The (extended) coset leader and list weight enumerator

Size: px
Start display at page:

Download "The (extended) coset leader and list weight enumerator"

Transcription

1 The (extended) coset leader and list weight enumerator Relinde Jurrius (joint work with Ruud Pellikaan) Vrije Universiteit Brussel Fq11 July 24, 2013 Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

2 Extension codes Weight The number of nonzero coordinates of a vector. Linear [n, k] code Linear subspace C GF(q) n of dimension k. Elements are called (code)words, n is called the length. Generator matrix The rows of this k n matrix form a basis for C. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

3 Extension codes Weight The number of nonzero coordinates of a vector. Linear [n, k] code Linear subspace C GF(q) n of dimension k. Elements are called (code)words, n is called the length. Generator matrix The rows of this k n matrix form a basis for C. Extension code [n, k] code C GF(q m ) over some extension field GF(q m ) generated by the words of C. Generator matrix All the extension codes of C have the same generator matrix G. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

4 Coset leader weight enumerator Coset Translation of the code by a vector y GF(q) n. Weight The minimum weight of all vectors in the coset. Coset leader A vector of minimum weight in the coset. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

5 Coset leader weight enumerator Coset Translation of the code by a vector y GF(q) n. Weight The minimum weight of all vectors in the coset. Coset leader A vector of minimum weight in the coset. Extended coset leader weight enumerator The homogeneous polynomial counting the number of cosets of a given weight for all extension codes, notation: α C (X, Y, T ) = n α i (T )X n i Y i. i=0 Note that we have α C (X, Y, q m ) = α C GF(q m )(X, Y ). Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

6 List weight enumerator Extended list weight enumerator The homogeneous polynomial counting the number of coset leaders of a given weight for all extension codes, notation: λ C (X, Y, T ) = n λ i (T )X n i Y i. i=0 Note that we have λ C (X, Y, q m ) = λ C GF(q m )(X, Y ). Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

7 List weight enumerator Extended list weight enumerator The homogeneous polynomial counting the number of coset leaders of a given weight for all extension codes, notation: λ C (X, Y, T ) = n λ i (T )X n i Y i. i=0 Note that we have λ C (X, Y, q m ) = λ C GF(q m )(X, Y ). In general, we have α i (T ) λ i (T ), with equality iff all cosets of weight i have a unique coset leader. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

8 Why do we study this? The extended coset leader weight enumerator is interesting because: Determines the probability of correct decoding in coset leader decoding. Determines the average of changed symbols in steganography (information hiding). Not determined by the extended weight enumerator. The extended list weight enumerator is interesting because: Determines the size of lists in list decoding. Determines the probability of correct decoding in list decoding.... and of course because they are invariants of linear codes. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

9 Hyperplane arrangements and projective systems Arrangement of hyperplanes n-tuple of hyperplanes in GF(q) k. Essential arrangement Intersection of all hyperplanes is {0}, hyperplanes are in PG(k 1, q). Projective system n-tuple of points in PG(k 1, q). Projective systems are the geometric duals of hyperplane arrangements. Both induce the same geometric lattice. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

10 Hyperplane arrangements and projective systems Arrangement of hyperplanes n-tuple of hyperplanes in GF(q) k. Essential arrangement Intersection of all hyperplanes is {0}, hyperplanes are in PG(k 1, q). Projective system n-tuple of points in PG(k 1, q). Projective systems are the geometric duals of hyperplane arrangements. Both induce the same geometric lattice. Columns of a generator matrix G of a linear [n, k] code form a hyperplane arrangement / projective system. One-to-one correspondence between equivalence classes. Independent of choice of G, so notation: A C or P C. Also valid over an extension field GF(q m ). Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

11 Determination of coset weights Parity check matrix (n k) n matrix H such that GH T = 0. Syndrome of y The vector s = Hy T, zero for codewords. Syndrome weight Minimal number of columns whose span contains s. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

12 Determination of coset weights Parity check matrix (n k) n matrix H such that GH T = 0. Syndrome of y The vector s = Hy T, zero for codewords. Syndrome weight Minimal number of columns whose span contains s. Isomorphism between cosets and syndromes, because H(y + c) T = Hy T + Hc T = Hy T. Syndrome weight is equal to corresponding coset weight (weight of coset leader). α i is the number of vectors that are in the span of i columns of H but not in the span of i 1 columns of H. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

13 Determination of coset weights Example The extended coset leader weights are given by The code itself. α 0 (T ) = 1 The [7, 4] binary Hamming code has parity check matrix H = This is a projective system of seven points in the projective plane. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

14 Determination of coset weights Example The extended coset leader weights are given by Seven projective points. The [7, 4] binary Hamming code has parity check matrix H = This is a projective system of seven points in the projective plane. α 1 (T ) = 7(T 1) Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

15 Determination of coset weights Example The extended coset leader weights are given by The [7, 4] binary Hamming code has parity check matrix H = This is a projective system of seven points in the projective plane. α 2 (T ) = 7(T 1)(T 2) (T + 1) 3 extra points on 7 projective lines. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

16 Determination of coset weights Example The extended coset leader weights are given by The [7, 4] binary Hamming code has parity check matrix H = This is a projective system of seven points in the projective plane. α 3 (T ) = (T 1)(T 2)(T 4) α 0 (T ) + α 1 (T ) + α 2 (T ) + α 3 (T ) = T 3 total number of cosets. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

17 Determination of coset weights This kind of inclusion/exclusion counting is formalized by the geometric lattice associated to a projective system and its Möbius function. Example (continued) The geometric lattice associated to the [7, 4] binary Hamming code is visualized by abcdefg abc adg aef beg bdf cde cfg a b c d e f g Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

18 Determination of coset weights Example 1 coset with 3 cosets with 3 coset leaders 2 leaders each Projective systems with equal geometric lattices may have different coset leader weight enumerators! Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

19 Derived code Start with [n, k] code. Consider the projective system P C. Look at all hyperplanes spanned by k 1 points of P C. (Ignore k 1 points that span spaces of lower dimension.) Remove (multiple) copies of hyperplanes. These hyperplanes form an arrangement A. The derived code D(C) is the code such that A = A D(C). Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

20 Derived code Example d a f 2 c g b e abcd ab ac ad bc bd cd a b c d Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

21 Derived code Example d a f 2 c g b e V Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

22 Extended coset leader weight enumerator The lattice of P C, upside-down, is contained in the lattice of A D(C). This gives an injection ψ : L(P C ) L(A D(C) ). All elements that are not in the image ψ(l(p C )) should be counted similar to the largest element below it that is in ψ(l(p C )). Therefore, define r (x) = max{r(y) : y ψ(l(p C )), y x}. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

23 Extended coset leader weight enumerator The lattice of P C, upside-down, is contained in the lattice of A D(C). This gives an injection ψ : L(P C ) L(A D(C) ). All elements that are not in the image ψ(l(p C )) should be counted similar to the largest element below it that is in ψ(l(p C )). Therefore, define r (x) = max{r(y) : y ψ(l(p C )), y x}. Theorem The extended coset leader weight enumerator is equal to α C (X, Y, T ) = µ(x, y)t n k r(y) X k+r (x) Y n k r (x). x,y L(A D(C) ) Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

24 Summary The extended coset leader weight enumerator is an important invariant of linear codes. Determining coset weights is equivalent to counting points in spans of points. Counting points can be formalized by using the geometric lattice of the derived code. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

25 Further questions Does the extended coset leader weight enumerator determine the extended weight enumerator? Can we define a derived lattice? Taking D(D(D( (C) ))) eventually gives all hyperplanes in PG(k 1, q). How fast? Dependencies between dependencies are known as second order syzygies in computational geometry. Can this interpretation help? Can we determine α C (X, Y, T ) for concrete classes of codes? (For example: generalized Reed-Solomon codes) Can we classify codes using their coset leader weight enumerator?... Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

26 Thank you for your attention. Relinde Jurrius (VUB) Coset leader weight enumerator Fq11 July 24, / 16

Extended and generalized weight enumerators

Extended and generalized weight enumerators Extended and generalized weight enumerators Relinde Jurrius Ruud Pellikaan Eindhoven University of Technology, The Netherlands International Workshop on Coding and Cryptography, 2009 1/23 Outline Previous

More information

ABSTRACT ALGEBRA FINAL PROJECT: GROUP CODES AND COSET DECODING

ABSTRACT ALGEBRA FINAL PROJECT: GROUP CODES AND COSET DECODING ABSTRACT ALGEBRA FINAL PROJECT: GROUP CODES AND COSET DECODING 1. Preface: Stumbling Blocks and the Learning Process Initially, this topic was a bit intimidating to me. It seemed highly technical at first,

More information

Homework #5 Solutions Due: July 17, 2012 G = G = Find a standard form generator matrix for a code equivalent to C.

Homework #5 Solutions Due: July 17, 2012 G = G = Find a standard form generator matrix for a code equivalent to C. Homework #5 Solutions Due: July 7, Do the following exercises from Lax: Page 4: 4 Page 34: 35, 36 Page 43: 44, 45, 46 4 Let C be the (5, 3) binary code with generator matrix G = Find a standard form generator

More information

Linear Block Codes. Allen B. MacKenzie Notes for February 4, 9, & 11, Some Definitions

Linear Block Codes. Allen B. MacKenzie Notes for February 4, 9, & 11, Some Definitions Linear Block Codes Allen B. MacKenzie Notes for February 4, 9, & 11, 2015 This handout covers our in-class study of Chapter 3 of your textbook. We ll introduce some notation and then discuss the generator

More information

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class.

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. Resolvable BIBDs Definition Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. A partition of B into parallel classes (there must be r of them) is

More information

Discrete Mathematics. Chapter 7. trees Sanguk Noh

Discrete Mathematics. Chapter 7. trees Sanguk Noh Discrete Mathematics Chapter 7. trees Sanguk Noh Table Trees Labeled Trees Tree searching Undirected trees Minimal Spanning Trees Trees Theorem : Let (T, v ) be a rooted tree. Then, There are no cycles

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces.

Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces. Quiz Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces.) What are the two subspaces associated with a matrix? Describe

More information

LINEAR CODES WITH NON-UNIFORM ERROR CORRECTION CAPABILITY

LINEAR CODES WITH NON-UNIFORM ERROR CORRECTION CAPABILITY LINEAR CODES WITH NON-UNIFORM ERROR CORRECTION CAPABILITY By Margaret Ann Bernard The University of the West Indies and Bhu Dev Sharma Xavier University of Louisiana, New Orleans ABSTRACT This paper introduces

More information

Robot Vision: Projective Geometry

Robot Vision: Projective Geometry Robot Vision: Projective Geometry Ass.Prof. Friedrich Fraundorfer SS 2018 1 Learning goals Understand homogeneous coordinates Understand points, line, plane parameters and interpret them geometrically

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Introduction to Delta-Matroids

Introduction to Delta-Matroids Introduction to Delta-Matroids Carolyn Chun, Iain Moffatt, Steve Noble, Ralf Rueckriemen Brunel University 23/7/2014 Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/2014 1 / 20 Ribbon

More information

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry Synthetic Geometry 1.1 Foundations 1.2 The axioms of projective geometry Foundations Def: A geometry is a pair G = (Ω, I), where Ω is a set and I a relation on Ω that is symmetric and reflexive, i.e. 1.

More information

Module 1 Topic C Lesson 14 Reflections

Module 1 Topic C Lesson 14 Reflections Geometry Module 1 Topic C Lesson 14 Reflections The purpose of lesson 14 is for students to identify the properties of reflection, to use constructions to find line of reflection, get familiar with notations

More information

ON THE CONSTRUCTION OF ORTHOGONAL ARRAYS

ON THE CONSTRUCTION OF ORTHOGONAL ARRAYS Hacettepe Journal of Mathematics and Statistics Volume 31 (2002), 45 51 ON THE CONSTRUCTION OF ORTHOGONAL ARRAYS Hülya Bayrak and Aslıhan Alhan Received 04. 10. 2001 Abstract In this study, the geometric

More information

MT365 Examination 2017 Part 1 Solutions Part 1

MT365 Examination 2017 Part 1 Solutions Part 1 MT xamination 0 Part Solutions Part Q. G (a) Number of vertices in G =. Number of edges in G = (i) The graph G is simple no loops or multiple edges (ii) The graph G is not regular it has vertices of deg.,

More information

CS321: Computer Networks Error Detection and Correction

CS321: Computer Networks Error Detection and Correction CS321: Computer Networks Error Detection and Correction Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Error Detection and Correction Objective: System must

More information

Error Correcting Codes

Error Correcting Codes Error Correcting Codes 2. The Hamming Codes Priti Shankar Priti Shankar is with the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore. Her interests are in Theoretical

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required

Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required 1. First Name * 2. Last Name * Vocabulary Match the definition to the vocabulary word. 3. Non coplanar lines that do not intersect. *

More information

1.4 Euler Diagram Layout Techniques

1.4 Euler Diagram Layout Techniques 1.4 Euler Diagram Layout Techniques Euler Diagram Layout Techniques: Overview Dual graph based methods Inductive methods Drawing with circles Including software demos. How is the drawing problem stated?

More information

Part II. Working and Playing with Geometry

Part II. Working and Playing with Geometry Part II Working and Playing with Geometry 129 Need to play is the mother of all invention. Kristina Brenneman, Portland Tribune, 2005 So far we have prepared a solid basis for projective geometry with

More information

Construction C : an inter-level coded version of Construction C

Construction C : an inter-level coded version of Construction C Construction C : an inter-level coded version of Construction C arxiv:1709.06640v2 [cs.it] 27 Dec 2017 Abstract Besides all the attention given to lattice constructions, it is common to find some very

More information

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe:

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: 27.10.2005 1. Übung Geometrie I (Lines in P 2 (R), Separation, Desargues) 1. Aufgabe Line equations

More information

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008 Outline Hyperplane Arrangements Counting Regions

More information

Formally Self-Dual Codes Related to Type II Codes

Formally Self-Dual Codes Related to Type II Codes Formally Self-Dual Codes Related to Type II Codes Koichi Betsumiya Graduate School of Mathematics Nagoya University Nagoya 464 8602, Japan and Masaaki Harada Department of Mathematical Sciences Yamagata

More information

Numeral system Numerals

Numeral system Numerals Book B: Chapter 9 Different Numeral Systems Revision. (a) Numerals in the system Numeral system Numerals Denary,,,,,, 6, 7, 8 and 9 Binary and Hexadecimal,,,,,, 6, 7, 8, 9, A (i.e. ), B (i.e. ), C (i.e.

More information

Concatenated codes (CH 15)

Concatenated codes (CH 15) Concatenated codes (CH 15) Simple (classical, single-level) concatenation Length of concatenated code is n 1 n 2 Dimension of concatenated code is k 1 k 2 If minimum distances of component codes are d

More information

1 Affine and Projective Coordinate Notation

1 Affine and Projective Coordinate Notation CS348a: Computer Graphics Handout #9 Geometric Modeling Original Handout #9 Stanford University Tuesday, 3 November 992 Original Lecture #2: 6 October 992 Topics: Coordinates and Transformations Scribe:

More information

Toric Varieties and Lattice Polytopes

Toric Varieties and Lattice Polytopes Toric Varieties and Lattice Polytopes Ursula Whitcher April 1, 006 1 Introduction We will show how to construct spaces called toric varieties from lattice polytopes. Toric fibrations correspond to slices

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 6 Coding I Chapter 3 Information Redundancy Part.6.1 Information Redundancy - Coding A data word with d bits is encoded

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

More information

Chapter Seven: Regular Expressions

Chapter Seven: Regular Expressions Chapter Seven: Regular Expressions Regular Expressions We have seen that DFAs and NFAs have equal definitional power. It turns out that regular expressions also have exactly that same definitional power:

More information

Gate Level Minimization Map Method

Gate Level Minimization Map Method Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

More information

Computing the Minimum Hamming Distance for Z 2 Z 4 -Linear Codes

Computing the Minimum Hamming Distance for Z 2 Z 4 -Linear Codes Computing the Minimum Hamming Distance for Z 2 Z 4 -Linear Codes Marta Pujol and Mercè Villanueva Combinatorics, Coding and Security Group (CCSG) Universitat Autònoma de Barcelona (UAB) VIII JMDA, Almería

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

**If all seven assignments are completed by the day the Mod 12 test is given you will receive 3 extra points on the test. **

**If all seven assignments are completed by the day the Mod 12 test is given you will receive 3 extra points on the test. ** Geometry Mod 11 &12 Similarity Section 6.1: I can solve problems by writing and using rates and ratios. I can solve problems by writing and solving proportions. I can use the geometric mean to solve problems.

More information

Error-Correcting Codes

Error-Correcting Codes Error-Correcting Codes Michael Mo 10770518 6 February 2016 Abstract An introduction to error-correcting codes will be given by discussing a class of error-correcting codes, called linear block codes. The

More information

A geometric non-existence proof of an extremal additive code

A geometric non-existence proof of an extremal additive code A geometric non-existence proof of an extremal additive code Jürgen Bierbrauer Department of Mathematical Sciences Michigan Technological University Stefano Marcugini and Fernanda Pambianco Dipartimento

More information

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16 CODING and INFORMATION We need encodings for data. How many questions must be asked to be certain where the ball is. (cases: avg, worst, best) P( Hit 1st ) = 1/16 P( Hit 2nd ) = P( Hit 2nd Miss 1st )P(

More information

Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates

Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates Pat Hanrahan Geometry Computing Group Minnesota Supercomputer Center Minneapolis, MN 55415 hanrahan@princeton.edu Experience

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, June 8, 27 Solutions to Practice Final Examination (Spring 26) There are 4 problems, each problem with multiple parts, each part worth points. Your

More information

1 Solution of Homework I

1 Solution of Homework I Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13h1.tex 1 Solution of Homework I 10 Problem 1.1. As far as two-dimensional geometry is concerned, Hilbert s Proposition 1 reduces to one simple statement:

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

The Pythagorean Theorem: Prove it!!

The Pythagorean Theorem: Prove it!! The Pythagorean Theorem: Prove it!! 2 2 a + b = c 2 The following development of the relationships in a right triangle and the proof of the Pythagorean Theorem that follows were attributed to President

More information

MAS341 Graph Theory 2015 exam solutions

MAS341 Graph Theory 2015 exam solutions MAS4 Graph Theory 0 exam solutions Question (i)(a) Draw a graph with a vertex for each row and column of the framework; connect a row vertex to a column vertex if there is a brace where the row and column

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

More information

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees Professor Erik Sudderth Brown University Computer Science September 22, 2016 Some figures and materials courtesy

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

A Poorly Conditioned System. Matrix Form

A Poorly Conditioned System. Matrix Form Possibilities for Linear Systems of Equations A Poorly Conditioned System A Poorly Conditioned System Results No solution (inconsistent) Unique solution (consistent) Infinite number of solutions (consistent)

More information

Summer School: Mathematical Methods in Robotics

Summer School: Mathematical Methods in Robotics Summer School: Mathematical Methods in Robotics Part IV: Projective Geometry Harald Löwe TU Braunschweig, Institute Computational Mathematics 2009/07/16 Löwe (TU Braunschweig) Math. robotics 2009/07/16

More information

Ch. 7 Error Detection and Correction

Ch. 7 Error Detection and Correction Ch. 7 Error Detection and Correction Error Detection and Correction Data can be corrupted during transmission. Some applications require that errors be detected and corrected. 2 1. Introduction Let us

More information

Chapter 4 - Lines in a Plane. Procedures for Detour Proofs

Chapter 4 - Lines in a Plane. Procedures for Detour Proofs Chapter 4 - Lines in a Plane 4.1 Detours and Midpoints Detour proofs - To solve some problems, it is necessary to prove pair of triangles congruent. These we call detour proofs because we have to prove

More information

Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes

Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes Flags A flag is a sequence (f 1, f 0,..., f n ) of faces f i of a polytope f n, each incident with the next, with precisely

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

The McEliece Cryptosystem

The McEliece Cryptosystem The McEliece Cryptosystem Suanne Au Christina Eubanks-Turner Jennifer Everson September 17, 2003 Abstract The McEliece cryptosystem is a public key cryptosystem whose security rests on the difficult problem

More information

Arboreal Dessins D enfants David P. Roberts University of Minnesota, Morris. 2. Rational functions and moduli algebras

Arboreal Dessins D enfants David P. Roberts University of Minnesota, Morris. 2. Rational functions and moduli algebras Arboreal Dessins D enfants David P. Roberts University of Minnesota, Morris 1. Warm-up activity: a tree game 2. Rational functions and moduli algebras 3. Dessins d enfants 4. The arboreal case 5. The discriminant

More information

A linear delay algorithm for building concept lattices

A linear delay algorithm for building concept lattices A linear delay algorithm for building concept lattices Yang Huang National enter for Biotechnology Information, NLM, NIH Joint work with Martin Farach-olton work done at Department of omputer Science,

More information

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by:

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by: T305 T325 B BLOCK 4 T325 Summary Prepared by: Session 3 [Type Dr. Saatchi, your address] Seyed Mohsen [Type your phone number] [Type your e-mail address] Dr. Saatchi, Seyed Mohsen T325 Error Control Coding

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT 2-1 Transformations and Rigid Motions Essential question: How do you identify transformations that are rigid motions? ENGAGE 1 ~ Introducing Transformations A transformation is a function that changes

More information

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3)

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3) Co-ordinate Geometry Co-ordinates Every point has two co-ordinates. (3, 2) x co-ordinate y co-ordinate Plot the following points on the plane..(3, 2) A (4, 1) D (2, 5) G (6, 3) B (3, 3) E ( 4, 4) H (6,

More information

Transformations and Isometries

Transformations and Isometries Transformations and Isometries Definition: A transformation in absolute geometry is a function f that associates with each point P in the plane some other point P in the plane such that (1) f is one-to-one

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Join Tree Importance of s Solving Topological structure defines key features for a wide class of problems CSP: Inference in acyclic network is extremely efficient (polynomial) Idea: remove cycles

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

The end of affine cameras

The end of affine cameras The end of affine cameras Affine SFM revisited Epipolar geometry Two-view structure from motion Multi-view structure from motion Planches : http://www.di.ens.fr/~ponce/geomvis/lect3.pptx http://www.di.ens.fr/~ponce/geomvis/lect3.pdf

More information

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include:

More information

Unit 8: Similarity Analysis

Unit 8: Similarity Analysis Name: Geometry Period Unit 8: Similarity Analysis Only 3 Lessons, Practice, and then QUEST In this unit you must bring the following materials with you to class every day: Please note: Calculator Pencil

More information

QED Q: Why is it called the triangle inequality? A: Analogue with euclidean distance in the plane: picture Defn: Minimum Distance of a code C:

QED Q: Why is it called the triangle inequality? A: Analogue with euclidean distance in the plane: picture Defn: Minimum Distance of a code C: Lecture 3: Lecture notes posted online each week. Recall Defn Hamming distance: for words x = x 1... x n, y = y 1... y n of the same length over the same alphabet, d(x, y) = {1 i n : x i y i } i.e., d(x,

More information

EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS

EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS LECTURE 6: CODING THEORY - 2 Fall 2014 Avinash Kodi kodi@ohio.edu Acknowledgement: Daniel Sorin, Behrooz Parhami, Srinivasan Ramasubramanian Agenda Hamming Codes

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

ELG3175 Introduction to Communication Systems. Introduction to Error Control Coding

ELG3175 Introduction to Communication Systems. Introduction to Error Control Coding ELG375 Introduction to Communication Systems Introduction to Error Control Coding Types of Error Control Codes Block Codes Linear Hamming, LDPC Non-Linear Cyclic BCH, RS Convolutional Codes Turbo Codes

More information

GEOMETRY R Unit 4: More Transformations / Compositions. Day Classwork Homework Monday 10/16. Perpendicular Bisector Relationship to Transformations

GEOMETRY R Unit 4: More Transformations / Compositions. Day Classwork Homework Monday 10/16. Perpendicular Bisector Relationship to Transformations GEOMETRY R Unit 4: More Transformations / Compositions Day Classwork Homework Monday 10/16 Perpendicular Bisector Relationship to Transformations HW 4.1 Tuesday 10/17 Construction of Parallel Lines Through

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

392D: Coding for the AWGN Channel Wednesday, March 21, 2007 Stanford, Winter 2007 Handout #26. Final exam solutions

392D: Coding for the AWGN Channel Wednesday, March 21, 2007 Stanford, Winter 2007 Handout #26. Final exam solutions 92D: Coding for the AWGN Channel Wednesday, March 2, 27 Stanford, Winter 27 Handout #26 Problem F. (8 points) (Lexicodes) Final exam solutions In this problem, we will see that a simple greedy algorithm

More information

Two distance-regular graphs

Two distance-regular graphs Two distance-regular graphs Andries E. Brouwer & Dmitrii V. Pasechnik June 11, 2011 Abstract We construct two families of distance-regular graphs, namely the subgraph of the dual polar graph of type B

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

Name Hr. Honors Geometry Lesson 9-1: Translate Figures and Use Vectors

Name Hr. Honors Geometry Lesson 9-1: Translate Figures and Use Vectors Name Hr Honors Geometry Lesson 9-1: Translate Figures and Use Vectors Learning Target: By the end of today s lesson we will be able to successfully use a vector to translate a figure. Isometry: An isometry

More information

PROJECTIVE SPACE AND THE PINHOLE CAMERA

PROJECTIVE SPACE AND THE PINHOLE CAMERA PROJECTIVE SPACE AND THE PINHOLE CAMERA MOUSA REBOUH Abstract. Here we provide (linear algebra) proofs of the ancient theorem of Pappus and the contemporary theorem of Desargues on collineations. We also

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

On phylogenetic trees algebraic geometer's view

On phylogenetic trees algebraic geometer's view On phylogenetic trees algebraic geometer's view Joint project with Weronika Buczyńska and other students Microsoft Research Center Trento, Feb. 16th, 2006 What about algebraic geometry? Nature [biology]

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry FIGURES FOR SOLUTIONS TO SELECTED EXERCISES V : Introduction to non Euclidean geometry V.1 : Facts from spherical geometry V.1.1. The objective is to show that the minor arc m does not contain a pair of

More information

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16 CODING and INFORMATION We need encodings for data. How many questions must be asked to be certain where the ball is. (cases: avg, worst, best) P( Hit 1st ) = 1/16 P( Hit 2nd ) = P( Hit 2nd Miss 1st )P(

More information

EC500. Design of Secure and Reliable Hardware. Lecture 9. Mark Karpovsky

EC500. Design of Secure and Reliable Hardware. Lecture 9. Mark Karpovsky EC500 Design of Secure and Reliable Hardware Lecture 9 Mark Karpovsky 1 1 Arithmetical Codes 1.1 Detection and Correction of errors in arithmetical channels (adders, multipliers, etc) Let = 0,1,,2 1 and

More information

J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

J. W. CANNON, W. J. FLOYD, AND W. R. PARRY LATTÈS MAPS AND FINITE SUBDIVISION RULES J. W. CANNON, W. J. FLOYD, AND W. R. PARRY This paper is concerned with realizing rational maps by subdivision maps of finite subdivision rules. If R is an orientation-preserving

More information

Chapter 10 Error Detection and Correction 10.1

Chapter 10 Error Detection and Correction 10.1 Chapter 10 Error Detection and Correction 10.1 10-1 INTRODUCTION some issues related, directly or indirectly, to error detection and correction. Topics discussed in this section: Types of Errors Redundancy

More information

Polygon Interior Angles

Polygon Interior Angles Polygons can be named by the number of sides. A regular polygon has All other polygons are irregular. A concave polygon has All other polygons are convex, with all vertices facing outwards. Name each polygon

More information

LESSON 0: Solving Equations

LESSON 0: Solving Equations HACKETTSTOWN HIGH SCHOOL HONORS GEOMETRY SUMMER ASSIGNMENT READ CAREFULLY: This assignment is a review of the basic algebra & geometry concepts that were covered in middle school. You should have read

More information

Nim-Regularity of Graphs

Nim-Regularity of Graphs Nim-Regularity of Graphs Nathan Reading School of Mathematics, University of Minnesota Minneapolis, MN 55455 reading@math.umn.edu Submitted: November 24, 1998; Accepted: January 22, 1999 Abstract. Ehrenborg

More information

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof.

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof. Page 1 of 14 Attendance Problems. 1. Find the midpoint between (0, x) and (y, z).. One leg of a right triangle has length 1, and the hypotenuse has length 13. What is the length of the other leg? 3. Find

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Math 308, Section 101 Solutions to Study Questions for Final Exam (Thursday, December 16, 2004)

Math 308, Section 101 Solutions to Study Questions for Final Exam (Thursday, December 16, 2004) NEUTRAL GEOMETRY Math 308, Section 0 Solutions to Study Questions for Final Exam (Thursday, December 6, 00) I. Given a triangle AEF, let M be the midpoint of the segment EF. Choose a point D on the ray

More information

Integral Geometry and the Polynomial Hirsch Conjecture

Integral Geometry and the Polynomial Hirsch Conjecture Integral Geometry and the Polynomial Hirsch Conjecture Jonathan Kelner, MIT Partially based on joint work with Daniel Spielman Introduction n A lot of recent work on Polynomial Hirsch Conjecture has focused

More information

Generation of lattices of points for bivariate interpolation

Generation of lattices of points for bivariate interpolation Generation of lattices of points for bivariate interpolation J. M. Carnicer and M. Gasca Departamento de Matemática Aplicada. University of Zaragoza, Spain Abstract. Principal lattices in the plane are

More information

Geometry Period Unit 2 Constructions Review

Geometry Period Unit 2 Constructions Review Name 2-7 Review Geometry Period Unit 2 Constructions Review Date 2-1 Construct an Inscribed Regular Hexagon and Inscribed equilateral triangle. -Measuring radius distance to make arcs. -Properties of equilateral

More information