Touring a Sequence of Polygons

Size: px
Start display at page:

Download "Touring a Sequence of Polygons"

Transcription

1 Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity

2 Problem: Given a equence of k polygon in the plane, a tart point, and a target point, t, we eek a hortet path that tart at, viit in order each of the polygon, and end at t. P3 P 4 P 1 P 2 t

3 Related Problem: TSPN: If the order to viit {P 1, P 2,..., P k } i not pecified, we get the NP-hard TSP with Neighborhood problem. TSPN: O(log n)-approx in general O(1)-approx, PTAS in pecial cae

4 The Fenced Problem: Here that part of the path connecting P i to P i+1 mut lie inide a a imple polygon F i, called the fence. F 1 P 1

5 The Fenced Problem: F 1 P 1

6 The Fenced Problem: F 1 P 1 F 2 P 2

7 The Fenced Problem: F 1 P 1 P 3 F 2 P 2 F 3

8 The Fenced Problem: F 1 F 4 P 4 P 1 P 3 F 2 P 2 F 3

9 The Fenced Problem: F 1 F 4 P 4 P 1 P 3 F 5 F 2 P 2 t F 3

10 Application: Part Cutting Problem:

11 Application: Safari Problem:

12 Application: Zookeeper Problem:

13 Application: Watchman Route Problem: Eential cut Fact: The optimal path viit the eential cut in the order they appear along P.

14 Summary of Reult: Dijoint convex polygon: O(kn log(n/k)) time, O(n) pace (For fixed, {P 1, P 2,..., P k }, O(k log(n/k)) hortet path querie to t.) Arbitrary convex polygon: O(nk 2 log n) time, O(nk) pace Full combinatorial map: wort-cae ize Θ((n k)2 k ) Output-enitive algorithm; O(k + log n)-time hortet path querie. TPP for nonconvex polygon: NP-hard FPTAS, a pecial cae of 3D hortt path

15 Application: Safari: O(n 2 log n) v. O(n 3 ) Watchman: O(n 3 log n) v. O(n 4 ) floating watchman: O(n 4 log n) v. O(n 5 ) We avoid ue of complicated path adjutment argument, DP Part cutting: O(kn log(n/k))

16 Uncontrained TPP: Dijoint Convex Polygon: Given:, t, equence of dijoint convex polygon {P 1,..., P k } Goal: Find a hortet k-path from = P 0 to t. Local Optimality Condition: Aume that optimal path bounce from P i. Can bounce from an edge (incoming angle = bouncing angle) or bounce from a vertex.

17 Uncontrained TPP: Dijoint Convex Polygon: Lemma: For any t R 2 and any i {0,..., k}, unique hortet i-path, π i (p), from = P 0 to t. Thu, local optimality i equivalent to global optimality. Lemma: In the TPP for dijoint convex polygon {P 1,..., P k }, each firt contact et T i i a (connected) chain on P i. Lemma: For any p R 2 and any i, there i a unique point p T i uch that π i (p) = π i 1 (p ) p p.

18 General Approach: Build a Shortet Path Map: SPM k (): a decompoition of the plane into cell according to the combinatorial type of a hortet k-path to t t r r t Bad new: wort-cae ize can be huge: Theorem: The wort-cae complexity of SPM k () i Ω((n k)2 k )

19

20

21 2 i 2 i+1

22 Good new: wort-cae ize cannot be bigger than huge : Theorem: The wort-cae complexity of SPM k () i O((n k)2 k ) Size m i atifie m i 2m i 1 + O( P i ). Output-enitive algorithm to build SPM: Theorem: One can compute SPM k () in time O(k SPM k () ), after which a hortet k-path from to a query point t can be computed in time O(k + log n).

23 Lat Step Shortet Path Map: T i = firt contact et of P i : point where a hortet (i 1)-path firt enter P i after viiting P 1,..., P i 1 For p T i : r i (p) = et of ray of locally hortet i-path going traight through p: a ingle ray r b i(p) = et of ray of locally hortet i-path properly reflecting at p a ingle ray (p interior to an edge of T i ), or a cone (p a vertex of T i ) r i (p) = r i (p) rb i (p) R i = p Ti r i (p) (an infinite family of ray) i the tarburt with ource T i

24 The Lat Step Shortet Path Map: S i = the lat tep hortet path map, ubdiviion according to the combinatorial type of the ray of R i paing through point p R 2 S i decompoe the plane into cell σ of two type: (1) cone with an apex at a vertex v of T i, whoe bounding ray are reflection ray r 1(v) and r 2(v) v i the ource of cell σ (2) unbounded 3-ided region aociated with edge e of T i, claified a reflection cell or pa-through cell e i the ource of cell σ The pa-through region i the union of all pa-through cell

25 Lat Step Shortet Path Map: v 1 Pa through Region e 1 v 6 v 5 v 1v2 P 1 v 2 v 3 v 4 v 4 e 2 e 3 v 3

26 P 1 v 8 e 8 e 7 v 8 v 7 v 9 v 10 P 2 v 11 v 7 v 9 Pa through region

27 Uing the Lat Step Shortet Path Map: Find a hortet i-path to query point q: Locate q in S i [O(log P i )] cell σ rooted at vertex v of T i lat egment of π i (q) i vq recurively compute π i 1 (v) (locate v in S i 1, etc) cell σ rooted at edge e of T i σ i pa-through: π i (q) = π i 1 (q), o recurively compute hortet (i 1)-path to q σ i a reflection cell: recurively compute hortet (i 1)- path to q, the reflection of q wrt e Lemma: Given S 1,..., S i, π i (q) can be determined in time O(k log(n/k))

28 Algorithm: Contruct each of the ubdiviion S 1, S 2,..., S k iteratively: For each vertex v j of P i+1, we compute π i (v j ). If thi path arrive at v j from the inide of P i+1, then v j i not a vertex of T i+1. Otherwie it i, and the lat egment of π i (v j ) determine the ray r b i(v j ) and r i (v j ) that define the ubdiviion S i+1. Theorem: For a given equence {P 1,..., P k } of k dijoint convex polygon having a total of n vertice, a data tructure of ize O(n) can be contructed in time O(kn log(n/k)) that enable hortet i-path querie to any query point q to be anwered in time O(i log(n/k)).

29 TPP on Nonconvex Polygon: Propoition: The TPP in the L 1 metric i polynomially olvable (in O(n 2 ) time and pace) for arbitrary rectilinear polygon P i and arbitrary fence F i. The reult lift to any fixed dimenion d if the region P i and the contraining region F i are orthohedral. TPP on Nonconvex Polygon: Theorem: The touring polygon problem (TPP) i NP-hard, for any L p metric (p 1), in the cae of nonconvex polygon P i, even in the uncontrained (F i = R 2 ) cae with obtacle bounded by edge having angle 0, 45, or 90 degree with repect to the x-axi. Open Problem: What i the complexity of the TPP for dijoint non-convex imple polygon?

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

The Touring Polygons Problem (TPP)

The Touring Polygons Problem (TPP) The Touring Polygons Problem (TPP) [Dror-Efrat-Lubiw-M]: Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each

More information

Touring a Sequence of Polygons Moshe Dror Alon Efrat Anna Lubiw Joe Mitchell

Touring a Sequence of Polygons Moshe Dror Alon Efrat Anna Lubiw Joe Mitchell Touring a Sequence of Polygons Moshe Dror Alon Efrat Anna Lubiw Joe Mitchell University of Arizona University of Waterloo Stony Brook University Problem: Given a sequence of polygons in the plane, a start

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Tourng a Sequence of Polygon Mohe Dror Alon Efrat Anna Lubw Joe Mtchell Unverty of Arzona Unverty of Arzona Unverty of Waterloo Stony Brook Unverty Tourng Polygon Problem Gven: a equence of convex polygon,

More information

Shortest Paths with Single-Point Visibility Constraint

Shortest Paths with Single-Point Visibility Constraint Shortet Path with Single-Point Viibility Contraint Ramtin Khoravi Mohammad Ghodi Department of Computer Engineering Sharif Univerity of Technology Abtract Thi paper tudie the problem of finding a hortet

More information

xy-monotone path existence queries in a rectilinear environment

xy-monotone path existence queries in a rectilinear environment CCCG 2012, Charlottetown, P.E.I., Augut 8 10, 2012 xy-monotone path exitence querie in a rectilinear environment Gregory Bint Anil Mahehwari Michiel Smid Abtract Given a planar environment coniting of

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Touring a Sequence of Line Segments in Polygonal Domain Fences

Touring a Sequence of Line Segments in Polygonal Domain Fences Touring a Sequence of Line Segments in Polygonal Domain Fences Amirhossein Mozafari mozafari@alum.sharif.edu Alireza Zarei zarei@sharif.edu Abstract In this paper, we consider the problem of touring a

More information

Lecture 14: Minimum Spanning Tree I

Lecture 14: Minimum Spanning Tree I COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce

More information

Delaunay Triangulation: Incremental Construction

Delaunay Triangulation: Incremental Construction Chapter 6 Delaunay Triangulation: Incremental Contruction In the lat lecture, we have learned about the Lawon ip algorithm that compute a Delaunay triangulation of a given n-point et P R 2 with O(n 2 )

More information

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

Approximate Algorithms for Touring a Sequence of Polygons

Approximate Algorithms for Touring a Sequence of Polygons Approximate Algorithms for Touring a Sequence of Polygons Fajie Li 1 and Reinhard Klette 2 1 Institute for Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen, The

More information

Exploring Simple Grid Polygons

Exploring Simple Grid Polygons Exploring Simple Grid Polygon Chritian Icking 1, Tom Kamphan 2, Rolf Klein 2, and Elmar Langetepe 2 1 Univerity of Hagen, Praktiche Informatik VI, 58084 Hagen, Germany. 2 Univerity of Bonn, Computer Science

More information

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu CERIAS Tech Report 2003-15 EFFICIENT PARALLEL ALGORITHMS FOR PLANAR t-graphs by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daecu Center for Education and Reearch in Information Aurance and Security,

More information

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Approximate Shortest Path Algorithms for Sequences of Pairwise Disjoint Simple Polygons

Approximate Shortest Path Algorithms for Sequences of Pairwise Disjoint Simple Polygons CCCG 2010, Winnipeg MB, August 9 11, 2010 Approximate Shortest Path Algorithms for Sequences of Pairwise Disjoint Simple Polygons Xiuxia Pan, Fajie Li Reinhard Klette Abstract Assume that two points p

More information

A note on degenerate and spectrally degenerate graphs

A note on degenerate and spectrally degenerate graphs A note on degenerate and pectrally degenerate graph Noga Alon Abtract A graph G i called pectrally d-degenerate if the larget eigenvalue of each ubgraph of it with maximum degree D i at mot dd. We prove

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

arxiv: v3 [cs.cg] 1 Oct 2018

arxiv: v3 [cs.cg] 1 Oct 2018 Improved Time-Space Trade-off for Computing Voronoi Diagram Bahareh Banyaady Matia Korman Wolfgang Mulzer André van Renen Marcel Roeloffzen Paul Seiferth Yannik Stein arxiv:1708.00814v3 [c.cg] 1 Oct 2018

More information

Brief Announcement: Distributed 3/2-Approximation of the Diameter

Brief Announcement: Distributed 3/2-Approximation of the Diameter Brief Announcement: Ditributed /2-Approximation of the Diameter Preliminary verion of a brief announcement to appear at DISC 14 Stephan Holzer MIT holzer@mit.edu David Peleg Weizmann Intitute david.peleg@weizmann.ac.il

More information

On The Watchman Route Problem and Its Related Problems Dissertation Proposal

On The Watchman Route Problem and Its Related Problems Dissertation Proposal On The Watchman Route Problem and Its Related Problems Dissertation Proposal Ning Xu The Graduate Center, The City University of New York 1 / 27 Outlines Introduction References Introduction The Watchman

More information

3D SMAP Algorithm. April 11, 2012

3D SMAP Algorithm. April 11, 2012 3D SMAP Algorithm April 11, 2012 Baed on the original SMAP paper [1]. Thi report extend the tructure of MSRF into 3D. The prior ditribution i modified to atify the MRF property. In addition, an iterative

More information

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X Lecture 37: Global Optimization [Adapted from note by R. Bodik and G. Necula] Topic Global optimization refer to program optimization that encompa multiple baic block in a function. (I have ued the term

More information

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico Today Outline CS 362, Lecture 9 Jared Saia Univerity of New Mexico BFS and DFS Wrapup Shortet Path Generic Travere DFS and BFS Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v)

More information

arxiv: v1 [cs.ds] 27 Feb 2018

arxiv: v1 [cs.ds] 27 Feb 2018 Incremental Strong Connectivity and 2-Connectivity in Directed Graph Louka Georgiadi 1, Giueppe F. Italiano 2, and Niko Parotidi 2 arxiv:1802.10189v1 [c.ds] 27 Feb 2018 1 Univerity of Ioannina, Greece.

More information

Self-Approaching Graphs. CS 860 Fall 2014, Anna Lubiw

Self-Approaching Graphs. CS 860 Fall 2014, Anna Lubiw Self-Approaching Graph CS 860 Fall 2014, Anna Lubiw Paper Self-Approaching Graph. Sorouh Alamdari, Timothy M. Chan, Elyot Grant, Anna Lubiw, Vinayak Pathak. Graph Drawing 2012. On Self-Approaching and

More information

An Approximate Algorithm for Solving the Watchman Route Problem

An Approximate Algorithm for Solving the Watchman Route Problem An Approximate Algorithm for Solving the Watchman Route Problem Fajie Li and Reinhard Klette 1 Institute for Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen,

More information

Chapter S:II (continued)

Chapter S:II (continued) Chapter S:II (continued) II. Baic Search Algorithm Sytematic Search Graph Theory Baic State Space Search Depth-Firt Search Backtracking Breadth-Firt Search Uniform-Cot Search AND-OR Graph Baic Depth-Firt

More information

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract Mot Graph are Edge-Cordial Karen L. Collin Dept. of Mathematic Weleyan Univerity Middletown, CT 6457 and Mark Hovey Dept. of Mathematic MIT Cambridge, MA 239 Abtract We extend the definition of edge-cordial

More information

Minimum-Link Watchman Tours

Minimum-Link Watchman Tours Minimum-Link Watchman Tours Esther M. Arkin Joseph S. B. Mitchell Christine D. Piatko Abstract We consider the problem of computing a watchman route in a polygon with holes. We show that the problem of

More information

Minimum congestion spanning trees in bipartite and random graphs

Minimum congestion spanning trees in bipartite and random graphs Minimum congetion panning tree in bipartite and random graph M.I. Otrovkii Department of Mathematic and Computer Science St. John Univerity 8000 Utopia Parkway Queen, NY 11439, USA e-mail: otrovm@tjohn.edu

More information

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart.

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart. Univerität Augburg à ÊÇÅÍÆ ËÀǼ Approximating Optimal Viual Senor Placement E. Hörter, R. Lienhart Report 2006-01 Januar 2006 Intitut für Informatik D-86135 Augburg Copyright c E. Hörter, R. Lienhart Intitut

More information

Shortest Path Routing in Arbitrary Networks

Shortest Path Routing in Arbitrary Networks Journal of Algorithm, Vol 31(1), 1999 Shortet Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vöcking Department of Mathematic and Computer Science and Heinz Nixdorf Intitute,

More information

else end while End References

else end while End References 621-630. [RM89] [SK76] Roenfeld, A. and Melter, R. A., Digital geometry, The Mathematical Intelligencer, vol. 11, No. 3, 1989, pp. 69-72. Sklanky, J. and Kibler, D. F., A theory of nonuniformly digitized

More information

Online Motion Planning

Online Motion Planning RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INSTITUT FÜR INFORMATIK I Elmar Langetepe Online Motion Planning MA INF 1314 Summeremeter 017 Manucript: c Elmar Langetepe CONTENTS Content 1 Labyrinth,

More information

Distance Optimal Formation Control on Graphs with a Tight Convergence Time Guarantee

Distance Optimal Formation Control on Graphs with a Tight Convergence Time Guarantee Ditance Optimal Formation Control on Graph with a Tight Convergence Time Guarantee Jingjin Yu Steven M. LaValle Abtract For the tak of moving a et of inditinguihable agent on a connected graph with unit

More information

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course: Content Shortet path Algorithm and Network 21/211 The hortet path problem: Statement Verion Application Algorithm (for ingle ource p problem) Reminder: relaxation, Dijktra, Variant of Dijktra, Bellman-Ford,

More information

Multi-agent Path Planning and Network Flow

Multi-agent Path Planning and Network Flow Multi-agent Path Planning and Network Flow Jingjin Yu and Steven M. LaValle Abtract Thi paper connect multi-agent path planning on graph (roadmap) to network flow problem, howing that the former can be

More information

1 The secretary problem

1 The secretary problem Thi i new material: if you ee error, pleae email jtyu at tanford dot edu 1 The ecretary problem We will tart by analyzing the expected runtime of an algorithm, a you will be expected to do on your homework.

More information

Representations and Transformations. Objectives

Representations and Transformations. Objectives Repreentation and Tranformation Objective Derive homogeneou coordinate tranformation matrice Introduce tandard tranformation - Rotation - Tranlation - Scaling - Shear Scalar, Point, Vector Three baic element

More information

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang Stochatic Search and Graph Technique for MCM Path Planning Chritine D. Piatko, Chritopher P. Diehl, Paul McNamee, Cheryl Rech and I-Jeng Wang The John Hopkin Univerity Applied Phyic Laboratory, Laurel,

More information

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks Localized Minimum Spanning Tree Baed Multicat Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Senor Network Hanne Frey Univerity of Paderborn D-3398 Paderborn hanne.frey@uni-paderborn.de

More information

Algorithmic Discrete Mathematics 4. Exercise Sheet

Algorithmic Discrete Mathematics 4. Exercise Sheet Algorithmic Dicrete Mathematic. Exercie Sheet Department of Mathematic SS 0 PD Dr. Ulf Lorenz 0. and. May 0 Dipl.-Math. David Meffert Verion of May, 0 Groupwork Exercie G (Shortet path I) (a) Calculate

More information

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz Operational emantic Page Operational emantic Cla note for a lecture given by Mooly agiv Tel Aviv Univerity 4/5/7 By Roy Ganor and Uri Juhaz Reference emantic with Application, H. Nielon and F. Nielon,

More information

Edits in Xylia Validity Preserving Editing of XML Documents

Edits in Xylia Validity Preserving Editing of XML Documents dit in Xylia Validity Preerving diting of XML Document Pouria Shaker, Theodore S. Norvell, and Denni K. Peter Faculty of ngineering and Applied Science, Memorial Univerity of Newfoundland, St. John, NFLD,

More information

Quadrilaterals. Learning Objectives. Pre-Activity

Quadrilaterals. Learning Objectives. Pre-Activity Section 3.4 Pre-Activity Preparation Quadrilateral Intereting geometric hape and pattern are all around u when we tart looking for them. Examine a row of fencing or the tiling deign at the wimming pool.

More information

A Novel Feature Line Segment Approach for Pattern Classification

A Novel Feature Line Segment Approach for Pattern Classification 12th International Conference on Information Fuion Seattle, WA, USA, July 6-9, 2009 A Novel Feature Line Segment Approach for Pattern Claification Yi Yang Intitute of Integrated Automation Xi an Jiaotong

More information

KS3 Maths Assessment Objectives

KS3 Maths Assessment Objectives KS3 Math Aement Objective Tranition Stage 9 Ratio & Proportion Probabilit y & Statitic Appreciate the infinite nature of the et of integer, real and rational number Can interpret fraction and percentage

More information

The Data Locality of Work Stealing

The Data Locality of Work Stealing The Data Locality of Work Stealing Umut A. Acar School of Computer Science Carnegie Mellon Univerity umut@c.cmu.edu Guy E. Blelloch School of Computer Science Carnegie Mellon Univerity guyb@c.cmu.edu Robert

More information

New Structural Decomposition Techniques for Constraint Satisfaction Problems

New Structural Decomposition Techniques for Constraint Satisfaction Problems New Structural Decompoition Technique for Contraint Satifaction Problem Yaling Zheng and Berthe Y. Choueiry Contraint Sytem Laboratory Univerity of Nebraka-Lincoln Email: yzheng choueiry@ce.unl.edu Abtract.

More information

Optimizing Synchronous Systems for Multi-Dimensional. Notre Dame, IN Ames, Iowa computation is an optimization problem (b) circuit

Optimizing Synchronous Systems for Multi-Dimensional. Notre Dame, IN Ames, Iowa computation is an optimization problem (b) circuit Optimizing Synchronou Sytem for ulti-imenional pplication Nelon L. Pao and Edwin H.-. Sha Liang-Fang hao ept. of omputer Science & Eng. ept. of Electrical & omputer Eng. Univerity of Notre ame Iowa State

More information

Drawing Lines in 2 Dimensions

Drawing Lines in 2 Dimensions Drawing Line in 2 Dimenion Drawing a traight line (or an arc) between two end point when one i limited to dicrete pixel require a bit of thought. Conider the following line uperimpoed on a 2 dimenional

More information

CORRECTNESS ISSUES AND LOOP INVARIANTS

CORRECTNESS ISSUES AND LOOP INVARIANTS The next everal lecture 2 Study algorithm for earching and orting array. Invetigate their complexity how much time and pace they take Formalize the notion of average-cae and wort-cae complexity CORRECTNESS

More information

Markov Random Fields in Image Segmentation

Markov Random Fields in Image Segmentation Preented at SSIP 2011, Szeged, Hungary Markov Random Field in Image Segmentation Zoltan Kato Image Proceing & Computer Graphic Dept. Univerity of Szeged Hungary Zoltan Kato: Markov Random Field in Image

More information

AVL Tree. The height of the BST be as small as possible

AVL Tree. The height of the BST be as small as possible 1 AVL Tree re and Algorithm The height of the BST be a mall a poible The firt balanced BST. Alo called height-balanced tree. Introduced by Adel on-vel kii and Landi in 1962. BST with the following condition:

More information

An Intro to LP and the Simplex Algorithm. Primal Simplex

An Intro to LP and the Simplex Algorithm. Primal Simplex An Intro to LP and the Simplex Algorithm Primal Simplex Linear programming i contrained minimization of a linear objective over a olution pace defined by linear contraint: min cx Ax b l x u A i an m n

More information

Using Partial Evaluation in Distributed Query Evaluation

Using Partial Evaluation in Distributed Query Evaluation A X x Z z R r y Y B Uing Partial Evaluation in Ditributed Query Evaluation Peter Buneman Gao Cong Univerity of Edinburgh Wenfei Fan Univerity of Edinburgh & Bell Laboratorie Anataio Kementietidi Univerity

More information

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization Lecture Outline Global flow analyi Global Optimization Global contant propagation Livene analyi Adapted from Lecture by Prof. Alex Aiken and George Necula (UCB) CS781(Praad) L27OP 1 CS781(Praad) L27OP

More information

Trainable Context Model for Multiscale Segmentation

Trainable Context Model for Multiscale Segmentation Trainable Context Model for Multicale Segmentation Hui Cheng and Charle A. Bouman School of Electrical and Computer Engineering Purdue Univerity Wet Lafayette, IN 47907-1285 {hui, bouman}@ ecn.purdue.edu

More information

Multicast with Network Coding in Application-Layer Overlay Networks

Multicast with Network Coding in Application-Layer Overlay Networks IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 1 Multicat with Network Coding in Application-Layer Overlay Network Ying Zhu, Baochun Li, Member, IEEE, and Jiang Guo Abtract

More information

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search Informed Search ay 2/3 of Search hap. 4, Ruel & Norvig FS IFS US PFS MEM FS IS Uninformed Search omplexity N = Total number of tate = verage number of ucceor (branching factor) L = Length for tart to goal

More information

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992)

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992) Well, ya turn left by the fire tation in the village and take the old pot road by the reervoir and...no, that won t do. Bet to continue traight on by the tar road until you reach the choolhoue and then

More information

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms Lecture 18 Graph-Baed Algorithm CSE: Deign and Anali of Algorithm Shortet Path Problem Modeling problem a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge

More information

Shortest Paths in Directed Graphs

Shortest Paths in Directed Graphs Shortet Path in Direted Graph Jonathan Turner January, 0 Thi note i adapted from Data Struture and Network Algorithm y Tarjan. Let G = (V, E) e a direted graph and let length e a real-valued funtion on

More information

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS A SIMPLE IMPERATIVE LANGUAGE Eventually we will preent the emantic of a full-blown language, with declaration, type and looping. However, there are many complication, o we will build up lowly. Our firt

More information

CS201: Data Structures and Algorithms. Assignment 2. Version 1d

CS201: Data Structures and Algorithms. Assignment 2. Version 1d CS201: Data Structure and Algorithm Aignment 2 Introduction Verion 1d You will compare the performance of green binary earch tree veru red-black tree by reading in a corpu of text, toring the word and

More information

IMPLEMENTATION OF AREA, VOLUME AND LINE SOURCES

IMPLEMENTATION OF AREA, VOLUME AND LINE SOURCES December 01 ADMS 5 P503I1 IMPEMENTATION OF AREA, VOUME AND INE SOURCES The Met. Office (D J Thomon) and CERC 1. INTRODUCTION ADMS model line ource, and area and volume ource with conve polgon bae area.

More information

Modeling of underwater vehicle s dynamics

Modeling of underwater vehicle s dynamics Proceeding of the 11th WEA International Conference on YTEM, Agio Nikolao, Crete Iland, Greece, July 23-25, 2007 44 Modeling of underwater vehicle dynamic ANDRZEJ ZAK Department of Radiolocation and Hydrolocation

More information

CSE 250B Assignment 4 Report

CSE 250B Assignment 4 Report CSE 250B Aignment 4 Report March 24, 2012 Yuncong Chen yuncong@c.ucd.edu Pengfei Chen pec008@ucd.edu Yang Liu yal060@c.ucd.edu Abtract In thi project, we implemented the recurive autoencoder (RAE) a decribed

More information

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :40 AM

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :40 AM 7. NETWORK FLOW I max-flow and min-cut problem Ford-Fulkeron algorithm max-flow min-cut theorem capacity-caling algorithm hortet augmenting path blocking-flow algorithm unit-capacity imple network Lecture

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 2: Global properties of Euclidean Steiner Trees and GeoSteiner Marcus Brazil

More information

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks Maneuverable Relay to Improve Energy Efficiency in Senor Network Stephan Eidenbenz, Luka Kroc, Jame P. Smith CCS-5, MS M997; Lo Alamo National Laboratory; Lo Alamo, NM 87545. Email: {eidenben, kroc, jpmith}@lanl.gov

More information

Factor Graphs and Inference

Factor Graphs and Inference Factor Graph and Inerence Sargur Srihari rihari@cedar.bualo.edu 1 Topic 1. Factor Graph 1. Factor in probability ditribution. Deriving them rom graphical model. Eact Inerence Algorithm or Tree graph 1.

More information

Many-to-Many Graph Matching via Metric Embedding

Many-to-Many Graph Matching via Metric Embedding Many-to-Many Graph Matching via Metric Embedding Yakov Keelman DePaul Univerity Ali Shokoufandeh Drexel Univerity M. Fatih Demirci Drexel Univerity Sven Dickinon Univerity of Toronto Abtract Graph matching

More information

Laboratory Exercise 2

Laboratory Exercise 2 Laoratory Exercie Numer and Diplay Thi i an exercie in deigning cominational circuit that can perform inary-to-decimal numer converion and inary-coded-decimal (BCD) addition. Part I We wih to diplay on

More information

9 Bounds for the Knapsack Problem (March 6)

9 Bounds for the Knapsack Problem (March 6) 9 Bounds for the Knapsack Problem (March 6) In this lecture, I ll develop both upper and lower bounds in the linear decision tree model for the following version of the (NP-complete) Knapsack 1 problem:

More information

Midterm 2 March 10, 2014 Name: NetID: # Total Score

Midterm 2 March 10, 2014 Name: NetID: # Total Score CS 3 : Algorithm and Model of Computation, Spring 0 Midterm March 0, 0 Name: NetID: # 3 Total Score Max 0 0 0 0 Grader Don t panic! Pleae print your name and your NetID in the boxe above. Thi i a cloed-book,

More information

Advanced Encryption Standard and Modes of Operation

Advanced Encryption Standard and Modes of Operation Advanced Encryption Standard and Mode of Operation G. Bertoni L. Breveglieri Foundation of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) i a ymmetric cryptographic algorithm AES

More information

Planning Optimal Paths for Multiple Robots on Graphs

Planning Optimal Paths for Multiple Robots on Graphs 3 IEEE International Conference on Robotic and Automation (ICRA) Karlruhe, Germany, May 6, 3 Planning Optimal Path for Multiple Robot on Graph Jingjin Yu Steven M. LaValle Abtract In thi paper, we tudy

More information

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral Lecturer: Ivan Kaamakov, Docent Aitant: Rito Montonen and Anton Nolvi, Doctoral tudent Coure webpage: Coure webpage: http://electronic.phyic.helinki.i/teaching/optic-06-/ Peronal inormation Ivan Kaamakov

More information

Shortest-Path Routing in Arbitrary Networks

Shortest-Path Routing in Arbitrary Networks Ž. Journal of Algorithm 31, 105131 1999 Article ID jagm.1998.0980, available online at http:www.idealibrary.com on Shortet-Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vocking

More information

Mid-term review ECE 161C Electrical and Computer Engineering University of California San Diego

Mid-term review ECE 161C Electrical and Computer Engineering University of California San Diego Mid-term review ECE 161C Electrical and Computer Engineering Univerity of California San Diego Nuno Vaconcelo Spring 2014 1. We have een in cla that one popular technique for edge detection i the Canny

More information

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Outline Reducing the constant from O ( ɛ d) to O ( ɛ (d 1)/2) in uery time Need to know ɛ ahead of time Preprocessing time and

More information

Graphs: Finding shortest paths

Graphs: Finding shortest paths /0/01 Graph: Finding hortet path Tecniche di Programmazione Summary Definition Floyd-Warhall algorithm Bellman-Ford-Moore algorithm Dijktra algorithm 1 /0/01 Definition Graph: Finding hortet path Definition:

More information

Lemma 1. A 3-connected maximal generalized outerplanar graph is a wheel.

Lemma 1. A 3-connected maximal generalized outerplanar graph is a wheel. 122 (1997) MATHEMATICA BOHEMICA No. 3, 225{230 A LINEAR ALGORITHM TO RECOGNIZE MAXIMAL GENERALIZED OUTERPLANAR GRAPHS Jo C cere, Almer a, Alberto M rquez, Sevilla (Received November 16, 1994, revied May

More information

A PTAS for TSP with Neighborhoods Among Fat Regions in the Plane

A PTAS for TSP with Neighborhoods Among Fat Regions in the Plane A PTAS for TSP with Neighborhoods Among Fat Regions in the Plane Joseph S. B. Mitchell Abstract The Euclidean TSP with neighborhoods (TSPN) problem seeks a shortest tour that visits a given collection

More information

A Fast Association Rule Algorithm Based On Bitmap and Granular Computing

A Fast Association Rule Algorithm Based On Bitmap and Granular Computing A Fat Aociation Rule Algorithm Baed On Bitmap and Granular Computing T.Y.Lin Xiaohua Hu Eric Louie Dept. of Computer Science College of Information Science IBM Almaden Reearch Center San Joe State Univerity

More information

CENTER-POINT MODEL OF DEFORMABLE SURFACE

CENTER-POINT MODEL OF DEFORMABLE SURFACE CENTER-POINT MODEL OF DEFORMABLE SURFACE Piotr M. Szczypinki Iintitute of Electronic, Technical Univerity of Lodz, Poland Abtract: Key word: Center-point model of deformable urface for egmentation of 3D

More information

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum Announcement Homework 6 due Friday Feb 25 th at the BEGINNING o lecture CSE332: Data Abtraction Lecture 19: Parallel Preix and Sorting Project 3 the lat programming project! Verion 1 & 2 - Tue March 1,

More information

Sequencing and Counting with the multicost-regular Constraint

Sequencing and Counting with the multicost-regular Constraint Sequencing and Counting with the multicot-regular Contraint Julien Menana and Sophie Demaey École de Mine de Nante, LINA CNRS UMR 6241, F-44307 Nante, France. {julien.menana,ophie.demaey}@emn.fr Abtract.

More information

Certified Rational Parametric Approximation of Real Algebraic Space Curves with Local Generic Position Method

Certified Rational Parametric Approximation of Real Algebraic Space Curves with Local Generic Position Method Certified Rational Parametric Approximation of Real Algebraic Space Curve with Local Generic Poition Method Jin-San Cheng, Kai Jin KLMM, Intitute of Sytem Science, AMSS, CAS, Beijing 100190, China Daniel

More information

Shortest Path Problems

Shortest Path Problems Shortet Path Problem How can we find the hortet route between two point on a road map? Model the problem a a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie

More information

8.1 Shortest Path Trees

8.1 Shortest Path Trees I tudy my Bible a I gather apple. Firt I hake the whole tree, that the ripet might fall. Then I climb the tree and hake each limb, and then each branch and then each twig, and then I look under each leaf.

More information

CS 467/567: Divide and Conquer on the PRAM

CS 467/567: Divide and Conquer on the PRAM CS 467/567: Divide and Conquer on the PRAM Stefan D. Bruda Winter 2017 BINARY SEARCH Problem: Given a equence S 1..n orted in nondecreaing order and a value x, find the ubcript k uch that S i x If n proceor

More information

Part 1 Data Collection Planning

Part 1 Data Collection Planning N N Overview of the Lecture Data collection planning - (N), PC-(N), and (N)) Part Data Collection Planning Data Collection Planning al Problem Part I Traveling Saleman Problem () Jan Faigl Generalized

More information

Geometrical Optics INTRODUCTION

Geometrical Optics INTRODUCTION n i u i u r n t u t 2 Geometrical ptic INTRDUCTIN The treatment of light a wave motion allow for a region of approximation in which the wavelength i conidered to be negligible compared with the dimenion

More information

Optimal Multi-Robot Path Planning on Graphs: Complete Algorithms and Effective Heuristics

Optimal Multi-Robot Path Planning on Graphs: Complete Algorithms and Effective Heuristics Optimal Multi-Robot Path Planning on Graph: Complete Algorithm and Effective Heuritic Jingjin Yu Steven M. LaValle Abtract arxiv:507.0390v [c.ro] Jul 05 We tudy the problem of optimal multi-robot path

More information

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem,

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem, COMPETITIVE PROBABIISTIC SEF-ORGANIZING MAPS FOR ROUTING PROBEMS Haan Ghaziri AUB, OSB Beirut, ebanon ghaziri@aub.edu.lb Abtract In thi paper, we have applied the concept of the elf-organizing map (SOM)

More information

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc MAT 155: Decribing, Exploring, and Comparing Data Page 1 of 8 001-oteCh-3.doc ote for Chapter Summarizing and Graphing Data Chapter 3 Decribing, Exploring, and Comparing Data Frequency Ditribution, Graphic

More information

Multiconstrained QoS Routing: Greedy is Good

Multiconstrained QoS Routing: Greedy is Good Multicontrained QoS Routing: Greed i Good Guoliang Xue and Weii Zhang Abtract A fundamental problem in qualit-of-ervice (QoS) routing i to find a path connecting a ource node to a detination node that

More information