State Space Search Depth-Firt Search Backtracking Breadth-Firt Search Uniform-Cot Search AND-OR Graph Baic Depth-Firt

More information

Edits in Xylia Validity Preserving Editing of XML Documents

Edits in Xylia Validity Preserving Editing of XML Documents dit in Xylia Validity Preerving diting of XML Document Pouria Shaker, Theodore S. Norvell, and Denni K. Peter Faculty of ngineering and Applied Science, Memorial Univerity of Newfoundland, St. John, NFLD,

More information

CS201: Data Structures and Algorithms. Assignment 2. Version 1d

CS201: Data Structures and Algorithms. Assignment 2. Version 1d CS201: Data Structure and Algorithm Aignment 2 Introduction Verion 1d You will compare the performance of green binary earch tree veru red-black tree by reading in a corpu of text, toring the word and

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES05 Analyi and Deign of Engineering Sytem: Lab : An Introductory Tutorial: Getting Started with SIMULINK What i SIMULINK? SIMULINK i a oftware package for modeling, imulating, and analyzing dynamic ytem.

More information

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum Announcement Homework 6 due Friday Feb 25 th at the BEGINNING o lecture CSE332: Data Abtraction Lecture 19: Parallel Preix and Sorting Project 3 the lat programming project! Verion 1 & 2 - Tue March 1,

More information

Increasing Throughput and Reducing Delay in Wireless Sensor Networks Using Interference Alignment

Increasing Throughput and Reducing Delay in Wireless Sensor Networks Using Interference Alignment Int. J. Communication, Network and Sytem Science, 0, 5, 90-97 http://dx.doi.org/0.436/ijcn.0.50 Publihed Online February 0 (http://www.scirp.org/journal/ijcn) Increaing Throughput and Reducing Delay in

More information

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks Localized Minimum Spanning Tree Baed Multicat Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Senor Network Hanne Frey Univerity of Paderborn D-3398 Paderborn hanne.frey@uni-paderborn.de

More information

arxiv: v3 [cs.cg] 1 Oct 2018

arxiv: v3 [cs.cg] 1 Oct 2018 Improved Time-Space Trade-off for Computing Voronoi Diagram Bahareh Banyaady Matia Korman Wolfgang Mulzer André van Renen Marcel Roeloffzen Paul Seiferth Yannik Stein arxiv:1708.00814v3 [c.cg] 1 Oct 2018

More information

else end while End References

else end while End References 621-630. [RM89] [SK76] Roenfeld, A. and Melter, R. A., Digital geometry, The Mathematical Intelligencer, vol. 11, No. 3, 1989, pp. 69-72. Sklanky, J. and Kibler, D. F., A theory of nonuniformly digitized

More information

Shortest-Path Routing in Arbitrary Networks

Shortest-Path Routing in Arbitrary Networks Ž. Journal of Algorithm 31, 105131 1999 Article ID jagm.1998.0980, available online at http:www.idealibrary.com on Shortet-Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vocking

More information

Shortest Paths in Directed Graphs

Shortest Paths in Directed Graphs Shortet Path in Direted Graph Jonathan Turner January, 0 Thi note i adapted from Data Struture and Network Algorithm y Tarjan. Let G = (V, E) e a direted graph and let length e a real-valued funtion on

More information

Cutting Stock by Iterated Matching. Andreas Fritsch, Oliver Vornberger. University of Osnabruck. D Osnabruck.

Cutting Stock by Iterated Matching. Andreas Fritsch, Oliver Vornberger. University of Osnabruck. D Osnabruck. Cutting Stock by Iterated Matching Andrea Fritch, Oliver Vornberger Univerity of Onabruck Dept of Math/Computer Science D-4909 Onabruck andy@informatikuni-onabrueckde Abtract The combinatorial optimization

More information

Areas of Regular Polygons. To find the area of a regular polygon. The Solve It involves the area of a polygon.

Areas of Regular Polygons. To find the area of a regular polygon. The Solve It involves the area of a polygon. 10- Area of Regular Polygon Common Core State Standard G-MG.A.1 Ue geometric hape, their meaure, and their propertie to decribe object. Alo G-CO.D.1 MP 1, MP, MP 4, MP 6, MP 7 Objective To find the area

More information

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks Maneuverable Relay to Improve Energy Efficiency in Senor Network Stephan Eidenbenz, Luka Kroc, Jame P. Smith CCS-5, MS M997; Lo Alamo National Laboratory; Lo Alamo, NM 87545. Email: {eidenben, kroc, jpmith}@lanl.gov

More information

Markov Random Fields in Image Segmentation

Markov Random Fields in Image Segmentation Preented at SSIP 2011, Szeged, Hungary Markov Random Field in Image Segmentation Zoltan Kato Image Proceing & Computer Graphic Dept. Univerity of Szeged Hungary Zoltan Kato: Markov Random Field in Image

More information

Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th

Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th Coure Update http://www.phy.hawaii.edu/~varner/phys272-spr0/phyic272.html Reminder: ) Aignment #3 due Monday 2) Mirror & Lene 3) Review for Final: Wedneday, May 5th h R- R θ θ -R h Spherical Mirror Infinite

More information

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights Algorithm Shortet path in an edge-weighted digraph R OBERT S EDGEWICK K EVIN W AYNE Given an edge-weighted digraph, find the hortet path from to t. edge-weighted digraph ->. ->. ->7.7 ->7.28 7->.28 ->.2

More information

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc MAT 155: Decribing, Exploring, and Comparing Data Page 1 of 8 001-oteCh-3.doc ote for Chapter Summarizing and Graphing Data Chapter 3 Decribing, Exploring, and Comparing Data Frequency Ditribution, Graphic

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and Thi article appeared in a journal publihed by Elevier. The attached copy i furnihed to the author for internal non-commercial reearch and education ue, including for intruction at the author intitution

More information

11.4 Bipartite Multigraphs

11.4 Bipartite Multigraphs 11.4 Bipartite Multigraphs Introduction Definition A graph G is bipartite if we can partition the vertices into two disjoint subsets U and V such that every edge of G has one incident vertex in U and the

More information

Parity-constrained Triangulations with Steiner points

Parity-constrained Triangulations with Steiner points Parity-contrained Triangulation with Steiner point Victor Alarez October 31, 2012 Abtract Let P R 2 be a et of n point, of which k lie in the interior of the conex hull CH(P) of P. Let u call a triangulation

More information

Bottom Up parsing. Bottom-up parsing. Steps in a shift-reduce parse. 1. s. 2. np. john. john. john. walks. walks.

Bottom Up parsing. Bottom-up parsing. Steps in a shift-reduce parse. 1. s. 2. np. john. john. john. walks. walks. Paring Technologie Outline Paring Technologie Outline Bottom Up paring Paring Technologie Paring Technologie Bottom-up paring Step in a hift-reduce pare top-down: try to grow a tree down from a category

More information

Homework 4 Due Thursday Oct 7. CLRS 12-4 (number of binary trees) CLRS (rb insert implementation)

Homework 4 Due Thursday Oct 7. CLRS 12-4 (number of binary trees) CLRS (rb insert implementation) Homework 4 Due Thurday Oct 7 CLRS 12-4 (number of binary tree) CLRS 13.3-6 (rb inert imlementation) 1 Chater 13: Red-Black Tree A red-black tree i a node-colored BST. Each node i colored either black or

More information

Exploring Simple Grid Polygons

Exploring Simple Grid Polygons Exploring Simple Grid Polygon Chritian Icking 1, Tom Kamphan 2, Rolf Klein 2, and Elmar Langetepe 2 1 Univerity of Hagen, Praktiche Informatik VI, 58084 Hagen, Germany. 2 Univerity of Bonn, Computer Science

More information

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem,

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem, COMPETITIVE PROBABIISTIC SEF-ORGANIZING MAPS FOR ROUTING PROBEMS Haan Ghaziri AUB, OSB Beirut, ebanon ghaziri@aub.edu.lb Abtract In thi paper, we have applied the concept of the elf-organizing map (SOM)

More information

Fall 2010 EE457 Instructor: Gandhi Puvvada Date: 10/1/2010, Friday in SGM123 Name:

Fall 2010 EE457 Instructor: Gandhi Puvvada Date: 10/1/2010, Friday in SGM123 Name: Fall 2010 EE457 Intructor: Gandhi Puvvada Quiz (~ 10%) Date: 10/1/2010, Friday in SGM123 Name: Calculator and Cadence Verilog guide are allowed; Cloed-book, Cloed-note, Time: 12:00-2:15PM Total point:

More information

Computer Arithmetic Homework Solutions. 1 An adder for graphics. 2 Partitioned adder. 3 HDL implementation of a partitioned adder

Computer Arithmetic Homework Solutions. 1 An adder for graphics. 2 Partitioned adder. 3 HDL implementation of a partitioned adder Computer Arithmetic Homework 3 2016 2017 Solution 1 An adder for graphic In a normal ripple carry addition of two poitive number, the carry i the ignal for a reult exceeding the maximum. We ue thi ignal

More information

Fall 2010 EE457 Instructor: Gandhi Puvvada Date: 10/1/2010, Friday in SGM123 Name:

Fall 2010 EE457 Instructor: Gandhi Puvvada Date: 10/1/2010, Friday in SGM123 Name: Fall 2010 EE457 Intructor: Gandhi Puvvada Quiz (~ 10%) Date: 10/1/2010, Friday in SGM123 Name: Calculator and Cadence Verilog guide are allowed; Cloed-book, Cloed-note, Time: 12:00-2:15PM Total point:

More information

Analysis of the results of analytical and simulation With the network model and dynamic priority Unchecked Buffer

Analysis of the results of analytical and simulation With the network model and dynamic priority Unchecked Buffer International Reearch Journal of Applied and Baic Science 218 Available online at www.irjab.com ISSN 2251-838X / Vol, 12 (1): 49-53 Science Explorer Publication Analyi of the reult of analytical and imulation

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

The norm Package. November 15, Title Analysis of multivariate normal datasets with missing values

The norm Package. November 15, Title Analysis of multivariate normal datasets with missing values The norm Package November 15, 2003 Verion 1.0-9 Date 2002/05/06 Title Analyi of multivariate normal dataet with miing value Author Ported to R by Alvaro A. Novo . Original by Joeph

More information

Growing Networks Through Random Walks Without Restarts

Growing Networks Through Random Walks Without Restarts Growing Network Through Random Walk Without Retart Bernardo Amorim, Daniel Figueiredo, Giulio Iacobelli, Giovanni Neglia To cite thi verion: Bernardo Amorim, Daniel Figueiredo, Giulio Iacobelli, Giovanni

More information

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions Google map Shortet Path Dijktra' algorithm implementation negatie eight Reference: Algorithm in Jaa, Chapter http://.c.princeton.edu/alg/p Algorithm in Jaa, th Edition Robert Sedgeick and Kein Wayne Copyright

More information

The Crank-Nicholson method for a nonlinear diffusion equation

The Crank-Nicholson method for a nonlinear diffusion equation > retart; with(plot): with(linearalgebra): with(arraytool): The Crank-Nicholon method for a nonlinear diffuion equation The purpoe of thi workheet i to olve a diffuion equation involving nonlinearitie

More information

DAROS: Distributed User-Server Assignment And Replication For Online Social Networking Applications

DAROS: Distributed User-Server Assignment And Replication For Online Social Networking Applications DAROS: Ditributed Uer-Server Aignment And Replication For Online Social Networking Application Thuan Duong-Ba School of EECS Oregon State Univerity Corvalli, OR 97330, USA Email: duongba@eec.oregontate.edu

More information

Multicast with Network Coding in Application-Layer Overlay Networks

Multicast with Network Coding in Application-Layer Overlay Networks IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 1 Multicat with Network Coding in Application-Layer Overlay Network Ying Zhu, Baochun Li, Member, IEEE, and Jiang Guo Abtract

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercie 6 Adder, Subtractor, and Multiplier The purpoe of thi exercie i to examine arithmetic circuit that add, ubtract, and multiply number. Each circuit will be decribed in VHL and implemented

More information

IMPLEMENTATION OF CHORD LENGTH SAMPLING FOR TRANSPORT THROUGH A BINARY STOCHASTIC MIXTURE

IMPLEMENTATION OF CHORD LENGTH SAMPLING FOR TRANSPORT THROUGH A BINARY STOCHASTIC MIXTURE Nuclear Mathematical and Computational Science: A Century in Review, A Century Anew Gatlinburg, Tenneee, April 6-, 003, on CD-ROM, American Nuclear Society, LaGrange Park, IL (003) IMPLEMENTATION OF CHORD

More information

Surface Areas of Pyramids and Cones. Find the length of the hypotenuse in simplest radical form. 13 cm. 9 m. 13 in. 7 m 12 cm

Surface Areas of Pyramids and Cones. Find the length of the hypotenuse in simplest radical form. 13 cm. 9 m. 13 in. 7 m 12 cm -3 What You ll Learn To find the urface area of a pyramid To find the urface area of a cone... nd Why To find the lateral area of the Great Pyramid of Egypt, a in Example Surface rea of Pyramid and one

More information

A Boyer-Moore Approach for. Two-Dimensional Matching. Jorma Tarhio. University of California. Berkeley, CA Abstract

A Boyer-Moore Approach for. Two-Dimensional Matching. Jorma Tarhio. University of California. Berkeley, CA Abstract A Boyer-Moore Approach for Two-Dimenional Matching Jorma Tarhio Computer Science Diviion Univerity of California Berkeley, CA 94720 Abtract An imple ublinear algorithm i preented for two-dimenional tring

More information

Graph Theory

Graph Theory Graph Theory 2012.04.18 Our goal today is to learn some basic concepts in graph theory and explore fun problems using graph theory. A graph is a mathematical object that captures the notion of connection.

More information

Solutions by Artem Gritsenko, Ahmedul Kabir, Yun Lu, and Prof. Ruiz Problem I. By Artem Gritsenko, Yun Lu, and Prof. Ruiz

Solutions by Artem Gritsenko, Ahmedul Kabir, Yun Lu, and Prof. Ruiz Problem I. By Artem Gritsenko, Yun Lu, and Prof. Ruiz CS3 Algorithm. B Term 3. Homework 5 Soltion Soltion b Artem Gritenko, Ahmedl Kabir, Yn L, and Prof. Riz Problem I. B Artem Gritenko, Yn L, and Prof. Riz a. Algorithm. KNAPSACK (,,,,,,, ) # i the knapack

More information

New Structural Decomposition Techniques for Constraint Satisfaction Problems

New Structural Decomposition Techniques for Constraint Satisfaction Problems New Structural Decompoition Technique for Contraint Satifaction Problem Yaling Zheng and Berthe Y. Choueiry Contraint Sytem Laboratory Univerity of Nebraka-Lincoln Email: yzheng choueiry@ce.unl.edu Abtract.

More information

Parallel MATLAB at FSU: Task Computing

Parallel MATLAB at FSU: Task Computing Parallel MATLAB at FSU: Tak John Burkardt Department of Scientific Florida State Univerity... 1:30-2:30 Thurday, 07 April 2011 499 Dirac Science Library... http://people.c.fu.edu/ jburkardt/preentation/...

More information

So we find a sample mean but what can we say about the General Education Statistics

So we find a sample mean but what can we say about the General Education Statistics So we fid a ample mea but what ca we ay about the Geeral Educatio Statitic populatio? Cla Note Cofidece Iterval for Populatio Mea (Sectio 9.) We will be doig early the ame tuff a we did i the firt ectio

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

Planning of scooping position and approach path for loading operation by wheel loader

Planning of scooping position and approach path for loading operation by wheel loader 22 nd International Sympoium on Automation and Robotic in Contruction ISARC 25 - September 11-14, 25, Ferrara (Italy) 1 Planning of cooping poition and approach path for loading operation by wheel loader

More information

SIMIT 7. Profinet IO Gateway. User Manual

SIMIT 7. Profinet IO Gateway. User Manual SIMIT 7 Profinet IO Gateway Uer Manual Edition January 2013 Siemen offer imulation oftware to plan, imulate and optimize plant and machine. The imulation- and optimizationreult are only non-binding uggetion

More information

SIMIT 7. Component Type Editor (CTE) User manual. Siemens Industrial

SIMIT 7. Component Type Editor (CTE) User manual. Siemens Industrial SIMIT 7 Component Type Editor (CTE) Uer manual Siemen Indutrial Edition January 2013 Siemen offer imulation oftware to plan, imulate and optimize plant and machine. The imulation- and optimizationreult

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information