Global and Regional Retrieval of Aerosol from MODIS

Size: px
Start display at page:

Download "Global and Regional Retrieval of Aerosol from MODIS"

Transcription

1 Global and Regional Retrieval of Aerosol from MODIS Why study aerosols? CLIMATE VISIBILITY Presented to UMBC/NESDIS June 4, 24 Robert Levy, Lorraine Remer, Yoram Kaufman, Allen Chu, Russ Dickerson modis-atmos.gsfc.nasa.gov aerocenter.gsfc.nasa.gov QuickTime and a TIFF (LZW) decompressor are needed to see this picture. IPCC,2 AIR QUALITY HUMAN HEALTH EARTH HEALTH Aerosol Measurements IN-SITU (Perturbed) REMOTE (Ambient) Aerosol Types/Properties Satellite: Scattering -> AOD/Size Pump/Filter: Size/Concentration Of interest here Nepholomete/PSAP: Scatt/Absorb->Concentration/Size Sunphotometer: Extinction/Scattering -> AOD/Size Fine Area UV BGR NIR Coarse 2.5µm IR

2 Aerosol Scattering ~ 9% total Extinction Depends on number, size and composition of intervening aerosol Spectral optical properties of aerosol AVHRR DUST Small aerosol DUST α α = πd λ λ Large aerosol SMOKE SMOKE Maximum efficiency when aerosol size wavelength Spectrally dependent Optical depth τ MODIS MODIS The Satellite Signal Target = surface (properties assumed) RGB: April, 9 2 Gas + Aerosol scattering (path radiance) e τ (/ µ s + / µ v ) Direct Transmission (of surface albedo) clear-sky conditions. Adapted from Tanre et al. (979), (98), (983). Terra: Winter 2 Aqua: Summer 22 Scientific Data Atmosphere: Cloud and Aerosol Ocean: Color, Chlorophyll, Temp Land: Vegetation, Change, Fires Aerosol Retrieval Over Land: ( km x km) τ (AOD) at 3 λ Aerosol size/type Over Ocean: ( km x km) τ (AOD) at 7 λ Aerosol size/type e τ (/µ v ) t d (µ s ) Indirect Transmission (adjacency effect) T (µ s )t d (µ v ) + multiple I actions Multiple Reflection T (µ ) = e τ / µ + t d (µ) T = Transmission τ= optical depth µ= cosθ T d = direct trans 2

3 Aerosol is transparent to Mid-IR, thus the surface properties are observed. Surface reflectance in the visible is function of Mid-IR τ.66 [ρ.66.5ρ 2. ] τ.47 [ρ.47 5ρ 2. ] Aerosol type/optical properties are assumed based on season and location Single channel retrievals are performed in red and blue, then dust is added to fit spectral dependence. λ(µm) Aerosol over Land Y. J. Kaufman Modeled and Observed Reflectance from MODIS July 2, 4:5: τ 865 =.48 Reflectance Aerosol Over Ocean - Inversion r_eff =. r_eff =.5 r_eff = r_eff = 5 Salt: r_eff =.98 Salt: r_eff =.48 Salt: r_eff =.98 Dust: r_eff =.48 Dust: r_eff = 2.5 Measured Reflectance Rayleigh Reflectance "S 4: B 6: Ratio= Wavelength Use reflectance in 6 wavelengths to invert τ λ Constrained by 4 fine mode and 5 coarse mode aerosol models. Inversion chooses fine and coarse mode, plus relative concentration Surface optical properties are modeled Dust and Haze in East Asia March 2, 2 AOD Level > Level 3 (daily) Seperating dust and smoke Level 2 x km retrievals (irregular lat/long) 5 minute granules Level 3 (daily) º x º (regular lat/long) 5 minute granules tiled Statistics are produced Mean, Stddev, Pixel Count, Histo Quality Control / Confidence 3

4 Level 3 Daily > Level 3 Monthly Level 3 (monthly) º x º (regular lat/long) Daily values are averaged Statistics are produced Mean, Stddev, Pixel Count, Quality Control / Confidence AOT MODIS AOD Validation Comparison with sunphotometer AERONET AOT at Cart Site for 7/7/2, showing a -hour segment (box) centered on the Terra overpass time.35 AOT_2.3 AOT_87 5 AOT_67 AOT_5.5 AOT_44. AOT_38.5 AOT_34 3:2 4:24 5:36 6:48 8: 9:2 Time of Day (GMT) Comparison with Climate models 5 km lan d km km 5 km ocean AERONET sites AERONET PI s: B. Holben, C. McLain, D. Tanré ocean land both Global MODIS AOD Validation Plume Transport and Spatial Variability MODIS AOT (66 nm) y = x R =.92 points 5 points 25 points 5 points % of retrievals over OCEAN fall within expected uncertainty OCEAN 66 nm N = 252 AERONET AOT (66 nm) ocean MODIS AOT (66 nm) y = x R =.68 3 points 5 points 75 points 32 points LAND 66 nm N = AERONET AOT (66 nm) land 7% of retrievals over LAND fall within expected uncertainty Remer et al., May 4, 2 Sunphotometer AOD.67 2 Interesting Plumes 2-23 King et al., 23 4

5 MODIS (column) vs PM (surface) Monthly mean correlations of.9 in Southeast (Wang & Christopher) Correlation nationally (Engle-Cox et al.) A. CHU MODIS AOT (66 nm) But land retrieval is not perfect y = x R =.68But 3 points 5 points 75 points 32 points land LAND 66 nm N = Positive offset Slope less than one Offset in blue (47 nm) even worse, like.2. Only 6% within error bars over U.S. East Coast AERONET AOT (66 nm) MUST STUDY REGIONALLY! Land retrievals too high for low AOD Customize Surface reflectance ratios: August, 2 Globally Assumed RGB: Aug.47 AOD.6.47/2. ~ 5.3. Current work. Wallops AERONET AOD =.8.66/2. ~ /2. ~.45.66/2. ~.62 Locally Assumed 5

6 Urban/Industrial Model: US East Coast Current Proposed A new aerosol model May improve fits!!! Surface reflectance in the visible is function of Mid-IR, but maybe variable ρ.66 = f(ρ 2. ) ρ.47 = f(ρ 2. ) Aerosol type/optical properties are assumed based on season and location Aerosol is not assumed transparent in Mid-IR. 3 wavelength inversion performed combining red blue, and IR, fitting the spectral dependence. Polarization included Fewer Assumptions! New land algorithm λ(µm) Conclusions Aerosols are perfectly sized to interact with solar radiation. MODIS has high spectral and spatial resolution in solar bands. We exploit aerosol optical spectral dependence to retrieve optical depth and column-averaged size information from MODIS observations. Comparisons with ground-based sunphotometer validate the MODIS products, globally. Regionally, there is correlation with MODIS column aerosol and surface PM measurements MODIS over land can be improved by customizing surface reflectance relationships, updating the assumed aerosol model dataset, and using a new inversion algorithm. 6

SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval

SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval Korean Journal of Remote Sensing, Vol.23, No.1, 2007, pp.1~5 SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval Kwon Ho Lee*, Zhangqing Li*, Young Joon Kim** *Earth System Science Interdisciplinary

More information

Understanding The MODIS Aerosol Products

Understanding The MODIS Aerosol Products Understanding The MODIS Aerosol Products Rich Kleidman Science Systems and Applications Rob Levy Science Systems and Applications Lorraine Remer NASA Goddard Space Flight Center Chistina Chu NASA Goddard

More information

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA Ocean EDR Product Calibration and Validation Plan Progress Report: VIIRS Ocean Color Algorithm Evaluations and Data Processing and Analyses Define a VIIRS Proxy Data Stream Define the required in situ

More information

Aerosol Remote Sensing from PARASOL and the A-Train

Aerosol Remote Sensing from PARASOL and the A-Train Aerosol Remote Sensing from PARASOL and the A-Train J.-F. Léon, D. Tanré, J.-L. Deuzé, M. Herman, P. Goloub, P. Lallart Laboratoire d Optique Atmosphérique, France A. Lifermann Centre National d Etudes

More information

Improved MODIS Aerosol Retrieval using Modified VIS/MIR Surface Albedo Ratio Over Urban Scenes

Improved MODIS Aerosol Retrieval using Modified VIS/MIR Surface Albedo Ratio Over Urban Scenes Improved MODIS Aerosol Retrieval using Modified VIS/MIR Surface Albedo Ratio Over Urban Scenes Min Min Oo, Matthias Jerg, Yonghua Wu Barry Gross, Fred Moshary, Sam Ahmed Optical Remote Sensing Lab City

More information

TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval!

TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval! TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval! Jun Wang! Xiaoguang Xu, Shouguo Ding, Weizhen Hou! University of Nebraska-Lincoln!! Robert Spurr! RT solutions!! Xiong Liu, Kelly Chance!

More information

UV Remote Sensing of Volcanic Ash

UV Remote Sensing of Volcanic Ash UV Remote Sensing of Volcanic Ash Kai Yang University of Maryland College Park WMO Inter-comparison of Satellite-based Volcanic Ash Retrieval Algorithms Workshop June 26 July 2, 2015, Madison, Wisconsin

More information

Algorithm development for aerosol retrieval and its validation based on combined use of polarization and radiance measurements

Algorithm development for aerosol retrieval and its validation based on combined use of polarization and radiance measurements Algorithm development for aerosol retrieval and its validation based on combined use of polarization and radiance measurements I. Sano, and CI team CIs : S. Mukai, M. Nakata, B. Holben, O. Dubovik, A.

More information

Data Mining Support for Aerosol Retrieval and Analysis:

Data Mining Support for Aerosol Retrieval and Analysis: Data Mining Support for Aerosol Retrieval and Analysis: Our Approach and Preliminary Results Zoran Obradovic 1 joint work with Amy Braverman 2, Bo Han 1, Zhanqing Li 3, Yong Li 1, Kang Peng 1, Yilian Qin

More information

NASA e-deep Blue aerosol update: MODIS Collection 6 and VIIRS

NASA e-deep Blue aerosol update: MODIS Collection 6 and VIIRS NASA e-deep Blue aerosol update: MODIS Collection 6 and VIIRS Andrew M. Sayer, N. Christina Hsu (PI), Corey Bettenhausen, Nick Carletta, Jaehwa Lee, Colin Seftor, Jeremy Warner Past team members: Ritesh

More information

Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a

Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a a. Department of Geography, University of Maryland, College Park, USA Hongyi Wu b b. University of Electronic

More information

Aerosol Optical Depth Retrieval from Satellite Data in China. Professor Dr. Yong Xue

Aerosol Optical Depth Retrieval from Satellite Data in China. Professor Dr. Yong Xue Aerosol Optical Depth Retrieval from Satellite Data in China Professor Dr. Yong Xue Research Report Outline Multi-scale quantitative retrieval of Aerosol optical depth (AOD) over land Spatial resolution:

More information

Retrieval of Aerosol and Cloud Properties using the ATSR Dual and Single View algorithms

Retrieval of Aerosol and Cloud Properties using the ATSR Dual and Single View algorithms Retrieval of Aerosol and Cloud Properties using the ATSR Dual and Single View algorithms Gerrit de Leeuw 1,2, Larisa Sogacheva 1, Pekka Kolmonen 1, Giulia Saponaro 1, Timo H. Virtanen 1, Edith Rodriguez

More information

The MODIS Aerosol Algorithm, Products, and Validation

The MODIS Aerosol Algorithm, Products, and Validation APRIL 2005 REMER ET AL. 947 The MODIS Aerosol Algorithm, Products, and Validation L. A. REMER,* Y. J. KAUFMAN,* D. TANRÉ, S. MATTOO,*,& D. A. CHU, #, ** J. V. MARTINS,*, R.-R. LI, #,## C. ICHOKU,*,& R.

More information

High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling Science in China Series D: Earth Sciences 2009 SCIENCE IN CHINA PRESS Springer www.scichina.com earth.scichina.com www.springerlink.com High resolution aerosol optical thickness retrieval over the Pearl

More information

A Generic Approach For Inversion And Validation Of Surface Reflectance and Aerosol Over Land: Application To Landsat 8 And Sentinel 2

A Generic Approach For Inversion And Validation Of Surface Reflectance and Aerosol Over Land: Application To Landsat 8 And Sentinel 2 A Generic Approach For Inversion And Validation Of Surface Reflectance and Aerosol Over Land: Application To Landsat 8 And Sentinel 2 Eric Vermote NASA Goddard Space Flight Center, Code 619, Greenbelt,

More information

Motivation. Aerosol Retrieval Over Urban Areas with High Resolution Hyperspectral Sensors

Motivation. Aerosol Retrieval Over Urban Areas with High Resolution Hyperspectral Sensors Motivation Aerosol etrieval Over Urban Areas with High esolution Hyperspectral Sensors Barry Gross (CCNY) Oluwatosin Ogunwuyi (Ugrad CCNY) Brian Cairns (NASA-GISS) Istvan Laszlo (NOAA-NESDIS) Aerosols

More information

Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land https://doi.org/10.5194/amt-11-1529-2018 Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

More information

Direct radiative forcing of aerosol

Direct radiative forcing of aerosol Direct radiative forcing of aerosol 1) Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2) Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter) 3) Challenges for remote sensing retrieval:

More information

Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies

Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies L. Guanter 1, J. A. Domínguez 2, L. Conde 2, A. Ruiz-Verdú 2, V. Estellés 3, R.

More information

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering University of Maryland Baltimore County - UMBC Phys650 - Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class

More information

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007 OMAERO README File B. Veihelmann, J.P. Veefkind, KNMI Last update: November 23, 2007 Overview The OMAERO Level 2 data product contains aerosol characteristics such as aerosol optical thickness (AOT), aerosol

More information

ALGORITHM FOR REMOTE SENSING OF TROPOSPHERIC AEROSOL FROM MODIS: Collection 005

ALGORITHM FOR REMOTE SENSING OF TROPOSPHERIC AEROSOL FROM MODIS: Collection 005 ALGORITHM FOR REMOTE SENSING OF TROPOSPHERIC AEROSOL FROM MODIS: Collection 005 Product ID: MOD04/MYD04 Lorraine A. Remer 1, Didier Tanré! 2 and Yoram J. Kaufman 1 Additional Points of contact: R. Levy

More information

Preprocessed Input Data. Description MODIS

Preprocessed Input Data. Description MODIS Preprocessed Input Data Description MODIS The Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured

More information

Retrievals of Profiles of Fine and Coarse Aerosols Using Lidar and Radiometric Space Measurements

Retrievals of Profiles of Fine and Coarse Aerosols Using Lidar and Radiometric Space Measurements IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 8, AUGUST 2003 1743 Retrievals of Profiles of Fine and Coarse Aerosols Using Lidar and Radiometric Space Measurements Yoram J. Kaufman,

More information

Improved Global Ocean Color using POLYMER Algorithm

Improved Global Ocean Color using POLYMER Algorithm Improved Global Ocean Color using POLYMER Algorithm François Steinmetz 1 Didier Ramon 1 Pierre-Yves Deschamps 1 Jacques Stum 2 1 Hygeos 2 CLS June 29, 2010 ESA Living Planet Symposium, Bergen, Norway c

More information

GRASP Algorithm: Retrieval of the detailed properties of atmospheric aerosol from PARASOL and other sensors

GRASP Algorithm: Retrieval of the detailed properties of atmospheric aerosol from PARASOL and other sensors GRASP Algorithm: Retrieval of the detailed properties of atmospheric aerosol from PARASOL and other sensors Oleg Dubovik (University of Lille-1, CNRS, France) GRASP team: P. Litvinov 1,T. Lapyonok 1, F.

More information

Lab on MODIS Cloud spectral properties, Cloud Mask, NDVI and Fire Detection

Lab on MODIS Cloud spectral properties, Cloud Mask, NDVI and Fire Detection MODIS and AIRS Workshop 5 April 2006 Pretoria, South Africa 5/2/2006 10:54 AM LAB 2 Lab on MODIS Cloud spectral properties, Cloud Mask, NDVI and Fire Detection This Lab was prepared to provide practical

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Gerhard Meister, Gene Eplee, Bryan Franz, Sean Bailey, Chuck McClain NASA Code 614.2 Ocean Biology Processing Group October 21st, 2010

More information

Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm

Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jd014986, 2011 Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm A. Lyapustin, 1,2 Y. Wang, 1,2 I. Laszlo, 3

More information

Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data IOP Conference Series: Earth and Environmental Science OPEN ACCESS Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data To cite this article: A M Wahab and M L R Sarker

More information

CALIPSO Version 3 Data Products: Additions and Improvements

CALIPSO Version 3 Data Products: Additions and Improvements CALIPSO Version 3 Data Products: Additions and Improvements Dave Winker and the CALIPSO team CALIPSO/CloudSat Science Team Meeting 28-31 July, Madison, WI 1 Version 3 Status Version 3 algorithms now used

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 Presented By: Istvan Laszlo NOAA/NESDIS/STAR 1 ASR Team Radiation Budget AT chair: Istvan Laszlo ASR

More information

Digital Earth Routine on Tegra K1

Digital Earth Routine on Tegra K1 Digital Earth Routine on Tegra K1 Aerosol Optical Depth Retrieval Performance Comparison and Energy Efficiency Energy matters! Ecological A topic that affects us all Economical Reasons Practical Curiosity

More information

Creating a global aerosol data time series from two MODISs, Suomi-NPP VIIRS and beyond: Applying the MODIS Dark Target algorithm

Creating a global aerosol data time series from two MODISs, Suomi-NPP VIIRS and beyond: Applying the MODIS Dark Target algorithm Creating a global aerosol data time series from two MODISs, Suomi-NPP VIIRS and beyond: Applying the MODIS Dark Target algorithm Robert C. Levy (NASA-GSFC) robert.c.levy@nasa.gov And the Dark-target aerosol

More information

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) September 2018

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) September 2018 JAXA Himawari Monitor Aerosol Products JAXA Earth Observation Research Center (EORC) September 2018 1 2 JAXA Himawari Monitor JAXA has been developing Himawari-8 products using the retrieval algorithms

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2)

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) Update of post launch vicarious, lunar calibrations & current status Presented by Prakash Chauhan Space Applications Centre Indian Space Research Organistaion Ahmedabad-

More information

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS Menghua Wang NOAA/NESDIS/STAR E/RA3, Room 3228, 5830 University Research Ct. College Park, MD 20746, USA Menghua.Wang@noaa.gov Workshop

More information

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Yves Govaerts and Marta Luffarelli Rayference Radiometric Calibration Workshop for European Missions ESRIN, 30-31

More information

DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM

DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM Wataru Takeuchi Yoshifumi Yasuoka Institute of Industrial Science, University of Tokyo, Japan 6-1, Komaba 4-chome, Meguro, Tokyo,

More information

Retrieval of Aerosol Optical Thickness using MODIS 500 x 500m 2, a study in Hong Kong and Pearl River Delta region

Retrieval of Aerosol Optical Thickness using MODIS 500 x 500m 2, a study in Hong Kong and Pearl River Delta region Retrieval of Aerosol Optical Thickness using MODIS 500 x 500m 2, a study in Hong Kong and Pearl River Delta region Man Sing WONG 1, Janet NICHOL 3 Department of Land Surveying & Geo-informatics The Hong

More information

SENTINEL-2 SEN2COR: L2A PROCESSOR FOR USERS

SENTINEL-2 SEN2COR: L2A PROCESSOR FOR USERS SENTINEL-2 SEN2COR: L2A PROCESSOR FOR USERS Jérôme Louis (1), Vincent Debaecker (1), Bringfried Pflug (2), Magdalena Main-Knorn (2), Jakub Bieniarz (2), Uwe Mueller-Wilm (3), Enrico Cadau (4), Ferran Gascon

More information

KORUS-AQ campaign results as a validation. Presenter: Ara Cho (NIER) NIER, NASA, GEMS Algorithm science team, KARI

KORUS-AQ campaign results as a validation. Presenter: Ara Cho (NIER) NIER, NASA, GEMS Algorithm science team, KARI KORUS-AQ campaign results as a validation Presenter: Ara Cho (NIER) NIER, NASA, GEMS Algorithm science team, KARI CONTENTS Introduction Surface Remote Sensing observation Evaluation of GEMS with KORUS-AQ

More information

Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model

Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model Xu Liu NASA Langley Research Center W. Wu, S. Kizer, H. Li, D. K. Zhou, and A. M. Larar Acknowledgements Yong Han NOAA STAR

More information

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE)

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) Malvina Silvestri Istituto Nazionale di Geofisica e Vulcanologia In the frame of the Italian Space Agency (ASI)

More information

Challenges with atmospheric corrections over Land

Challenges with atmospheric corrections over Land Challenges with atmospheric corrections over Land Eric Vermote NASA GSFC Code 619 Eric.f.vermote@nasa.gov. A Land Climate Data Record Multi instrument/multi sensor Science Quality Data Records used to

More information

Results of Cross-comparisons using multiple sites

Results of Cross-comparisons using multiple sites Results of Cross-comparisons using multiple sites Dave Smith CEOS WGCV IVOS workshop 18-20 Oct 2010 1 Content AATSR Drift Analysis AATSR vs. MERIS comparisons over Deserts Intercomparisons Over Dome-C

More information

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) August 2018

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) August 2018 JAXA Himawari Monitor Aerosol Products JAXA Earth Observation Research Center (EORC) August 2018 1 JAXA Himawari Monitor JAXA has been developing Himawari 8 products using the retrieval algorithms based

More information

Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km MOD15A2

Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km MOD15A2 Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km MOD15A2 The level-4 MODIS global Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) product

More information

2-band Enhanced Vegetation Index without a blue band and its application to AVHRR data

2-band Enhanced Vegetation Index without a blue band and its application to AVHRR data 2-band Enhanced Vegetation Index without a blue band and its application to AVHRR data Zhangyan Jiang*, Alfredo R. Huete, Youngwook Kim, Kamel Didan Department of Soil, Water, and Environmental Science,

More information

CHRIS Proba Workshop 2005 II

CHRIS Proba Workshop 2005 II CHRIS Proba Workshop 25 Analyses of hyperspectral and directional data for agricultural monitoring using the canopy reflectance model SLC Progress in the Upper Rhine Valley and Baasdorf test-sites Dr.

More information

SEOM s Sentinel-3/OLCI project CAWA: advanced GRASP aerosol retrieval

SEOM s Sentinel-3/OLCI project CAWA: advanced GRASP aerosol retrieval SEOM s Sentinel-3/OLC project CAWA: advanced GRASP aerosol retrieval Oleg Dubovik1, Pavel Litvinov1, Xin Huang1, Michael Aspetsberger2, David Fuertes3, Carsten Brockmann4, And Jürgen Fischer5. 1- University

More information

A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor

A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor Hao Zhang 1, Haiwei Li 1, Benyong Yang 2, Zhengchao Chen 1 1. Institute of Remote Sensing and Digital Earth (RADI), Chinese

More information

Estimating land surface albedo from polar orbiting and geostationary satellites

Estimating land surface albedo from polar orbiting and geostationary satellites Estimating land surface albedo from polar orbiting and geostationary satellites Dongdong Wang Shunlin Liang Tao He Yuan Zhou Department of Geographical Sciences University of Maryland, College Park Nov

More information

Using MODTRAN for Atmospheric Parameter Retrieval under the ASCOPE Architecture

Using MODTRAN for Atmospheric Parameter Retrieval under the ASCOPE Architecture Using MODTRAN for Atmospheric Parameter Retrieval under the ASCOPE Architecture 13 June 2007 Gordon Scriven 1, Nahum Gat 1, James Burke 2 1 Opto-Knowledge Systems Inc. (OKSI) 19805 Hamilton Ave Torrance,

More information

Operational use of the Orfeo Tool Box for the Venµs Mission

Operational use of the Orfeo Tool Box for the Venµs Mission Operational use of the Orfeo Tool Box for the Venµs Mission Thomas Feuvrier http://uk.c-s.fr/ Free and Open Source Software for Geospatial Conference, FOSS4G 2010, Barcelona Outline Introduction of the

More information

Multi-sensors vicarious calibration activities at CNES

Multi-sensors vicarious calibration activities at CNES Multi-sensors vicarious calibration activities at CNES Patrice Henry, Bertrand Fougnie June 11, 2013 CNES background in image quality monitoring of operational Earth observation systems Since the launch

More information

Kohei Arai 1 1Graduate School of Science and Engineering Saga University Saga City, Japan. Kenta Azuma 2 2 Cannon Electronics Inc.

Kohei Arai 1 1Graduate School of Science and Engineering Saga University Saga City, Japan. Kenta Azuma 2 2 Cannon Electronics Inc. Method for Surface Reflectance Estimation with MODIS by Means of Bi-Section between MODIS and Estimated Radiance as well as Atmospheric Correction with Skyradiometer Kohei Arai 1 1Graduate School of Science

More information

Land surface VIS/NIR BRDF module for RTTOV-11: Model and Validation against SEVIRI Land SAF Albedo product

Land surface VIS/NIR BRDF module for RTTOV-11: Model and Validation against SEVIRI Land SAF Albedo product Land surface VIS/NIR BRDF module for -: Model and Validation against SEVIRI Albedo product Jérôme Vidot and Eva Borbas Centre de Météorologie Spatiale, DP/Météo-France, Lannion, France SSEC/CIMSS, Madison,

More information

Predicting Atmospheric Parameters using Canonical Correlation Analysis

Predicting Atmospheric Parameters using Canonical Correlation Analysis Predicting Atmospheric Parameters using Canonical Correlation Analysis Emmett J Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F Carlson Center for Imaging Science Rochester Institute

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement Techniques Discussions

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., 5, C741 C750, 2012 www.atmos-meas-tech-discuss.net/5/c741/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

VIIRS Radiance Cluster Analysis under CrIS Field of Views

VIIRS Radiance Cluster Analysis under CrIS Field of Views VIIRS Radiance Cluster Analysis under CrIS Field of Views Likun Wang, Yong Chen, Denis Tremblay, Yong Han ESSIC/Univ. of Maryland, College Park, MD; wlikun@umd.edu Acknowledgment CrIS SDR Team 2016 CICS

More information

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle Sensor Calibration - Application Station Identifier ASN Scene Center atitude 34.840 (34 3'0.64"N) Day Night DAY Scene Center ongitude 33.03270 (33 0'7.72"E) WRS Path WRS Row 76 036 Corner Upper eft atitude

More information

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al.

Interactive comment on Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals by S. Noël et al. Atmos. Meas. Tech. Discuss., 5, C751 C762, 2012 www.atmos-meas-tech-discuss.net/5/c751/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

Algorithm Theoretical Basis Document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS.

Algorithm Theoretical Basis Document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS. Algorithm Theoretical Basis Document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS David Doelling 1, Rajendra Bhatt 2, Dan Morstad 2, Benjamin Scarino 2 1 NASA-

More information

Dennis L. Hlavka* and Stephen P. Palm Science Systems and Applications, Inc NASA/Goddard Space Flight Center, Greenbelt, Maryland

Dennis L. Hlavka* and Stephen P. Palm Science Systems and Applications, Inc NASA/Goddard Space Flight Center, Greenbelt, Maryland P1.13 COLUMN OPTICAL DEPTH RETRIEVAL USING SURFACE REFLECTIVITY FROM GLAS Dennis L. Hlavka* and Stephen P. Palm Science Systems and Applications, Inc NASA/Goddard Space Flight Center, Greenbelt, Maryland

More information

MTG-FCI: ATBD for Clear Sky Reflectance Map Product

MTG-FCI: ATBD for Clear Sky Reflectance Map Product MTG-FCI: ATBD for Clear Sky Reflectance Map Product Doc.No. Issue : : v2 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 January 2013 http://www.eumetsat.int

More information

Seawater reflectance in the near-ir

Seawater reflectance in the near-ir Seawater reflectance in the near-ir Maéva DORON David DOXARAN Simon BELANGER Marcel BABIN Laboratoire d'océanographie de Villefranche Seawater Reflectance in the Near-IR Doron, Doxaran, Bélanger & Babin

More information

Calculation steps 1) Locate the exercise data in your PC C:\...\Data

Calculation steps 1) Locate the exercise data in your PC C:\...\Data Calculation steps 1) Locate the exercise data in your PC (freely available from the U.S. Geological Survey: http://earthexplorer.usgs.gov/). C:\...\Data The data consists of two folders, one for Athens

More information

Remote Sensing Introduction to the course

Remote Sensing Introduction to the course Remote Sensing Introduction to the course Remote Sensing (Prof. L. Biagi) Exploitation of remotely assessed data for information retrieval Data: Digital images of the Earth, obtained by sensors recording

More information

Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval

Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval Jose Moreno 3 September 2007, Lecture D1Lb2 OPTICAL THEORY-FUNDAMENTALS (2) Radiation laws: definitions and nomenclature Sources

More information

Prof. Vidya Manian Dept. of Electrical l and Comptuer Engineering. INEL6007(Spring 2010) ECE, UPRM

Prof. Vidya Manian Dept. of Electrical l and Comptuer Engineering. INEL6007(Spring 2010) ECE, UPRM Inel 6007 Introduction to Remote Sensing Chapter 5 Spectral Transforms Prof. Vidya Manian Dept. of Electrical l and Comptuer Engineering Chapter 5-1 MSI Representation Image Space: Spatial information

More information

ICOL Improve Contrast between Ocean & Land

ICOL Improve Contrast between Ocean & Land - MEIS Level-1C eport D6 Issue: 1 ev.: 1 Page: 1 Project Title: Document Title: ICOL The MEIS Level-1C Version: 1.1 Author(s): Affiliation(s):. Santer, F. Zagolski ULCO, Université du Littoral Côte d Opale,

More information

Polar Multi-Sensor Aerosol Product: ATBD

Polar Multi-Sensor Aerosol Product: ATBD Polar Multi-Sensor Aerosol Product: ATBD Doc.No. : EUM/TSS/SPE/14/739904 Issue : v3b e-signed Date : 30 November 2015 WBS : EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax:

More information

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Robert Frouin Scripps Institution of Oceanography, la Jolla, California OCR-VC Workshop, 21 October 2010, Ispra, Italy The SIMBADA Project

More information

Deriving Albedo from Coupled MERIS and MODIS Surface Products

Deriving Albedo from Coupled MERIS and MODIS Surface Products Deriving Albedo from Coupled MERIS and MODIS Surface Products Feng Gao 1, Crystal Schaaf 1, Yufang Jin 2, Wolfgang Lucht 3, Alan Strahler 1 (1) Department of Geography and Center for Remote Sensing, Boston

More information

MTG-FCI: ATBD for Outgoing Longwave Radiation Product

MTG-FCI: ATBD for Outgoing Longwave Radiation Product MTG-FCI: ATBD for Outgoing Longwave Radiation Product Doc.No. Issue : : EUM/MTG/DOC/10/0527 v2 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14

More information

Revision History. Applicable Documents

Revision History. Applicable Documents Revision History Version Date Revision History Remarks 1.0 2011.11-1.1 2013.1 Update of the processing algorithm of CAI Level 3 NDVI, which yields the NDVI product Ver. 01.00. The major updates of this

More information

Improving remotely sensed fused ocean data products through crosssensor

Improving remotely sensed fused ocean data products through crosssensor Improving remotely sensed fused ocean data products through crosssensor calibration Mark David Lewis Ruhul Amin Sonia Gallegos Richard W. Gould, Jr. Sherwin Ladner Adam Lawson Rong-rong Li Improving remotely

More information

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart MERIS US Workshop Vicarious Calibration Methods and Results Steven Delwart Presentation Overview Recent results 1. CNES methods Deserts, Sun Glint, Rayleigh Scattering 2. Inter-sensor Uyuni 3. MOBY-AAOT

More information

[Sakthivel *, 5(11): November 2018] ISSN DOI /zenodo Impact Factor

[Sakthivel *, 5(11): November 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES ATMOSPHERIC CORRECTION OF VISIBLE CHANNEL OF SATELLITE IMAGE FROM INSAT-3D IMAGER USING SECOND SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM

More information

Polar Multi-Sensor Aerosol Product: User Guide

Polar Multi-Sensor Aerosol Product: User Guide Polar Multi-Sensor Aerosol Product: User Guide Doc.No. : EUM/TSS/MAN/14/742654 Issue : V2 e-signed Date : 8 January 2016 WBS : EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7

More information

Fourier analysis of low-resolution satellite images of cloud

Fourier analysis of low-resolution satellite images of cloud New Zealand Journal of Geology and Geophysics, 1991, Vol. 34: 549-553 0028-8306/91/3404-0549 $2.50/0 Crown copyright 1991 549 Note Fourier analysis of low-resolution satellite images of cloud S. G. BRADLEY

More information

TOTAL SUSPENDED MATTER MAPS FROM CHRIS IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM)

TOTAL SUSPENDED MATTER MAPS FROM CHRIS IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM) TOTAL SUSPENDED MATTER MAPS FROM IMAGERY OF A SMALL INLAND WATER BODY IN OOSTENDE (BELGIUM) Barbara Van Mol (1) and Kevin Ruddick (1) (1) Management Unit of the North Sea Mathematical Models (MUMM), Royal

More information

Name Company Function Signature Date

Name Company Function Signature Date Page : i of 1 Title: MERMAID data format Doc. no: QWG-MER-MERMAID-DF-02 Issue: 2 Revision: 3 Date: 22/03/2012 Name Company Function Signature Date Prepared by: C. Mazeran ACRI-ST W.P. Manager 22/03/2012

More information

Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data

Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data Verification of non-linear mixed pixel model with real remote sensing satellite images

More information

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT M. Schroeder, R. Müller, P. Reinartz German Aerospace Center, DLR Institute of Optoelectronics, Optical Remote

More information

ATMOSPHERIC CORRECTION ITERATIVE METHOD FOR HIGH RESOLUTION AEROSPACE IMAGING SPECTROMETERS

ATMOSPHERIC CORRECTION ITERATIVE METHOD FOR HIGH RESOLUTION AEROSPACE IMAGING SPECTROMETERS ATMOSPHERIC CORRECTION ITERATIVE METHOD FOR HIGH RESOLUTION AEROSPACE IMAGING SPECTROMETERS Alessandro Barducci, Donatella Guzzi, Paolo Marcoionni, Ivan Pippi * CNR IFAC Via Madonna del Piano 10, 50019

More information

HICO User Annual Report. Using HICO data for the preparation of the future EnMAP satellite mission

HICO User Annual Report. Using HICO data for the preparation of the future EnMAP satellite mission August 31, 2012 HICO User Annual Report Using HICO data for the preparation of the future EnMAP satellite mission Nicole Pinnel 1, Rolf Richter 1, Slava Kiselev 2, Martin Bachmann 1 1 DLR, Earth Observation

More information

Remote Sensing of Snow

Remote Sensing of Snow Remote Sensing of Snow Remote Sensing Basics A definition: The inference of an area s or object s physical characteristics by distant detection of the range of electromagnetic radiation it reflects and/or

More information

Design based validation of the MODIS Global Burned Area Product

Design based validation of the MODIS Global Burned Area Product Design based validation of the MODIS Global Burned Area Product Luigi Boschetti1, David Roy2, Chris Justice3, Steve Stehman4 1 University of Idaho, Department of Forest, Rangeland and Fire Sciences 2 South

More information

Accuracy assessments of aerosol optical properties retrieved from. AERONET Sun and sky-radiance measurements.

Accuracy assessments of aerosol optical properties retrieved from. AERONET Sun and sky-radiance measurements. Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance measurements. O. Dubovik (1,2), A. Smirnov (1,2), B. N. Holben (1), M. D. King (3), Y. J. Kaufman (4), T.

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Introduction to Remote Sensing Curtis Mobley Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017

More information

Aeolus L2A optical properties products and assimilation in air quality models

Aeolus L2A optical properties products and assimilation in air quality models Aeolus L2A optical properties products and assimilation in air quality models Thomas Flament, Angela Benedetti, P. Martinet, E. Martins, L. El Amraoui, A. Dabas, P. Flamant Toulouse, 28 March 2017 Aladin,

More information

PART I: Collecting data from National Earth Observations

PART I: Collecting data from National Earth Observations Investigation: Air Pollution In this investigation, you are going to explore air pollution around the world for an entire calendar year. We will be using three tools, the National Earth Observations (NEO)

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information