ALGAE BLOOM DETECTION IN THE BALTIC SEA WITH MERIS DATA

Size: px
Start display at page:

Download "ALGAE BLOOM DETECTION IN THE BALTIC SEA WITH MERIS DATA"

Transcription

1 P P German P ALGAE BLOOM DETECTION IN THE BALTIC SEA WITH MERIS DATA ABSTRACT Harald Krawczyk P P, Kerstin Ebert P P, Andreas Neumann P Aerospace Centre Institute of Remote Sensing Technology, Rutherford Street Berlin, Germany, HTUharald.krawczyk@dlr.deUTH, HTUkerstin.ebert@dlr.deUTH, HTUandreas.neumann@dlr.deUTH Satellite remote sensing is an effective tool for the regular observation of the ecological state of the environment. The availability of MERIS radiances in the visible and near-infrared parts of the spectrum gives the useful opportunity of regular observation the water quality in coastal waters. Therefore the development and validation of appropriate interpretation algorithms is necessary. A special case-2 interpretation algorithm, developed for the Baltic Sea, will be presented. The Algorithm is basing on atmospheric corrected MERIS reflectances and estimates the concentrations of Phytoplankton, inorganic Sediments and Yellow Substance. The algorithm - a model based inversion/regression technique - will be introduced and demonstrated on examples in the Baltic Sea. 1. PCI - AN INVERSION METHOD FOR MULTISPECTRAL REMOTE SENSING DATA Case 2 waters are characterized by a number of optically active independent constituents which are affecting the measured reflectance spectrum by their specific absorption and scattering properties. Additionally to case-1 water, the open ocean, which is mainly determined by the Pigment concentration, one finds inorganic sediments or suspensions and dissolved organic matter (Gelbstoff). All these components are influencing the entire spectrum and a change in the signal in one channel cannot be uniquely assigned to one component. Therefore classical colour ratio algorithms for the determination of concentrations of water constituents are not simply applicable. Together with instruments covering a broad spectral range - a new class of algorithms is necessary for the interpretation of the complex case-2 environment. The problem of interpretation of remote sensing data is a problem of matching between the geophysical parameters (Chlorophyll, Sediment, Gelbstoff) and the measured optical radiation spectra. R ( θ,φ ) 1 R ( θ,φ ) 2 R ( θ,φ ) 3 R ( θ,φ ) 4 R ( θ,φ ) n G A Weighting matrix 1 Weighting matrix 2 Weighting matrix k Fig. 1 Principle of the Inversion of Ocean Colour Data C S Y Fig. 1 shows a general interpretation scheme for remote sensing data. R denotes the radiance or reflectance in the different channels. G and A denote the geometrical information like sun and observer geometry and some auxiliary information, location, season etc. The values are collected and numerically processed in the weighting matrix boxes and finally give the desired geophysical parameter values. The concrete content of the matrix boxes determines the fashion of the algorithm. If e.g. two channels are divided we will get a colour algorithm. The boxes can also contain Neural Networks. The main problem in the development of the interpretation algorithm is the determination of the weighting matrix boxes. The algorithm which shall be here introduced, the so called Principal Component Interpretation algorithm (PCI), belongs to the model based interpretation methods. A physical-mathematical model is used to establish a relation between the geophysical concentration set p and the remote sensed radiation field R. [1] The map p R consists of a nonlinear model together with a radiative transfer code and the necessary inherent optical properties of the matter, as there are the wavelength-specific absorption and scattering coefficients and the scattering phase functions. Then the inverse mapping R p is the desired interpretation. The problem is to find an effective method for the inversion of the direct, known mapping. Neural Networks are one opportunity. The here used PCI approach goes a different way. The main idea is to estimate the concentration as a linear function of the measured reflectances. But this assumption initially contradicts the nonlinear character of the direct model. Two steps were taken to improve the situation. Firstly instead of the direct parameter p a semi logarithmic approach q = p +.1 log(p) is

2 used, secondly, the interesting parameter range of p is divided into sub-ranges, where the linear assumption is much better ustified. Now we assume an estimation approach q = p +.1 log(p) = + n ( r ) ki R b = 1 The coefficients kbib and offsets bb Bare to be determined for each sub-range r from the model, n is the number of spectral channels. The estimation shall be optimal in a global sense, i.e. the RMS error of the entire dataset should be minimized. This is a difference to so called direct model inversion methods, which try to minimize every individual spectrum by finding the optimal concentration set for a given model and single spectrum. Here is used a locally linear regression technique to estimate the needed coefficients. In this task the inversion of the regression matrix of reflectances is a necessary step. Due to the high spectral correlations this can lead to massive numerical errors. Therefore a regularisation method must be applied, to overcome this ill-posed problem. One also must take into account the always present measurement noise. As an optimal information extraction and noise suppression tool, the principal component analysis (PCA) was chosen. The determination of the interpretation coefficients roughly follows the scheme in fig 2. Step 2: Principal Component Analysis Step 3: Intrinsic Dimensionality D=max(k) with >>1 λ k Step 4: Reverse Correlation p^ p i i im m = C PC for MSE min σi m λm Step 5: Reverse Tranformation to L ^ D p p U ( L L ) D U ( L L ) i i 1 l 2 = Cp 1 + Cp σ L λ L λ p Step 1: Modeling L( λ)=f(c, S, Y, τ) = 1 = 1 Step 6: Determination of Coefficients for the Linear Estimator $p = k L + C i i i In the first step a large data set of reflectances R or radiances L according to the model is simulated. Then a principal component analysis is performed. The eigenvalues λ determine the intrinsic dimensionality, i.e. the principal components corresponding to the highest eigenvalues contain the main and useful part of information and the lower eigenvalues corresponding components contain the measurement noise. A correlation between geophysical parameters and high principal components is established (step 4). This is simple, since the principle components are orthogonal. But his formula can not yet be used for a general interpretation, because the result of PCA strongly depends on the statistical (covariance) properties of the initial data set. The data set in a natural environment can never be expected the same, as that used for the simulation. Therefore this formula must be generalized. This can be done by backtransforming the principal components to radiances using the eigenvectors. Finally one gets a regression formula between parameters and radiances (step 5 and step 6). Comparing with a Neural Network approach one could asses, both methods are performing a model inversion, minimizing the global interpretation error and differing mainly in the method of training the interpretation coefficient sets. Neural nets are often using backpropagation techniques, PCI uses principal component transformation as an optimized error-noise suppressing filter. One advantage of the PCI is the additional information about correlations between the parameters and principal components, which allows a direct estimation of the interpretation potential of the investigated data set. Concerning the piecewise linearization of the data set during interpretation one has to choose the appropriate of the pre-calculated

3 coefficient sets. The problem is solved by trying all sets and testing the sub-range conditions under which they were calculated. In the case of impossibility to find a solution a flag is set. 2. BALTIC SEA MODEL The content of the model - the specific properties of the considered geophysical parameters - significantly influences the calculation of the coefficient sets. Therefore an adequate model of the observed environment is of high importance for a good quality of the interpretation results. Since the investigations are focussed on the detection of algae blooms in the Baltic Sea in the following the properties of the used water model shall be described specific Pigment absorbtion specific sediment absorption fig. 3 Baltic Sea Model - specific properties Baltic 2 Station p14an_27.rve z = 1m Gran Canaria z = 1m specific Pigment scattering sediment single scattering albedo.98 Baltic Station p14b_23.rve z = 1m model measurement fig. 4 intercomparison of model and measurements The base model was developed in the Institute for Baltic Sea Research, by Dr. Herbert Siegel. It starts from the basic parameters Chlorophyll and Gelbstoff concentrations and the total suspended matter, characterized by the backscattering coefficient b b at 663nm, and gives their specific optical properties. This model was transformed into the more commonly used 3 component C-S-Y model, [2] where C is again the Chlorophyll concentration measured in [µg/l], Y is the Gelbstoff described by its absorption value at 44nm a y [44nm] and S is the concentration of inorganic matter given as the scattering coefficient at 55nm b S [55nm]. For a complete description and use in radiative transfer equations a number of additional parameters is necessary, the Gelbstoff slope and the sediment Angstroem coefficient for the wavelength behaviour of absorption and. scattering and the scattering phase functions for Chlorophyll and Sediments or in simplified models the relative backscattering coefficients.. Fig. 3 shows the specific wavelength dependency of the scattering and absorption properties for pigment and sediment. Fig. 4 demonstrates the practicability of the proposed model. In situ measurements of volume reflectances in the Baltic Sea during a ship campaign in 2 are compared with model calculations. There are shown two case 2 water examples with a signal decrease in the blue what points to increased Gelbstoff concentrations. One sees a very good agreement, except a wavelength range about 68nm. In the blue curves one sees a slight peak due to chlorophyll fluorescence, which is not included in the current model. The Gran Canaria curve is a clear water spectrum with low chlorophyll, to demonstrate the correctness of the model approach also for case APPLICATION EXAMPLES The PCI algorithm was realized for MERIS level 2 data. Input parameters are the atmospheric corrected bottom water leaving reflectances under consideration of the complete angular dependence of the radiation field. That means that the sun and observer geometry are exactly included in the radiative transfer model. A prototype exists which transforms level 2 MERIS data to maps of the geophysical parameters Chlorophyll, Gelbstoff and Sediment. Fig. 5 shows the occurrence of an algae bloom in summer 23. The area between the islands Bornholm and Ruegen in the South Baltic are shown in a MERIS reduced resolution scene from One clearly observes the increased concentration patterns North West off the coast of Rügen.

4 Another interesting question is the comparison of the geophysical products obtained by different algorithms. This is a critical question because one can never expect a complete agreement. The assumptions of the algorithms and the used models are too different to get identical results. But it makes sense to intercompare the results on a statistical base. For this the PCI products were opposed the standard MERIS level 2 products algae-2 concentration Gelbstoff and total suspended matter calculated on a Neural Network approach [3]. For this a scene from the was chosen pointing at the Bay of Gdansk in the South Baltic at the coast of Poland. In that time an in-situ measurement from our department campaign took part, and there was a one day later overflight of the MOS device [4], a multispectral imaging spectrometer developed in the DLR. Fig. 6-8 show the accordant geophysical parameters of the MERIS standard algorithm, the PCI for MERIS and the PCI for MOS results. In fig. 9 there are compared the histograms of the parameters. The patterns are quite similar, and as one can see from the histograms, the concentrations of all parameters have the same order of magnitude. MERIS - RR MER_RR 2PNPDK23197_9254_223218_165_7233_274_South_baltic1.N1 Pigment Sediment Gelbstoff [µg/l] (c) hk MERIS-RR-1973_south.cdr Fig. 5 Meris PCI-products during an algae bloom summer 23 in the South Baltic Comparison Pigment Algae-2 MERIS-PCI MOS-PCI 1 1 [µg/l] Fig.6 Comparison of the pigment products 1 1 [µg/l] 1 1 [µg/l]

5 Comparison Sediment TSM MERIS-PCI MOS-PCI [mg/l] Fig.7 Comparison of the sediment products Intercomparison Yellow Substance Yellow Substance MERIS-PCI MOS-PCI.1 1 Fig.8 Comparison of the Gelbstoff products

6 Frequency Histogram-Comparison Pigment Suspended Matter Frequency Lg (c[µg/l]) Gelbstoff Lg (S[mg/l]) Frequency Meris Standard-Product Meris PCI MOS PCI Lg (ay) Fig.9 Comparison of the histogramsof geophysical products 4. Summary The applicability of the proposed algorithm for the interpretation of the ecological state of complex case 2water could be demonstrated on the example of the Baltic Sea. MERIS level 2 data (atmospheric corrected water leaving radiances) can be used to detect and follow algae blooms. Intercomparisons of different algorithms and instruments show a reasonable accordance of the obtained results. For a better qualitative estimation of the new method regarding the interpreted results, a detailed analysis of in-situ measurements must be included. The validation of the products needs a detailed investigation of the relation between the theoretical models and the measured satellite and ground truth data. 5. REFERENCES 1.Krawczyk, H.; Neumann, A.; Hetscher, M. Mathematical and physical background of principal component inversion Proceedings 3 rd International Workshop on MOS-IRS and Ocean Colour, pp , Wissenschaft und Technik Verlag Berlin, 1999, ISBN Sathyendranath S., Morel A., Prieur M.: " A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters", Int. J. of Remote Sensing, Vol 1, pp , (1989) 3. Doerffer R. et.al.: Pigment Index, Sediment and Gelbstoff Retrieval from Directional Water Leaving Radiance Reflectance Using Inverse Modeling Technique, MERIS-ESL Doc. No. PO-TN-MEL-GS-5, GKSS Zimmermann G., Neumann A.: The Imaging Spectrometer Experiment MOS on IRS-P3 Three Years of Experience, J. of Spacecraft Technology, Vol 1 (2), pp. 1-9

MERIS Case 1 Validation ->

MERIS Case 1 Validation -> MAVT meeting 20-24 March 2006 MERIS Case 1 Validation -> Performance of the NN case 2 water algorithm for case 1 water Presenter: Roland Doerffer GKSS Forschungszentrum, Institute for Coastal Research

More information

IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products

IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products Roland Doerffer Brockmann Consult The problem of optically complex water high variability of optical properties of

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing ENMAP Summer School on Remote Sensing Data Analysis Uncertainties in ocean colour remote sensing Roland Doerffer Retired from Helmholtz Zentrum Geesthacht Institute of Coastal Research Now: Brockmann Consult

More information

Uncertainties in the Products of Ocean-Colour Remote Sensing

Uncertainties in the Products of Ocean-Colour Remote Sensing Chapter 3 Uncertainties in the Products of Ocean-Colour Remote Sensing Emmanuel Boss and Stephane Maritorena Data products retrieved from the inversion of in situ or remotely sensed oceancolour data are

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing NOWPAP / PICES / WESTPAC Joint Training Course on Remote Sensing Data Analysis Introduction and recent progress in ocean color remote sensing part I: Uncertainties in ocean colour remote sensing Roland

More information

Neural Network uncertain/es. Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany

Neural Network uncertain/es. Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany Neural Network uncertain/es Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany Content General uncertain:es of Case 2 water remote sensing using inverse modelling Specific uncertain:es

More information

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Presented by: Amir Ibrahim Optical Remote Sensing Laboratory, The City College of the City University

More information

Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties

Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties Andreas Albert and Peter Gege What we believe to be a new

More information

Improved Global Ocean Color using POLYMER Algorithm

Improved Global Ocean Color using POLYMER Algorithm Improved Global Ocean Color using POLYMER Algorithm François Steinmetz 1 Didier Ramon 1 Pierre-Yves Deschamps 1 Jacques Stum 2 1 Hygeos 2 CLS June 29, 2010 ESA Living Planet Symposium, Bergen, Norway c

More information

Outline Radiometry of Underwater Image Formation

Outline Radiometry of Underwater Image Formation Outline - Introduction - Features and Feature Matching - Geometry of Image Formation - Calibration - Structure from Motion - Dense Stereo - Radiometry of Underwater Image Formation - Conclusion 1 pool

More information

COMPONENTS OF REMOTE SENSING REFLECTANCE OF NORTHERN BALTIC NATURAL WATER BASINS

COMPONENTS OF REMOTE SENSING REFLECTANCE OF NORTHERN BALTIC NATURAL WATER BASINS COMPONENTS OF REMOTE SENSING REFLECTANCE OF NORTHERN BALTIC NATURAL WATER BASINS Helgi Arst, and Vladimir I. Haltrin Estonian Marine Institute, 1 Paldiski Road, Tallinn, Estonia, 1137 e-mail: helarst@online.ee

More information

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Principal Investigator: Co-Investigators: Collaborator: ZhongPing Lee Michael Ondrusek NOAA/NESDIS/STAR

More information

SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON

SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON Van der Zande D. (1), Blaas M. (2), Nechad B. (1) (1) Royal Belgian Institute of Natural

More information

New Algorithm for MODIS chlorophyll Fluorescence Height Retrieval: performance and comparison with the current product

New Algorithm for MODIS chlorophyll Fluorescence Height Retrieval: performance and comparison with the current product New Algorithm for MODIS chlorophyll Fluorescence Height Retrieval: performance and comparison with the current product I. Ioannou, J. Zhou, A. Gilerson, B. Gross, F. Moshary and S. Ahmed Optical Remote

More information

OCEAN COLOUR REMOTE SENSING OF EXTREME CASE-2 WATERS

OCEAN COLOUR REMOTE SENSING OF EXTREME CASE-2 WATERS OCEAN COLOUR REMOTE SENSING OF EXTREME CASE-2 WATERS Martin Hieronymi (1), Hajo Krasemann (1), Dagmar Müller (1), Carsten Brockmann (2), Ana Ruescas (2), Kerstin Stelzer (2), Bouchra Nechad (3), Kevin

More information

REMOTE SENSING OF VERTICAL IOP STRUCTURE

REMOTE SENSING OF VERTICAL IOP STRUCTURE REMOTE SENSING OF VERTICAL IOP STRUCTURE W. Scott Pegau College of Oceanic and Atmospheric Sciences Ocean. Admin. Bldg. 104 Oregon State University Corvallis, OR 97331-5503 Phone: (541) 737-5229 fax: (541)

More information

Estimation Of Chlorophyll-A Concentrations Using Field Spectral Measurement And Multi-source Satellite Data In Lake Qiaodao, China (Project ID :10668)

Estimation Of Chlorophyll-A Concentrations Using Field Spectral Measurement And Multi-source Satellite Data In Lake Qiaodao, China (Project ID :10668) Estimation Of Chlorophyll-A Concentrations Using Field Spectral Measurement And Multi-source Satellite Data In Lake Qiaodao, China (Project ID :10668) Prof. Gong Jianhua, P.I. (China) Dr. Apostolos Sarris,

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

The Water Colour Simulator WASI

The Water Colour Simulator WASI WASI manual version 3 1 The Water Colour Simulator WASI User manual for version 3 Peter Gege WASI 2 WASI manual version 3 This document can be cited as follows: Gege, P. (2005): The Water Colour Simulator

More information

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters Samir Ahmed Department of Electrical

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality

Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality William Philpot Cornell University 453 Hollister Hall, Ithaca, NY 14853 phone: (607) 255-0801 fax: (607) 255-9004 e-mail: wdp2@cornell.edu

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Introduction to Remote Sensing Curtis Mobley Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017

More information

Ocean Optics Inversion Algorithm

Ocean Optics Inversion Algorithm Ocean Optics Inversion Algorithm N. J. McCormick 1 and Eric Rehm 2 1 University of Washington Department of Mechanical Engineering Seattle, WA 98195-26 mccor@u.washington.edu 2 University of Washington

More information

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Robert Frouin Scripps Institution of Oceanography, la Jolla, California OCR-VC Workshop, 21 October 2010, Ispra, Italy The SIMBADA Project

More information

TOTAL SUSPENDED MATTER MAPS FROM CHRIS IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM)

TOTAL SUSPENDED MATTER MAPS FROM CHRIS IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM) TOTAL SUSPENDED MATTER MAPS FROM IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM) Barbara Van Mol (1) and Kevin Ruddick (1) (1) Management Unit of the North Sea Mathematical Models (MUMM), Royal

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS Menghua Wang NOAA/NESDIS/STAR E/RA3, Room 3228, 5830 University Research Ct. College Park, MD 20746, USA Menghua.Wang@noaa.gov Workshop

More information

Fourier analysis of low-resolution satellite images of cloud

Fourier analysis of low-resolution satellite images of cloud New Zealand Journal of Geology and Geophysics, 1991, Vol. 34: 549-553 0028-8306/91/3404-0549 $2.50/0 Crown copyright 1991 549 Note Fourier analysis of low-resolution satellite images of cloud S. G. BRADLEY

More information

Theoretical derivation of the depth average of remotely sensed optical parameters

Theoretical derivation of the depth average of remotely sensed optical parameters Theoretical derivation of the depth average of remotely sensed optical parameters J. Ronald V. Zaneveld 1, Andrew H. Barnard 1 and Emmanuel Boss 2 1 WET Labs, Inc. P.O. Box 518, 62 Applegate Street, Philomath,

More information

Determining satellite rotation rates for unresolved targets using temporal variations in spectral signatures

Determining satellite rotation rates for unresolved targets using temporal variations in spectral signatures Determining satellite rotation rates for unresolved targets using temporal variations in spectral signatures Joseph Coughlin Stinger Ghaffarian Technologies Colorado Springs, CO joe.coughlin@sgt-inc.com

More information

MERIS VALIDATION OF GEOPHYSICAL OCEAN COLOUR PRODUCTS: PRELIMINARY RESULTS FOR THE NETHERLANDS

MERIS VALIDATION OF GEOPHYSICAL OCEAN COLOUR PRODUCTS: PRELIMINARY RESULTS FOR THE NETHERLANDS MERIS VALIDATION OF GEOPHYSICAL OCEAN COLOUR PRODUCTS: PRELIMINARY RESULTS FOR THE NETHERLANDS Reinold Pasterkamp (1), Steef W. M. Peters (1), Hans van der Woerd (1) (1) Institute for Environmental Studies,

More information

SELECTION OF A MULTIVARIATE CALIBRATION METHOD

SELECTION OF A MULTIVARIATE CALIBRATION METHOD SELECTION OF A MULTIVARIATE CALIBRATION METHOD 0. Aim of this document Different types of multivariate calibration methods are available. The aim of this document is to help the user select the proper

More information

An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters

An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters A. Albert German Aerospace Center DLR), Remote Sensing Technology Institute, D-82230 Wessling,

More information

THE EFFECT OF TOPOGRAPHIC FACTOR IN ATMOSPHERIC CORRECTION FOR HYPERSPECTRAL DATA

THE EFFECT OF TOPOGRAPHIC FACTOR IN ATMOSPHERIC CORRECTION FOR HYPERSPECTRAL DATA THE EFFECT OF TOPOGRAPHIC FACTOR IN ATMOSPHERIC CORRECTION FOR HYPERSPECTRAL DATA Tzu-Min Hong 1, Kun-Jen Wu 2, Chi-Kuei Wang 3* 1 Graduate student, Department of Geomatics, National Cheng-Kung University

More information

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA Ocean EDR Product Calibration and Validation Plan Progress Report: VIIRS Ocean Color Algorithm Evaluations and Data Processing and Analyses Define a VIIRS Proxy Data Stream Define the required in situ

More information

MERIS land products. Principles & validation. F. Baret, M. Weiss, K. Pavageau, D. Béal, B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P.

MERIS land products. Principles & validation. F. Baret, M. Weiss, K. Pavageau, D. Béal, B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P. MERIS land products LAI, fapar, fcover Principles & validation F. Baret, M. Weiss, K. Pavageau, D. Béal, B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P. Regner MERIS (A)ATSR user workshop - Frascati

More information

Seawater reflectance in the near-ir

Seawater reflectance in the near-ir Seawater reflectance in the near-ir Maéva DORON David DOXARAN Simon BELANGER Marcel BABIN Laboratoire d'océanographie de Villefranche Seawater Reflectance in the Near-IR Doron, Doxaran, Bélanger & Babin

More information

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY ENHANCEMENT OF DIFFUSERS BRDF ACCURACY Grégory Bazalgette Courrèges-Lacoste (1), Hedser van Brug (1) and Gerard Otter (1) (1) TNO Science and Industry, Opto-Mechanical Instrumentation Space, P.O.Box 155,

More information

Inverse Problems in Optical Remote Sensing of Coastal Waters

Inverse Problems in Optical Remote Sensing of Coastal Waters Inverse Problems in Optical Remote Sensing of Coastal Waters PI: Irina Dolina Institute of Applied Physics, Ul janova 6, Nizhny Novgorod, 69, Russia phone +7 (81)16-76 fax: +7 (81)6-976 email: dolina@hydro.appl.sci-nnov.ru

More information

Article A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents

Article A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents Article A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents Liangyun Liu *, Bowen Song, Su Zhang and Xinjie Liu Key

More information

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., 5, C751 C762, 2012 www.atmos-meas-tech-discuss.net/5/c751/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

The Use of MERIS for Harmful Algal Bloom Monitoring in the Southern Benguela

The Use of MERIS for Harmful Algal Bloom Monitoring in the Southern Benguela The Use of MERIS for Harmful Algal Bloom Monitoring in the Southern Benguela Stewart Bernard 1 Christelle Balt 1 Trevor Probyn 2 Grant Pitcher 2 Alex Fawcett 1 Andre Du Randt 2 1 Oceanography Department,

More information

MEASURING SURFACE CURRENTS USING IR CAMERAS. Background. Optical Current Meter 06/10/2010. J.Paul Rinehimer ESS522

MEASURING SURFACE CURRENTS USING IR CAMERAS. Background. Optical Current Meter 06/10/2010. J.Paul Rinehimer ESS522 J.Paul Rinehimer ESS5 Optical Current Meter 6/1/1 MEASURING SURFACE CURRENTS USING IR CAMERAS Background Most in-situ current measurement techniques are based on sending acoustic pulses and measuring the

More information

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic Victoria S. Hemsley* 1,2, Timothy J. Smyth 3, Adrian P. Martin 2, Eleanor

More information

Influence of the Depth-Dependence of the PAR Diffuse Attenuation Coefficient on the Computation of Downward Irradiance in Different Water Bodies

Influence of the Depth-Dependence of the PAR Diffuse Attenuation Coefficient on the Computation of Downward Irradiance in Different Water Bodies Geophysica (2000), 36(1 2), 129 139 Influence of the Depth-Dependence of the PAR Diffuse Attenuation Coefficient on the Computation of Downward Irradiance in Different Water Bodies Estonian Marine Institute,

More information

Spectral Extinction Coefficient measurements of inland waters

Spectral Extinction Coefficient measurements of inland waters Spectral Extinction Coefficient measurements of inland waters M. Potes, M. J. Costa, R. Salgado and P. Le Moigne Évora Geophysics Centre, PORTUGAL CNRM/GMME/MOSAYC Météo-France, FRANCE Third Workshop on

More information

Regional MERIS level 2 algal products

Regional MERIS level 2 algal products Regional MERIS level 2 algal products Development and validation in the Skagerrak Sea and Norwegian coastal waters Kai Sørensen 1, Jan Magnusson 1, Jo Høkedal 1, Eyvind Aas 2, Roland Doerffer 3, Carsten

More information

Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a

Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a, Madhubala Talaulikar, Erwin J.A. Desa 1, Aneesh Lotlikar 2 a National Institute of Oceanography

More information

THE USE OF AIRBORNE HYPERSPECTRAL REFLECTANCE DATA TO CHARACTERIZE FOREST SPECIES DISTRIBUTION PATTERNS

THE USE OF AIRBORNE HYPERSPECTRAL REFLECTANCE DATA TO CHARACTERIZE FOREST SPECIES DISTRIBUTION PATTERNS THE USE OF AIRBORNE HYPERSPECTRAL REFLECTANCE DATA TO CHARACTERIZE FOREST SPECIES DISTRIBUTION PATTERNS Weihs, P., Huber K. Institute of Meteorology, Department of Water, Atmosphere and Environment, BOKU

More information

Sections 3-6 have been substantially modified to make the paper more comprehensible. Several figures have been re-plotted and figure captions changed.

Sections 3-6 have been substantially modified to make the paper more comprehensible. Several figures have been re-plotted and figure captions changed. Response to First Referee s Comments General Comments Sections 3-6 have been substantially modified to make the paper more comprehensible. Several figures have been re-plotted and figure captions changed.

More information

Hydrocarbon Index an algorithm for hyperspectral detection of hydrocarbons

Hydrocarbon Index an algorithm for hyperspectral detection of hydrocarbons INT. J. REMOTE SENSING, 20 JUNE, 2004, VOL. 25, NO. 12, 2467 2473 Hydrocarbon Index an algorithm for hyperspectral detection of hydrocarbons F. KÜHN*, K. OPPERMANN and B. HÖRIG Federal Institute for Geosciences

More information

CHLOROPHYLL CONCENTRATION ESTIMATED FROM IRRADIANCE MEASUREMENTS AT FLUCTUATING DEPTHS

CHLOROPHYLL CONCENTRATION ESTIMATED FROM IRRADIANCE MEASUREMENTS AT FLUCTUATING DEPTHS Ocean Optics XIV, Kailua-Kona, November 1998-1 - CHLOROPHYLL CONCENTRATION ESTIMATED FROM IRRADIANCE MEASUREMENTS AT FLUCTUATING DEPTHS Jasmine S. Bartlett, Mark R. Abbott, Ricardo M. Letelier and James

More information

PARAMETERISATION OF AN AUTOMIZED PROCESSING CHAIN FOR MERIS DATA OF SWISS LAKES, AT THE EXAMPLE OF LAKE CONSTANCE

PARAMETERISATION OF AN AUTOMIZED PROCESSING CHAIN FOR MERIS DATA OF SWISS LAKES, AT THE EXAMPLE OF LAKE CONSTANCE PARAMETERISATION OF AN AUTOMIZED PROCESSING CHAIN FOR MERIS DATA OF SWISS LAKES, AT THE EXAMPLE OF LAKE CONSTANCE D. Odermatt (1), T. Heege (2), J. Nieke (1), M. Kneubühler (1), K.I. Itten (1) (1) Remote

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Apparent Optical Properties and the BRDF Delivered at the Darling Marine Center, University of Maine July 2017 Copyright

More information

Estimating basis functions for spectral sensitivity of digital cameras

Estimating basis functions for spectral sensitivity of digital cameras (MIRU2009) 2009 7 Estimating basis functions for spectral sensitivity of digital cameras Abstract Hongxun ZHAO, Rei KAWAKAMI, Robby T.TAN, and Katsushi IKEUCHI Institute of Industrial Science, The University

More information

Global and Regional Retrieval of Aerosol from MODIS

Global and Regional Retrieval of Aerosol from MODIS Global and Regional Retrieval of Aerosol from MODIS Why study aerosols? CLIMATE VISIBILITY Presented to UMBC/NESDIS June 4, 24 Robert Levy, Lorraine Remer, Yoram Kaufman, Allen Chu, Russ Dickerson modis-atmos.gsfc.nasa.gov

More information

Quantification of mineral particles from remote sensing. Using of spectroradiometric measurements and WASI simulations

Quantification of mineral particles from remote sensing. Using of spectroradiometric measurements and WASI simulations Quantification of mineral particles from remote sensing. Using of spectroradiometric measurements and WASI simulations Results obtained by V. Lafon, C. Giry, N. Bonneton, D. Doxaran, D. Bru C. Petus, M.

More information

Predicting Atmospheric Parameters using Canonical Correlation Analysis

Predicting Atmospheric Parameters using Canonical Correlation Analysis Predicting Atmospheric Parameters using Canonical Correlation Analysis Emmett J Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F Carlson Center for Imaging Science Rochester Institute

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE)

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) Malvina Silvestri Istituto Nazionale di Geofisica e Vulcanologia In the frame of the Italian Space Agency (ASI)

More information

2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing. Overview of HydroLight and EcoLight

2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing. Overview of HydroLight and EcoLight 2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Overview of HydroLight and EcoLight Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis D.

More information

Introduction to Remote Sensing Wednesday, September 27, 2017

Introduction to Remote Sensing Wednesday, September 27, 2017 Lab 3 (200 points) Due October 11, 2017 Multispectral Analysis of MASTER HDF Data (ENVI Classic)* Classification Methods (ENVI Classic)* SAM and SID Classification (ENVI Classic) Decision Tree Classification

More information

Projet PNTS SPACTO. SPatial Atmospheric Correction over Turbid Ocean. Julien Brajard

Projet PNTS SPACTO. SPatial Atmospheric Correction over Turbid Ocean. Julien Brajard Projet PNTS SPACTO SPatial Atmospheric Correction over Turbid Ocean Julien Brajard Outline Context Achievements Perpectives Context Signal measured by the radiometer water-leaving reflectance Atmospheric

More information

Ocean color algorithms in optically shallow waters: Limitations and improvements

Ocean color algorithms in optically shallow waters: Limitations and improvements Ocean color algorithms in optically shallow waters: Limitations and improvements Kendall L. Carder *a, Jennifer P. Cannizzaro a, Zhongping Lee b a University of South Florida, 140 7 th Ave. S, St. Petersburg,

More information

Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data

Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data Journal of Oceanography, Vol. 62, pp. 331 to 337, 2006 Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data ROBERT FROUIN 1 *, PIERRE-YVES DESCHAMPS 2, LYDWINE

More information

ENMAP RADIOMETRIC INFLIGHT CALIBRATION

ENMAP RADIOMETRIC INFLIGHT CALIBRATION ENMAP RADIOMETRIC INFLIGHT CALIBRATION Harald Krawczyk 1, Birgit Gerasch 1, Thomas Walzel 1, Tobias Storch 1, Rupert Müller 1, Bernhard Sang 2, Christian Chlebek 3 1 Earth Observation Center (EOC), German

More information

Document NWPSAF_MO_VS_051 Version /7/15. MFASIS - a fast radiative transfer method for the visible spectrum Leonhard Scheck.

Document NWPSAF_MO_VS_051 Version /7/15. MFASIS - a fast radiative transfer method for the visible spectrum Leonhard Scheck. Document NWPSAF_MO_VS_051 Version 1.0 10/7/15 MFASIS - a fast radiative transfer method for the visible spectrum Leonhard Scheck. MFASIS - a fast radiative transfer method for the visible spectrum Doc

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement Techniques Discussions

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., 5, C741 C750, 2012 www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

Diffuse reflection coefficient of a stratified sea

Diffuse reflection coefficient of a stratified sea Diffuse reflection coefficient of a stratified sea Vladimir I. Haltrin A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous

More information

Principal Component Image Interpretation A Logical and Statistical Approach

Principal Component Image Interpretation A Logical and Statistical Approach Principal Component Image Interpretation A Logical and Statistical Approach Md Shahid Latif M.Tech Student, Department of Remote Sensing, Birla Institute of Technology, Mesra Ranchi, Jharkhand-835215 Abstract

More information

SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment. Magnus Wettle and Vittorio Ernesto Brando

SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment. Magnus Wettle and Vittorio Ernesto Brando SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment Magnus Wettle and Vittorio Ernesto Brando CSIRO Land and Water Science Report 22/06 July 2006 Copyright and Disclaimer

More information

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2)

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) Update of post launch vicarious, lunar calibrations & current status Presented by Prakash Chauhan Space Applications Centre Indian Space Research Organistaion Ahmedabad-

More information

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION A Thesis by JULIE MARIE SLANKER Submitted to the Office of Graduate Studies

More information

GEOMETRY AND RADIATION QUALITY EVALUATION OF GF-1 AND GF-2 SATELLITE IMAGERY. Yong Xie

GEOMETRY AND RADIATION QUALITY EVALUATION OF GF-1 AND GF-2 SATELLITE IMAGERY. Yong Xie Prepared by CNSA Agenda Item: WG.3 GEOMETRY AND RADIATION QUALITY EVALUATION OF GF-1 AND GF-2 SATELLITE IMAGERY Yong Xie Institute of Remote Sensing and Digital Earth, Chinese Academy of Science GF-1 and

More information

Underwater Rendering with Realistic Water Properties

Underwater Rendering with Realistic Water Properties Underwater Rendering with Realistic Water Properties Trisha Lian and Sarah Jobalia Goal and Motivation For our project, we implemented a method to simulate light traveling through water with certain properties.

More information

Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Correction ATBD

Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Correction ATBD DOC: GKSS-KOF--ATBD01 Name: Case II ATBD-ATMO Page: 1 Algorithm Theoretical Basis Document (ATBD) Regional Coastal and Lake Case 2 Water Project Version 1.0, 18. May 2008 Roland Doerffer & Helmut Schiller

More information

INVESTIGATIONS OF CROSS-CORRELATION AND EUCLIDEAN DISTANCE TARGET MATCHING TECHNIQUES IN THE MPEF ENVIRONMENT. Greg And Ken Holmlund # ABSTRACT

INVESTIGATIONS OF CROSS-CORRELATION AND EUCLIDEAN DISTANCE TARGET MATCHING TECHNIQUES IN THE MPEF ENVIRONMENT. Greg And Ken Holmlund # ABSTRACT INVESTIGATIONS OF CROSS-CORRELATION AND EUCLIDEAN DISTANCE TARGET MATCHING TECHNIQUES IN THE MPEF ENVIRONME Greg Dew @ And Ken Holmlund # @ Logica # EUMETSAT ABSTRACT Cross-Correlation and Euclidean Distance

More information

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT M. Schroeder, R. Müller, P. Reinartz German Aerospace Center, DLR Institute of Optoelectronics, Optical Remote

More information

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION S.Dhanalakshmi #1 #PG Scholar, Department of Computer Science, Dr.Sivanthi Aditanar college of Engineering, Tiruchendur

More information

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Principal Inves.gator: Co- Inves.gators: Collaborator: ZhongPing Lee Michael Ondrusek NOAA/NESDIS/STAR

More information

Improving remotely sensed fused ocean data products through crosssensor

Improving remotely sensed fused ocean data products through crosssensor Improving remotely sensed fused ocean data products through crosssensor calibration Mark David Lewis Ruhul Amin Sonia Gallegos Richard W. Gould, Jr. Sherwin Ladner Adam Lawson Rong-rong Li Improving remotely

More information

COASTCOLOUR. CoastColour UCM1 * ESRIN *

COASTCOLOUR. CoastColour UCM1 * ESRIN * CoastColour UCM1 * ESRIN * 16-17.11.2010 1 In situ data 02/03-11-2010 2 Algorithm REQUIREMENTS These parameters are needed for basic water algorithms (for training of neural networks) The adaptation of

More information

Attenuation of visible solar radiation in the upper water column: A model based on IOPs

Attenuation of visible solar radiation in the upper water column: A model based on IOPs Attenuation of visible solar radiation in the upper water column: A model based on IOPs ZhongPing Lee, KePing Du 2, Robert Arnone, SooChin Liew 3, Bradley Penta Naval Research Laboratory Code 7333 Stennis

More information

MODIS Ocean Science Team Algorithm Theoretical Basis Document ATBD 19. Case 2 Chlorophyll a. Version 5 26 April 1999

MODIS Ocean Science Team Algorithm Theoretical Basis Document ATBD 19. Case 2 Chlorophyll a. Version 5 26 April 1999 1 MODIS Ocean Science Team Algorithm Theoretical Basis Document ATBD 19 Case 2 Chlorophyll a Version 5 26 April 1999 Kendall L. Carder, F. Robert Chen, Zhongping Lee, and Steve K. Hawes Marine Science

More information

Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters

Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters Remote Sens. 2012, 4, 1716-1740; doi:10.3390/rs4061716 Article OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Atmospheric Correction and Vicarious Calibration of Oceansat-1

More information

CLASSIFICATION OF ROOF MATERIALS USING HYPERSPECTRAL DATA

CLASSIFICATION OF ROOF MATERIALS USING HYPERSPECTRAL DATA CLASSIFICATION OF ROOF MATERIALS USING HYPERSPECTRAL DATA C. Chisense Department of Geomatics, Computer Science and Mathematics, University of Applied Sciences Stuttgart Schellingstraße 24, D-70174 Stuttgart

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

HYDROLIGHT 5.2 ECOLIGHT 5.2

HYDROLIGHT 5.2 ECOLIGHT 5.2 HYDROLIGHT 5.2 ECOLIGHT 5.2 technical documentation Curtis D. Mobley Lydia K. Sundman Sequoia Scientific, Inc. First Printing, October 2013 Update Note This version of the the HydroLight-EcoLight Technical

More information

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Peter Mantica, Chris Lietzke, Jer Zimmermann ITT Industries, Advanced Engineering and Sciences Division Fort Wayne, Indiana Fran

More information

HICO User Annual Report. Using HICO data for the preparation of the future EnMAP satellite mission

HICO User Annual Report. Using HICO data for the preparation of the future EnMAP satellite mission August 31, 2012 HICO User Annual Report Using HICO data for the preparation of the future EnMAP satellite mission Nicole Pinnel 1, Rolf Richter 1, Slava Kiselev 2, Martin Bachmann 1 1 DLR, Earth Observation

More information

Modeling of the ageing effects on Meteosat First Generation Visible Band

Modeling of the ageing effects on Meteosat First Generation Visible Band on on Meteosat First Generation Visible Band Ilse Decoster, N. Clerbaux, J. Cornelis, P.-J. Baeck, E. Baudrez, S. Dewitte, A. Ipe, S. Nevens, K. J. Priestley, A. Velazquez Royal Meteorological Institute

More information

A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data

A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. Westpark Technical Center 15317 NE 90th Street Redmond, WA 98052 phone: 425-867-2464 x 109

More information

CHRIS Proba Workshop 2005 II

CHRIS Proba Workshop 2005 II CHRIS Proba Workshop 25 Analyses of hyperspectral and directional data for agricultural monitoring using the canopy reflectance model SLC Progress in the Upper Rhine Valley and Baasdorf test-sites Dr.

More information

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan Monte Carlo Ray Tracing Simulation of Polarization Characteristics of Sea Water Which Contains Spherical and Non-Spherical Particles of Suspended Solid and Phytoplankton Kohei Arai 1 Graduate School of

More information

Potential of Sentinel-2 for retrieval of biophysical and biochemical vegetation parameters

Potential of Sentinel-2 for retrieval of biophysical and biochemical vegetation parameters Insert the title of your slide Potential of Sentinel-2 for retrieval of biophysical and biochemical vegetation parameters D. Scheffler, T. Kuester, K. Segl, D. Spengler and H. Kaufmann Motivation Insert

More information

Revision History. Applicable Documents

Revision History. Applicable Documents Revision History Version Date Revision History Remarks 1.0 2011.11-1.1 2013.1 Update of the processing algorithm of CAI Level 3 NDVI, which yields the NDVI product Ver. 01.00. The major updates of this

More information