IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products

Size: px
Start display at page:

Download "IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products"

Transcription

1 IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products Roland Doerffer Brockmann Consult

2 The problem of optically complex water high variability of optical properties of water constituents more factors which determine top of atmosphere reflectances than can be inversely retrieved the model behind the retrieval algorithm can represent only a fraction of the actual conditions thus: the conditions and corresponding reflectance spectrum can be out of scope of the model and even when in scope ambiguities and masking effects can lead to significant uncertainties Requirement for MERIS / OLCI case 2 water algorithm: flags when NN inputs or outputs are at the limit of the training range co-algorithm to determine spectra, which are out of scope co-algorithm to determine uncertainties

3 OLCI and MERIS case 2 water algorithms MERIS (4th reprocessing) and OLCI standard products of case 2 water are based on 2 neural network algorithm systems atmosphere NN: Rtosa -> Rw (MERIS 12 / OLCI 14 spectral bands) water NN: Rw (9 / 11 bands) -> 5 IOPs (apig, ad, ag, bp, bw) the bio-optical model for water is based on parameters derived from the NOMAD data set (which has been extended to case 2 waters) concerning: IOPs, frequency distributions, co-variances. atmosphere model is based on aerosol optical properties derived from coastal stations of the AERONET large training data set of > 1 Mio. cases, simulation with a SOS atmosphere model (Zagolski, F., Santer R., Aznay O., 2007), and Hydrolight (Mobley, 1994) for water procedures for 3 types of checks: flag if inputs or outputs of the NNs are at the lower or upper limit of the traning data set flag if input spectrum is out of scope: test with auto-associative NN for atmosphere and a combination of an inverse and forward NN for water determination of IOP uncertainties of the output of the NN with respect to the training data set

4 Radiance (Wm-2 sr-1 µm-1) A manifold of factors determine the radiance spectrum at top of atmosphere TOA Radiance Spectra North Sea wavelength (nm) Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 air molecules different aerosols thin clouds contrails Sky reflectance Sun glint foam floating material Suspended particles dissolved organic matter Vertical distribution chlorophyll Bottom reflection different phytoplankton species

5 Information content of TOA radiances: PCA and aann L1b TOA radiance spectra of transect L1b TOA Eigenvalues of radiance spectra radiance [W m-2 sr-1 µm-1] eigenvalue /sum of eigenvalues wavelength [nm] MERIS band order of eigenvalues Transect North Sea TOA radiance TOA radiance spectra along transect Principle Component Analysis: only 3 significant factors Auto-associative NN using a bottle-neck layer functions as a non-linear PCA For this transect 7 neurons are sufficient to represent the variability of TOA radiances Input layer Hidden 1 Bottleneck mean rms error Hidden 3 output layer aann MERIS L1b transect no. neurons

6 Detection of out of scope conditions 2 Procedures have been developed for MERIS / OLCI: Combination of an inverse and forward Neural Network Use of an autoassociative Neural Network Both produce a reflection spectrum, which is compared with the input spectrum Deviation between input and output spectrum can be computed as chi2 A threshold can be used to trigger an out of scope warning flag Combination of inverse and forward NN R Input Inverse NN IOPs Forward NN R output Auto-associative NN R Input autoassociative NN R output

7 Detection of out of scope conditions aann: example for L1 (TOA) data High SPM Sun glint Transect MERIS scene of the Yellow Sea

8 Detection of out of scope conditions aann: example AutoNN test 12x5x12 Yellow Sea transect, MERIS band 7, nm AutoNN test 12x5x12 Yellow Sea transect, MERIS band 7, nm rltoa rltoa_ann difference ratio rel. deviation RLtoa longitude longitude significant deviation in area with high SPM concentrations, but not in sun glint area rel. frequency AutoNN test Yellow Sea transect 12x5x12, MERIS band 7, nm Histogram of deviations shows 2 maxima, around 1 in sun glint 0.9 in high SPM area, which out of scope rel. radiance reflectance ratio to true

9 Uncertainties due to the bio-optical model Optically relevant variables in the water Optical components with IOPs and variability Proxy concentration variable / product Scattering material Scattering by standard particles (bp) Scattering by white particles (bw) Dry weight of suspended matter [ g m-3] Absorbing material Phytoplankton pigments Absorption by gelbstoff (ag) Absorption by detritus (ad) Absorption by phyto pigments (apig) adg_443 [m-1] Concentration of chlorophyll a [mg m-3]

10 Uncertainties due to variable relationship between a_pig and chlorophyll 443 nm, log scale, samples for chl_f, NOMAD data set

11 nn-derived µg/l nn µg/l Uncertainties due to ambiguities for different concentration mixtures 2 case 2 water chlorophyll retrieval with NN Pigment in North Sea Water (gelb < 0.2 m-1, MSM < 5 mg/l) mg m model chlorophyll µg/l All cases of turbid water model µg/l Typical North Sea coastal water: ay_443: < 0.2 m-1, TSM < 5 mg /l

12 Tests of NNs with different assumed uncertainties of reflectances Test of a_pig, no additional error Test of adg, no additional error Test of a_pig with an extra random error with a standard deviation of 3% Test of adg with an extra random error with a standard deviation of 3%

13 Determination of uncertainties This procedure determines uncertainties if the data are within the scope of the model due to ambiguities and masking effects test of simulated with the inverse neural network test with different assumed uncertainties of reflectances compute deviations between output of the NN and the corresponding data of the model are included in look-up table train a NN with the 5 IOPs as input and the deviations of the 5 IOPs as output: apig, ag, ad, bp, bw further NNs are trained with the 5 IOPs as input and the combined 3 products as output: absorption by phytoplankton pigments (apig / chlorophyll), absorption by yellow substance / gelbstoff and detritus (agd), scattering by standard and white particles (btsm / TSM)

14 Helgoland transect C27 Rtosa Rpath transect aann

15 Rw water reflectance 443 nm 560 nm 756 nm

16 Helgoland transect C27 atotal_443 TSM red dots: water samples, blue dots: MERIS data

17 Helgoland transect C27 apig_443 (blue dots) and uncertainties (green dots) MERIS data chlorophyll and uncertainties of water samples (red dots with bars) and MERIS data (blue dots with bars)

18 Summary and conclusion Problem In most case 2 waters we have more variables, which determine TOA radiances, than we can retrieve Importance of variables in water change with their concentrations and variables can mask each other and spectra might be ambiguous wrt. the IOPs or concentrations of water constituents The model behind a case 2 water algorithm is a simplification, reflectance spectra can occur, which are outside the scope of the model Requirement Thus, we have to check if a TOA or water reflectance spectrum is in scope of the model used for the algorithm and we have to determine the uncertainty of the retrieved IOPs due to ambiguities and masking effects Solution for MERIS / OLCI Co-algorithm to identify out of scope spectra by using an aann or combination of inverse and forward IOP-Rw NN uncertainty NN which is trained with the deviations between the IOPs of the simulated test data set and the IOPs as output of the inverse NN Open problem validation of the uncertainty NN with field data

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing ENMAP Summer School on Remote Sensing Data Analysis Uncertainties in ocean colour remote sensing Roland Doerffer Retired from Helmholtz Zentrum Geesthacht Institute of Coastal Research Now: Brockmann Consult

More information

Neural Network uncertain/es. Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany

Neural Network uncertain/es. Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany Neural Network uncertain/es Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany Content General uncertain:es of Case 2 water remote sensing using inverse modelling Specific uncertain:es

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing NOWPAP / PICES / WESTPAC Joint Training Course on Remote Sensing Data Analysis Introduction and recent progress in ocean color remote sensing part I: Uncertainties in ocean colour remote sensing Roland

More information

MERIS Case 1 Validation ->

MERIS Case 1 Validation -> MAVT meeting 20-24 March 2006 MERIS Case 1 Validation -> Performance of the NN case 2 water algorithm for case 1 water Presenter: Roland Doerffer GKSS Forschungszentrum, Institute for Coastal Research

More information

ALGAE BLOOM DETECTION IN THE BALTIC SEA WITH MERIS DATA

ALGAE BLOOM DETECTION IN THE BALTIC SEA WITH MERIS DATA P P German P ALGAE BLOOM DETECTION IN THE BALTIC SEA WITH MERIS DATA ABSTRACT Harald Krawczyk P P, Kerstin Ebert P P, Andreas Neumann P Aerospace Centre Institute of Remote Sensing Technology, Rutherford

More information

Regional MERIS level 2 algal products

Regional MERIS level 2 algal products Regional MERIS level 2 algal products Development and validation in the Skagerrak Sea and Norwegian coastal waters Kai Sørensen 1, Jan Magnusson 1, Jo Høkedal 1, Eyvind Aas 2, Roland Doerffer 3, Carsten

More information

OCEAN COLOUR REMOTE SENSING OF EXTREME CASE-2 WATERS

OCEAN COLOUR REMOTE SENSING OF EXTREME CASE-2 WATERS OCEAN COLOUR REMOTE SENSING OF EXTREME CASE-2 WATERS Martin Hieronymi (1), Hajo Krasemann (1), Dagmar Müller (1), Carsten Brockmann (2), Ana Ruescas (2), Kerstin Stelzer (2), Bouchra Nechad (3), Kevin

More information

Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Correction ATBD

Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Correction ATBD DOC: GKSS-KOF--ATBD01 Name: Case II ATBD-ATMO Page: 1 Algorithm Theoretical Basis Document (ATBD) Regional Coastal and Lake Case 2 Water Project Version 1.0, 18. May 2008 Roland Doerffer & Helmut Schiller

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Introduction to Remote Sensing Curtis Mobley Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017

More information

Uncertainties in the Products of Ocean-Colour Remote Sensing

Uncertainties in the Products of Ocean-Colour Remote Sensing Chapter 3 Uncertainties in the Products of Ocean-Colour Remote Sensing Emmanuel Boss and Stephane Maritorena Data products retrieved from the inversion of in situ or remotely sensed oceancolour data are

More information

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Presented by: Amir Ibrahim Optical Remote Sensing Laboratory, The City College of the City University

More information

Improved Global Ocean Color using POLYMER Algorithm

Improved Global Ocean Color using POLYMER Algorithm Improved Global Ocean Color using POLYMER Algorithm François Steinmetz 1 Didier Ramon 1 Pierre-Yves Deschamps 1 Jacques Stum 2 1 Hygeos 2 CLS June 29, 2010 ESA Living Planet Symposium, Bergen, Norway c

More information

Seawater reflectance in the near-ir

Seawater reflectance in the near-ir Seawater reflectance in the near-ir Maéva DORON David DOXARAN Simon BELANGER Marcel BABIN Laboratoire d'océanographie de Villefranche Seawater Reflectance in the Near-IR Doron, Doxaran, Bélanger & Babin

More information

Quantification of mineral particles from remote sensing. Using of spectroradiometric measurements and WASI simulations

Quantification of mineral particles from remote sensing. Using of spectroradiometric measurements and WASI simulations Quantification of mineral particles from remote sensing. Using of spectroradiometric measurements and WASI simulations Results obtained by V. Lafon, C. Giry, N. Bonneton, D. Doxaran, D. Bru C. Petus, M.

More information

New Algorithm for MODIS chlorophyll Fluorescence Height Retrieval: performance and comparison with the current product

New Algorithm for MODIS chlorophyll Fluorescence Height Retrieval: performance and comparison with the current product New Algorithm for MODIS chlorophyll Fluorescence Height Retrieval: performance and comparison with the current product I. Ioannou, J. Zhou, A. Gilerson, B. Gross, F. Moshary and S. Ahmed Optical Remote

More information

COASTCOLOUR. CoastColour UCM1 * ESRIN *

COASTCOLOUR. CoastColour UCM1 * ESRIN * CoastColour UCM1 * ESRIN * 16-17.11.2010 1 In situ data 02/03-11-2010 2 Algorithm REQUIREMENTS These parameters are needed for basic water algorithms (for training of neural networks) The adaptation of

More information

Shallow-water Remote Sensing: Lecture 1: Overview

Shallow-water Remote Sensing: Lecture 1: Overview Shallow-water Remote Sensing: Lecture 1: Overview Curtis Mobley Vice President for Science and Senior Scientist Sequoia Scientific, Inc. Bellevue, WA 98005 curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters Samir Ahmed Department of Electrical

More information

MERIS VALIDATION OF GEOPHYSICAL OCEAN COLOUR PRODUCTS: PRELIMINARY RESULTS FOR THE NETHERLANDS

MERIS VALIDATION OF GEOPHYSICAL OCEAN COLOUR PRODUCTS: PRELIMINARY RESULTS FOR THE NETHERLANDS MERIS VALIDATION OF GEOPHYSICAL OCEAN COLOUR PRODUCTS: PRELIMINARY RESULTS FOR THE NETHERLANDS Reinold Pasterkamp (1), Steef W. M. Peters (1), Hans van der Woerd (1) (1) Institute for Environmental Studies,

More information

SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON

SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON Van der Zande D. (1), Blaas M. (2), Nechad B. (1) (1) Royal Belgian Institute of Natural

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

REMOTE SENSING OF VERTICAL IOP STRUCTURE

REMOTE SENSING OF VERTICAL IOP STRUCTURE REMOTE SENSING OF VERTICAL IOP STRUCTURE W. Scott Pegau College of Oceanic and Atmospheric Sciences Ocean. Admin. Bldg. 104 Oregon State University Corvallis, OR 97331-5503 Phone: (541) 737-5229 fax: (541)

More information

STSE-WaterRadiance. The. project. Final Report. (ESA Contract: AO /08/NL/CT)

STSE-WaterRadiance. The. project. Final Report. (ESA Contract: AO /08/NL/CT) DOC: D8 7.0. Page: of 63 The STSE-WaterRadiance project (ESA Contract: AO -5859/08/NL/CT) Authors: Rüdiger Röttgers, Carsten Brockmann, Roland Doerffer, Jürgen Fischer, Andre Hollstein, Samantha Lavender,

More information

Curt Mobley from my summer course lecture

Curt Mobley from my summer course lecture This is a placeholder for the web book section on polarization Polari zation Curt Mobley from my summer course lecture from Ken Voss PhD Dissertation Fun with Polarization (1) Using polarization

More information

TOTAL SUSPENDED MATTER MAPS FROM CHRIS IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM)

TOTAL SUSPENDED MATTER MAPS FROM CHRIS IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM) TOTAL SUSPENDED MATTER MAPS FROM IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM) Barbara Van Mol (1) and Kevin Ruddick (1) (1) Management Unit of the North Sea Mathematical Models (MUMM), Royal

More information

CHAPTER 15 INVESTIGATING LAND, OCEAN, AND ATMOSPHERE WITH MULTISPECTRAL MEASUREMENTS

CHAPTER 15 INVESTIGATING LAND, OCEAN, AND ATMOSPHERE WITH MULTISPECTRAL MEASUREMENTS CHAPTER 15 INVESTIGATING LAND, OCEAN, AND ATMOSPHERE WITH MULTISPECTRAL MEASUREMENTS 15.1 Introducing Hydra A multi-spectral data analysis toolkit has been developed using freeware; it is called Hydra.

More information

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2)

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) Update of post launch vicarious, lunar calibrations & current status Presented by Prakash Chauhan Space Applications Centre Indian Space Research Organistaion Ahmedabad-

More information

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Principal Investigator: Co-Investigators: Collaborator: ZhongPing Lee Michael Ondrusek NOAA/NESDIS/STAR

More information

COMPONENTS OF REMOTE SENSING REFLECTANCE OF NORTHERN BALTIC NATURAL WATER BASINS

COMPONENTS OF REMOTE SENSING REFLECTANCE OF NORTHERN BALTIC NATURAL WATER BASINS COMPONENTS OF REMOTE SENSING REFLECTANCE OF NORTHERN BALTIC NATURAL WATER BASINS Helgi Arst, and Vladimir I. Haltrin Estonian Marine Institute, 1 Paldiski Road, Tallinn, Estonia, 1137 e-mail: helarst@online.ee

More information

Name Company Function Signature Date

Name Company Function Signature Date Page : i of 1 Title: MERMAID data format Doc. no: QWG-MER-MERMAID-DF-02 Issue: 2 Revision: 3 Date: 22/03/2012 Name Company Function Signature Date Prepared by: C. Mazeran ACRI-ST W.P. Manager 22/03/2012

More information

Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality

Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality William Philpot Cornell University 453 Hollister Hall, Ithaca, NY 14853 phone: (607) 255-0801 fax: (607) 255-9004 e-mail: wdp2@cornell.edu

More information

Ocean Products and Atmospheric Removal in APS

Ocean Products and Atmospheric Removal in APS Oregon State Ocean Products and Atmospheric Removal in APS David Lewis Oceanography Division Naval Research Laboratory Stennis Space Center, Mississipp david.lewis@nrlssc.navy.mil Contributors: David Lewis

More information

Lab on MODIS Cloud spectral properties, Cloud Mask, NDVI and Fire Detection

Lab on MODIS Cloud spectral properties, Cloud Mask, NDVI and Fire Detection MODIS and AIRS Workshop 5 April 2006 Pretoria, South Africa 5/2/2006 10:54 AM LAB 2 Lab on MODIS Cloud spectral properties, Cloud Mask, NDVI and Fire Detection This Lab was prepared to provide practical

More information

Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization

Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch

More information

Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties

Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties Andreas Albert and Peter Gege What we believe to be a new

More information

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Yves Govaerts and Marta Luffarelli Rayference Radiometric Calibration Workshop for European Missions ESRIN, 30-31

More information

CHLOROPHYLL CONCENTRATION ESTIMATED FROM IRRADIANCE MEASUREMENTS AT FLUCTUATING DEPTHS

CHLOROPHYLL CONCENTRATION ESTIMATED FROM IRRADIANCE MEASUREMENTS AT FLUCTUATING DEPTHS Ocean Optics XIV, Kailua-Kona, November 1998-1 - CHLOROPHYLL CONCENTRATION ESTIMATED FROM IRRADIANCE MEASUREMENTS AT FLUCTUATING DEPTHS Jasmine S. Bartlett, Mark R. Abbott, Ricardo M. Letelier and James

More information

Water remote sensing reflectance from radiative transfer simulations on a global scale of Inherent Optical Properties

Water remote sensing reflectance from radiative transfer simulations on a global scale of Inherent Optical Properties Earth Syst. Sci. Discuss., https://doi.org/.194/essd-2018- Manuscript under review for journal Earth Syst. Sci. Water remote sensing reflectance from radiative transfer simulations on a global scale of

More information

Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies

Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies L. Guanter 1, J. A. Domínguez 2, L. Conde 2, A. Ruiz-Verdú 2, V. Estellés 3, R.

More information

Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a

Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a, Madhubala Talaulikar, Erwin J.A. Desa 1, Aneesh Lotlikar 2 a National Institute of Oceanography

More information

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007 OMAERO README File B. Veihelmann, J.P. Veefkind, KNMI Last update: November 23, 2007 Overview The OMAERO Level 2 data product contains aerosol characteristics such as aerosol optical thickness (AOT), aerosol

More information

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Robert Frouin Scripps Institution of Oceanography, la Jolla, California OCR-VC Workshop, 21 October 2010, Ispra, Italy The SIMBADA Project

More information

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA Ocean EDR Product Calibration and Validation Plan Progress Report: VIIRS Ocean Color Algorithm Evaluations and Data Processing and Analyses Define a VIIRS Proxy Data Stream Define the required in situ

More information

HYDROLIGHT 5.2 ECOLIGHT 5.2

HYDROLIGHT 5.2 ECOLIGHT 5.2 HYDROLIGHT 5.2 ECOLIGHT 5.2 technical documentation Curtis D. Mobley Lydia K. Sundman Sequoia Scientific, Inc. First Printing, October 2013 Update Note This version of the the HydroLight-EcoLight Technical

More information

CHRIS Proba Workshop 2005 II

CHRIS Proba Workshop 2005 II CHRIS Proba Workshop 25 Analyses of hyperspectral and directional data for agricultural monitoring using the canopy reflectance model SLC Progress in the Upper Rhine Valley and Baasdorf test-sites Dr.

More information

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA

More information

Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters

Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters Remote Sens. 2012, 4, 1716-1740; doi:10.3390/rs4061716 Article OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Atmospheric Correction and Vicarious Calibration of Oceansat-1

More information

ICOL Improve Contrast between Ocean & Land

ICOL Improve Contrast between Ocean & Land - MEIS Level-1C eport D6 Issue: 1 ev.: 1 Page: 1 Project Title: Document Title: ICOL The MEIS Level-1C Version: 1.1 Author(s): Affiliation(s):. Santer, F. Zagolski ULCO, Université du Littoral Côte d Opale,

More information

The Water Colour Simulator WASI

The Water Colour Simulator WASI WASI manual version 3 1 The Water Colour Simulator WASI User manual for version 3 Peter Gege WASI 2 WASI manual version 3 This document can be cited as follows: Gege, P. (2005): The Water Colour Simulator

More information

MEPIX Software User Manual

MEPIX Software User Manual 1.1 i MEPIX Software User Manual Copyright 2009 Brockmann Consult GmbH ESA and the ESA logo are trademarks of the European Space Agency. The Brockmann Consult logo is a trademark of Brockmann Consult GmbH.

More information

Underwater Rendering with Realistic Water Properties

Underwater Rendering with Realistic Water Properties Underwater Rendering with Realistic Water Properties Trisha Lian and Sarah Jobalia Goal and Motivation For our project, we implemented a method to simulate light traveling through water with certain properties.

More information

Optical properties of oceanic particles

Optical properties of oceanic particles Optical properties of oceanic particles What physical properties p determine the optical properties p of particles? Size, composition (refractive index), shape, internal structure. These properties interact

More information

A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data

A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. Westpark Technical Center 15317 NE 90th Street Redmond, WA 98052 phone: 425-867-2464 x 109

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

MAPPING OF CHLOROPHYLL AND SUSPENDED PARTICULATE MATTER MAPS FROM CHRIS IMAGERY OF THE OOSTENDE CORE SITE

MAPPING OF CHLOROPHYLL AND SUSPENDED PARTICULATE MATTER MAPS FROM CHRIS IMAGERY OF THE OOSTENDE CORE SITE MAPPING OF CHLOROPHYLL AND SUSPENDED PARTICULATE MATTER MAPS FROM CHRIS IMAGERY OF THE OOSTENDE CORE SITE Barbara Van Mol, Young-Je Par, Kevin Ruddic, Bouchra Nechad Management Unit of the North Sea Mathematical

More information

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic Victoria S. Hemsley* 1,2, Timothy J. Smyth 3, Adrian P. Martin 2, Eleanor

More information

Develop proxy VIIRS Ocean Color remotesensing reflectance from MODIS

Develop proxy VIIRS Ocean Color remotesensing reflectance from MODIS Develop proxy VIIRS Ocean Color remotesensing reflectance from ODIS 1) Define a VIIRS Proxy Data Stream 2) Define the required in situ data stream for Cal/Val 3) Tuning of algorithms and LUTS (Vicarious

More information

UV Remote Sensing of Volcanic Ash

UV Remote Sensing of Volcanic Ash UV Remote Sensing of Volcanic Ash Kai Yang University of Maryland College Park WMO Inter-comparison of Satellite-based Volcanic Ash Retrieval Algorithms Workshop June 26 July 2, 2015, Madison, Wisconsin

More information

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Gerhard Meister, Gene Eplee, Bryan Franz, Sean Bailey, Chuck McClain NASA Code 614.2 Ocean Biology Processing Group October 21st, 2010

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval!

TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval! TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval! Jun Wang! Xiaoguang Xu, Shouguo Ding, Weizhen Hou! University of Nebraska-Lincoln!! Robert Spurr! RT solutions!! Xiong Liu, Kelly Chance!

More information

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project Kenneth J. Voss Physics Department,

More information

Remote Sensing Reflectance Inversion of Phytoplankton Community Size Structure and Ecological Implications

Remote Sensing Reflectance Inversion of Phytoplankton Community Size Structure and Ecological Implications Remote Sensing Reflectance Inversion of Phytoplankton Community Size Structure and Ecological Implications Colleen Mouw RTE and Remote Sensing Course - DMC July 30, 2004 Ecological Importance Many biogeochemical

More information

CLEAR VISION ON TURBID WATER: THE NAIVASHA LAKE

CLEAR VISION ON TURBID WATER: THE NAIVASHA LAKE CLEAR VISION ON TURBID WATER: THE NAIVASHA LAKE M.S. Salama S.SALAMA@UTWNTE.NL June 13-14, 2013 Outlines Study Area The problem Objectives Field data Hydro optical models Empirical: CDOM, Chl-a and KD

More information

The Use of MERIS for Harmful Algal Bloom Monitoring in the Southern Benguela

The Use of MERIS for Harmful Algal Bloom Monitoring in the Southern Benguela The Use of MERIS for Harmful Algal Bloom Monitoring in the Southern Benguela Stewart Bernard 1 Christelle Balt 1 Trevor Probyn 2 Grant Pitcher 2 Alex Fawcett 1 Andre Du Randt 2 1 Oceanography Department,

More information

Lecture 1a Overview of Radiometry

Lecture 1a Overview of Radiometry Lecture 1a Overview of Radiometry Curtis Mobley Vice President for Science Senior Scientist Sequoia Scientific, Inc. Bellevue, Washington 98005 USA curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment. Magnus Wettle and Vittorio Ernesto Brando

SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment. Magnus Wettle and Vittorio Ernesto Brando SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment Magnus Wettle and Vittorio Ernesto Brando CSIRO Land and Water Science Report 22/06 July 2006 Copyright and Disclaimer

More information

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering University of Maryland Baltimore County - UMBC Phys650 - Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class

More information

MODULE 3. FACTORS AFFECTING 3D LASER SCANNING

MODULE 3. FACTORS AFFECTING 3D LASER SCANNING MODULE 3. FACTORS AFFECTING 3D LASER SCANNING Learning Outcomes: This module discusses factors affecting 3D laser scanner performance. Students should be able to explain the impact of various factors on

More information

Ocean color algorithms in optically shallow waters: Limitations and improvements

Ocean color algorithms in optically shallow waters: Limitations and improvements Ocean color algorithms in optically shallow waters: Limitations and improvements Kendall L. Carder *a, Jennifer P. Cannizzaro a, Zhongping Lee b a University of South Florida, 140 7 th Ave. S, St. Petersburg,

More information

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION A Thesis by JULIE MARIE SLANKER Submitted to the Office of Graduate Studies

More information

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 Presented By: Istvan Laszlo NOAA/NESDIS/STAR 1 ASR Team Radiation Budget AT chair: Istvan Laszlo ASR

More information

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS Menghua Wang NOAA/NESDIS/STAR E/RA3, Room 3228, 5830 University Research Ct. College Park, MD 20746, USA Menghua.Wang@noaa.gov Workshop

More information

The water color simulator WASI:an integrating software tool for analysis and simulation of optical in situ spectra $

The water color simulator WASI:an integrating software tool for analysis and simulation of optical in situ spectra $ ARTICLE IN PRESS Computers & Geosciences 30 (2004) 523 532 The water color simulator WASI:an integrating software tool for analysis and simulation of optical in situ spectra $ Peter Gege* DLR, Remote Sensing

More information

SIMEC, An Environment Correction For MERIS Based On The NIR Similarity Spectrum

SIMEC, An Environment Correction For MERIS Based On The NIR Similarity Spectrum SIMEC, An Environment Correction For MERIS Based On The NIR Similarity Spectrum Els Knaeps, Sindy Sterckx, Flemish Institute for Technological Research (VITO), Remote Sensing Unit (TAP), Boeretang 200,

More information

Attenuation of visible solar radiation in the upper water column: A model based on IOPs

Attenuation of visible solar radiation in the upper water column: A model based on IOPs Attenuation of visible solar radiation in the upper water column: A model based on IOPs ZhongPing Lee, KePing Du 2, Robert Arnone, SooChin Liew 3, Bradley Penta Naval Research Laboratory Code 7333 Stennis

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Apparent Optical Properties and the BRDF Delivered at the Darling Marine Center, University of Maine July 2017 Copyright

More information

REMOTE SENSING OF BENTHIC HABITATS IN SOUTHWESTERN PUERTO RICO

REMOTE SENSING OF BENTHIC HABITATS IN SOUTHWESTERN PUERTO RICO REMOTE SENSING OF BENTHIC HABITATS IN SOUTHWESTERN PUERTO RICO Fernando Gilbes Santaella Dep. of Geology Roy Armstrong Dep. of Marine Sciences University of Puerto Rico at Mayagüez fernando.gilbes@upr.edu

More information

Outline Radiometry of Underwater Image Formation

Outline Radiometry of Underwater Image Formation Outline - Introduction - Features and Feature Matching - Geometry of Image Formation - Calibration - Structure from Motion - Dense Stereo - Radiometry of Underwater Image Formation - Conclusion 1 pool

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model

Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model Xu Liu NASA Langley Research Center W. Wu, S. Kizer, H. Li, D. K. Zhou, and A. M. Larar Acknowledgements Yong Han NOAA STAR

More information

A new simple concept for ocean colour remote sensing using parallel polarisation radiance

A new simple concept for ocean colour remote sensing using parallel polarisation radiance Supplement Figures A new simple concept for ocean colour remote sensing using parallel polarisation radiance Xianqiang He 1, 3, Delu Pan 1, 2, Yan Bai 1, 2, Difeng Wang 1, Zengzhou Hao 1 1 State Key Laboratory

More information

EcoLight-S 1.0 Users Guide and Technical Documentation

EcoLight-S 1.0 Users Guide and Technical Documentation EcoLight-S 1.0 Users Guide and Technical Documentation Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 109 Bellevue, WA 98005 curtis.mobley@sequoiasci.com 425-641-0944 x 109 First Printing,

More information

Dispersion Polarization

Dispersion Polarization Dispersion Polarization Phys Phys 2435: 22: Chap. 33, 31, Pg 1 Dispersion New Topic Phys 2435: Chap. 33, Pg 2 The Visible Spectrum Remember that white light contains all the colors of the s p e c t r u

More information

Kohei Arai 1 1Graduate School of Science and Engineering Saga University Saga City, Japan. Kenta Azuma 2 2 Cannon Electronics Inc.

Kohei Arai 1 1Graduate School of Science and Engineering Saga University Saga City, Japan. Kenta Azuma 2 2 Cannon Electronics Inc. Method for Surface Reflectance Estimation with MODIS by Means of Bi-Section between MODIS and Estimated Radiance as well as Atmospheric Correction with Skyradiometer Kohei Arai 1 1Graduate School of Science

More information

Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters

Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS J. Opt. A: Pure Appl. Opt. 6 (2004) 690 697 PII: S1464-4258(04)75616-0 Estimation of surface reflection effects on upwelling

More information

Motivation. Aerosol Retrieval Over Urban Areas with High Resolution Hyperspectral Sensors

Motivation. Aerosol Retrieval Over Urban Areas with High Resolution Hyperspectral Sensors Motivation Aerosol etrieval Over Urban Areas with High esolution Hyperspectral Sensors Barry Gross (CCNY) Oluwatosin Ogunwuyi (Ugrad CCNY) Brian Cairns (NASA-GISS) Istvan Laszlo (NOAA-NESDIS) Aerosols

More information

An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters

An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters A. Albert German Aerospace Center DLR), Remote Sensing Technology Institute, D-82230 Wessling,

More information

Results of Cross-comparisons using multiple sites

Results of Cross-comparisons using multiple sites Results of Cross-comparisons using multiple sites Dave Smith CEOS WGCV IVOS workshop 18-20 Oct 2010 1 Content AATSR Drift Analysis AATSR vs. MERIS comparisons over Deserts Intercomparisons Over Dome-C

More information

Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project

Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project 1. Differences of processing algorithm between SWIR L2 V01.xx and V02.xx

More information

Remote Sensing of Environment

Remote Sensing of Environment Remote Sensing of Environment 114 (2010) 854 866 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Calibration and validation of a generic

More information

Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a

Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a a. Department of Geography, University of Maryland, College Park, USA Hongyi Wu b b. University of Electronic

More information

Improving remotely sensed fused ocean data products through crosssensor

Improving remotely sensed fused ocean data products through crosssensor Improving remotely sensed fused ocean data products through crosssensor calibration Mark David Lewis Ruhul Amin Sonia Gallegos Richard W. Gould, Jr. Sherwin Ladner Adam Lawson Rong-rong Li Improving remotely

More information

The Importance of Refractive Index When using Laser Diffraction

The Importance of Refractive Index When using Laser Diffraction The Importance of Refractive Index When using Laser Diffraction Mark Bumiller mark.bumiller@horiba.com Fraunhofer Approximation Mie Theory RI 1.60 0.0i, in water, RI 1.33 Mie vs. Fraunhofer 1.E+05 1.E+04

More information

Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data

Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data Journal of Oceanography, Vol. 62, pp. 331 to 337, 2006 Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data ROBERT FROUIN 1 *, PIERRE-YVES DESCHAMPS 2, LYDWINE

More information

Improved MODIS Aerosol Retrieval using Modified VIS/MIR Surface Albedo Ratio Over Urban Scenes

Improved MODIS Aerosol Retrieval using Modified VIS/MIR Surface Albedo Ratio Over Urban Scenes Improved MODIS Aerosol Retrieval using Modified VIS/MIR Surface Albedo Ratio Over Urban Scenes Min Min Oo, Matthias Jerg, Yonghua Wu Barry Gross, Fred Moshary, Sam Ahmed Optical Remote Sensing Lab City

More information

SKY DOME CORRECTION FOR SEAPRISM AND TRIOS ABOVE WATER RADIOMETRIC MEASUREMENTS IN MERMAID

SKY DOME CORRECTION FOR SEAPRISM AND TRIOS ABOVE WATER RADIOMETRIC MEASUREMENTS IN MERMAID SKY DOME CORRECTION FOR SEAPRISM AND TRIOS ABOVE WATER RADIOMETRIC MEASUREMENTS IN MERMAID Kathryn Barker (1), Francis Zagolski (2), Richard Santer (3), C. Kent (1), Jean-Paul Huot (4), Giuseppe Zibordi

More information

Projet PNTS SPACTO. SPatial Atmospheric Correction over Turbid Ocean. Julien Brajard

Projet PNTS SPACTO. SPatial Atmospheric Correction over Turbid Ocean. Julien Brajard Projet PNTS SPACTO SPatial Atmospheric Correction over Turbid Ocean Julien Brajard Outline Context Achievements Perpectives Context Signal measured by the radiometer water-leaving reflectance Atmospheric

More information

MERIS land products. Principles & validation. F. Baret, M. Weiss, K. Pavageau, D. Béal, B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P.

MERIS land products. Principles & validation. F. Baret, M. Weiss, K. Pavageau, D. Béal, B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P. MERIS land products LAI, fapar, fcover Principles & validation F. Baret, M. Weiss, K. Pavageau, D. Béal, B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P. Regner MERIS (A)ATSR user workshop - Frascati

More information

Revision History. Applicable Documents

Revision History. Applicable Documents Revision History Version Date Revision History Remarks 1.0 2011.11-1.1 2013.1 Update of the processing algorithm of CAI Level 3 NDVI, which yields the NDVI product Ver. 01.00. The major updates of this

More information