Concatenated codes (CH 15)

Size: px
Start display at page:

Download "Concatenated codes (CH 15)"

Transcription

1 Concatenated codes (CH 15) Simple (classical, single-level) concatenation Length of concatenated code is n 1 n 2 Dimension of concatenated code is k 1 k 2 If minimum distances of component codes are d 1 and d 2, respectively, then the concatenated code has minimum distance d 1 d 2 Decoding: Two-stage: Decode (hard-decision) inner code, then outer code Not optimum! Can decode up to approximately ¼ of d min Good for decoding mixture of random and burst errors 1

2 Multiple inner codes Not necessary that all inner codes are identical Justesen codes: n 2 different inner codes Can show that an asymptotically good class of codes can be constructed this way A class {C i } of codes of increasing lengths {n i } is asymptotically good if the normalized dimensions {k i /n i } and the normalized minimum distances {d i /n i } are both bounded away from zero as i approaches infinity A theoretical result; first known class of good codes 2

3 Generalization of the model m may range from 1 to large Permutes the order of outer code symbols 3

4 Example of interleaved serial concatenation 4

5 Example 5

6 Multilevel concatenated codes Multiple outer and inner codes A 1 A 2... A m {0} k i dimension of A i K 1 K 2 N N d(a i ) min. dist. of A i [A i / A i+1 ] coset code: Set of coset representatives; dimension k i - k i+1 q i = 2 k i - k i+1 B i code over GF(q i ) K m N K = K i (k i - k i+1 ) d(c) min{d(b i )d(a i )} 6

7 Multistage decoding Decode stage B 1 [A 1 / A 2 ] first,..., stage B m A m last 1. Decode r = r (1) into a codeword b 1 in B 1 Inner decoding: Find the closest word in [A 1 / A 2 ] Outer decoding: Use inner decoder s results Set i = 2 2. Let r (i) = r (i-1) f i-1 (b i-1 ) Decode r (i) into a codeword b i in B i Set i = i + 1 If (i m), repeat from 2 7

8 Soft decision multistage decoding a) Requires soft decision (and usually trellis based) decoding at each decoding stage b) Decode stage B 1 [A 1 / A 2 ] first,..., stage B m A m last 1. Decode r = r (1) into a codeword b 1 in B 1 Inner decoding: Find the closest word in [A 1 / A 2 ] Outer decoding: Use inner decoder s results Set i = 2 2. Compute modify received vector r (i) : r j,l (i) = r j,l (i-1) (1-2c j,l (i-1) ) Decode r (i) into a codeword b i in B i Set i = i + 1 If (i m), repeat from 2 8

9 Inner and outer decoding a) Inner decoder: Find the word (label) in each coset in A i / A i+1 with largest metric for each symbol of the outer code. This gives N metric tables Pass these N metric tables to the outer decoder b) Outer decoder: Find word with largest metric c) Not MLD because of possible error propagation d) Simpler than known MLD algorithms for such codes e) Can be improved by passing a list of L candidates from one decoding stage to the next; and by selecting as the final decoded word the one with the largest metric at the final stage 9

10 Code decomposition Expressing a code in terms of a multilevel concatenation µ-level decomposable code: Can be expressed as a µ-level concatenated code Some classical code constructions may be expressed in this way. This may facilitate decoding of such codes, and can provide soft decision (sub-optimum) decoding r-th order Reed-Muller code of length 2 m is denoted by RM(r,m) Idea: Decompose trellis into µ trellises, each trellis is significantly less complex than the original trellis 10

11 v 0 = (1...1) of length 2 m Properties of RM(r,m) v i = (0...0, 1...1, 0...0,..., 1...1) (groups of length 2 i-1 ) RM(r,m) is spanned by vectors v 0, v 1, v 2,..., v m, v 1 v 2, v v,..., v 1 3 m- v 1 m,... all products of degree up to r for r > 0 RM(0,m) is spanned by the vector v 0 and RM(-1,m) = {0} k(r,m) = 1 + q(m,1) q(m,r), where q(m,i) = binom(m,i) Minimum distance is 2 m-r RM(r,m) RM(r-1,m)... RM(0,m) RM(-1,m) RM(m-1,m) is the single parity check code RM(m-r-1,m) is the dual code of RM(r,m) 11

12 Example 15.2 RM(3,3) RM(2,3) RM(1,3) RM(0,3) {0} 12

13 RM codes and interleaving a) RM(r,m) = {RM(0,ν) q(r,m-ν), RM(1,ν) q(r-1,m-ν),..., RM(µ,ν) q(r- µ,m-ν) } {RM(r,m-ν), RM(r-1,m-ν),..., RM(r-µ,m-ν)} where µ = ν for r > ν and µ = r for r ν, 1 ν m-1 b) Example: RM(3,6) is a (64,42,8) code. Select µ = ν = 3 c) RM(3,6) = {RM(0,3) q(3,3), RM(1,3) q(2,3), RM(2,3) q(1,3), RM(3,3) q(0,3) } {RM(3,3), RM(2,3), RM(1,3), RM(0,3)} d) = {(8,1), (8,4) 3, (8,7) 3, (8,8)} {(8,8), (8,7), (8,4), (8,1)} = (8,1) [(8,8) / (8,7)] (8,4) 3 [(8,7) / (8,4)] 13 (8,7) 3 [(8,4) / (8,1)] (8,8) [(8,1) / {0}]

14 Example a) RM(4,7) is a (128,99,8) code b) Can show that the trellis has maximum state space dimension of 19 c) Can be decomposed into a 3-level concatenation d) Subtrellises of length 16, and at most 256 states in each trellis 14

15 Another example a) RM(3,7) is a (128,64,16) code b) Can show that the trellis has maximum state space dimension of 26 c) Can be decomposed into a 3-level concatenation d) Subtrellises of length 16, and at most 512 states in each trellis 15

16 Iterative multistage MLD (IMS-MLD) 16

17 Decoding algorithm (m = 2) IMS-MLD algorithm 1. Compute best estimate b (1),1 of first decoding stage and its metric M(b (1),1 ). If coset label sequence L(b (1),1 ) C, then the best codeword is found, so stop, otherwise proceed to 2 2. Perform second stage decoding and obtain L(b (2),1 ) and M(b (2),1 ). Store b (1),1, b (2),1, and M(b (2),1 ), and set i 0 = 1 3. For i > i 0, calculate b (1),i (the i-th best estimate). If M(b (2),i 0) M(b (1),i ), decoding is finished, and b (1),i 0 and b (2),i 0 give the most likely codeword. Otherwise, go to 4 4. If coset label L(b (1),i ) C, then the best codeword is found, so stop, otherwise proceed to 5 5. Generate b (2),i. Update i 0, b (1),i 0, b (2),i 0, and M(b (2),i 0). Go to 3 Can be generalized to m-level concatenated codes 17

18 Example: IMS-MLD RM(3,7) is a (128,64,16) code whose performance is displayed below 18

19 Example: IMS-MLD Decoder complexity comparisons for the (128,64,16) example code 19

20 Convolutional inner codes a) Can of course use convolutional codes as inner codes. This facilitates soft decision decoding b) Example in book 20

21 Concatenation of binary codes a) Also possible with binary outer codes (block or convolutional) b) More difficult to make statements about overall minimum distance c) Interleaver useful for increasing distance d) SISO algorithms are useful for decoding e) Iterative decoding is useful f) Serial concatenation / parallel concatenation 21

392D: Coding for the AWGN Channel Wednesday, March 21, 2007 Stanford, Winter 2007 Handout #26. Final exam solutions

392D: Coding for the AWGN Channel Wednesday, March 21, 2007 Stanford, Winter 2007 Handout #26. Final exam solutions 92D: Coding for the AWGN Channel Wednesday, March 2, 27 Stanford, Winter 27 Handout #26 Problem F. (8 points) (Lexicodes) Final exam solutions In this problem, we will see that a simple greedy algorithm

More information

Linear Block Codes. Allen B. MacKenzie Notes for February 4, 9, & 11, Some Definitions

Linear Block Codes. Allen B. MacKenzie Notes for February 4, 9, & 11, Some Definitions Linear Block Codes Allen B. MacKenzie Notes for February 4, 9, & 11, 2015 This handout covers our in-class study of Chapter 3 of your textbook. We ll introduce some notation and then discuss the generator

More information

Improved Soft-Decision Decoding of RSCC Codes

Improved Soft-Decision Decoding of RSCC Codes 2013 IEEE Wireless Communications and Networking Conference (WCNC): PHY Improved Soft-Decision Decoding of RSCC Codes Li Chen School of Information Science and Technology, Sun Yat-sen University Guangzhou,

More information

IEEE 802.3ap Codes Comparison for 10G Backplane System

IEEE 802.3ap Codes Comparison for 10G Backplane System IEEE 802.3ap Codes Comparison for 10G Backplane System March, 2005 Boris Fakterman, Intel boris.fakterman@intel.com Presentation goal The goal of this presentation is to compare Forward Error Correction

More information

Comparison of Various Concatenated Convolutional Code Ensembles under Spatial Coupling

Comparison of Various Concatenated Convolutional Code Ensembles under Spatial Coupling Comparison of Various Concatenated Convolutional Code Ensembles under Spatial Coupling GABRIEL IRO RAJESHWARI KABBINALE MASTER S THESIS DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY FACULTY OF ENGINEERING

More information

Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues

Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues E. BOUTILLON, C. DOUILLARD, G. MONTORSI 1 Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues Emmanuel Boutillon, Catherine Douillard, and Guido Montorsi Abstract This tutorial

More information

Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues

Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues E. BOUTILLON, C. DOUILLARD, G. MONTORSI 1 Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues Emmanuel Boutillon 1, Catherine Douillard 2, and Guido Montorsi 3 Abstract This tutorial

More information

The (extended) coset leader and list weight enumerator

The (extended) coset leader and list weight enumerator The (extended) coset leader and list weight enumerator Relinde Jurrius (joint work with Ruud Pellikaan) Vrije Universiteit Brussel Fq11 July 24, 2013 Relinde Jurrius (VUB) Coset leader weight enumerator

More information

ELEC 691X/498X Broadcast Signal Transmission Winter 2018

ELEC 691X/498X Broadcast Signal Transmission Winter 2018 ELEC 691X/498X Broadcast Signal Transmission Winter 2018 Instructor: DR. Reza Soleymani, Office: EV 5.125, Telephone: 848 2424 ext.: 4103. Office Hours: Wednesday, Thursday, 14:00 15:00 Slide 1 In this

More information

Convolutional Codes. COS 463: Wireless Networks Lecture 9 Kyle Jamieson. [Parts adapted from H. Balakrishnan]

Convolutional Codes. COS 463: Wireless Networks Lecture 9 Kyle Jamieson. [Parts adapted from H. Balakrishnan] Convolutional Codes COS 463: Wireless Networks Lecture 9 Kyle Jamieson [Parts adapted from H. Balakrishnan] Today 1. Encoding data using convolutional codes Encoder state Changing code rate: Puncturing

More information

Approximate Linear Time ML Decoding on Tail-Biting Trellises in Two Rounds

Approximate Linear Time ML Decoding on Tail-Biting Trellises in Two Rounds Approximate Linear Time ML Decoding on Tail-Biting Trellises in Two Rounds K. Murali Krishnan, Priti Shankar Dept. of Computer Science and Automation Indian Institute of Science, Bangalore - 560012, India

More information

Viterbi Algorithm for error detection and correction

Viterbi Algorithm for error detection and correction IOSR Journal of Electronicsl and Communication Engineering (IOSR-JECE) ISSN: 2278-2834-, ISBN: 2278-8735, PP: 60-65 www.iosrjournals.org Viterbi Algorithm for error detection and correction Varsha P. Patil

More information

Exact and Approximate Algorithms for ML Decoding on Tail-Biting Trellises

Exact and Approximate Algorithms for ML Decoding on Tail-Biting Trellises Exact and Approximate Algorithms for ML Decoding on Tail-Biting Trellises Priti Shankar A.S. Madhu Aditya Nori IISc-CSA-TR-2005-3 http://archive.csa.iisc.ernet.in/tr/2005/3/ Computer Science and Automation

More information

Design of Convolutional Codes for varying Constraint Lengths

Design of Convolutional Codes for varying Constraint Lengths Design of Convolutional Codes for varying Constraint Lengths S VikramaNarasimhaReddy 1, Charan Kumar K 2, Neelima Koppala 3 1,2 MTech(VLSI) Student, 3 Assistant Professor, ECE Department, SreeVidyanikethan

More information

ISSCC 2003 / SESSION 8 / COMMUNICATIONS SIGNAL PROCESSING / PAPER 8.7

ISSCC 2003 / SESSION 8 / COMMUNICATIONS SIGNAL PROCESSING / PAPER 8.7 ISSCC 2003 / SESSION 8 / COMMUNICATIONS SIGNAL PROCESSING / PAPER 8.7 8.7 A Programmable Turbo Decoder for Multiple 3G Wireless Standards Myoung-Cheol Shin, In-Cheol Park KAIST, Daejeon, Republic of Korea

More information

4. Error correction and link control. Contents

4. Error correction and link control. Contents //2 4. Error correction and link control Contents a. Types of errors b. Error detection and correction c. Flow control d. Error control //2 a. Types of errors Data can be corrupted during transmission.

More information

Majority Voting Procedure Allowing Soft Decision Decoding of Linear Block Codes on Binary Channels

Majority Voting Procedure Allowing Soft Decision Decoding of Linear Block Codes on Binary Channels Int. J. Communications, Network and System Sciences, 2012, 5, 557-568 http://dx.doi.org/.4236/ijcns.2012.59066 Published Online September 2012 (http://www.scirp.org/journal/ijcns) Majority Voting Procedure

More information

FORWARD error correction (FEC) is one of the key

FORWARD error correction (FEC) is one of the key 3052 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016 Turbo Product Codes: Applications, Challenges, and Future Directions H. Mukhtar, Member, IEEE, A. Al-Dweik, Senior Member,

More information

ROBUST TRANSMISSION OF N PHYSICAL PACKET HEADERS

ROBUST TRANSMISSION OF N PHYSICAL PACKET HEADERS ROBUST TRANSMISSION OF 802.11N PHYSICAL PACKET HEADERS Zied Jaoua +, Anissa Mokraoui-Zergaïnoh +, Pierre Duhamel LSS/CNRS, SUPELEC, Plateau de Moulon, 91 192 Gif sur Yvette, France + L2TI, Institut Galilée,

More information

EE 387 course information

EE 387 course information EE 387 course information EE 387, Notes 1, Handout #2 Instructor: John Gill, Packard 266 Textbook: Algebraic Codes for Data Transmission by Richard Blahut Weekly homework, including occasional programming

More information

Non-Binary Turbo Codes Interleavers

Non-Binary Turbo Codes Interleavers Non-Binary Turbo Codes Interleavers Maria KOVACI, Horia BALTA University Polytechnic of Timişoara, Faculty of Electronics and Telecommunications, Postal Address, 30223 Timişoara, ROMANIA, E-Mail: mariakovaci@etcuttro,

More information

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16>

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Project Title Date Submitted IEEE 802.6 Broadband Wireless Access Working Group FEC Performance of Concatenated Reed-Solomon and Convolutional Coding with Interleaving 2000-06-08

More information

Randomized Progressive Edge-Growth (RandPEG)

Randomized Progressive Edge-Growth (RandPEG) Randomized Progressive Edge-Growth (Rand) Auguste Venkiah, David Declercq, Charly Poulliat ETIS, CNRS, ENSEA, Univ Cergy-Pontoise F-95000 Cergy-Pontoise email:{venkiah,declercq,poulliat}@ensea.fr Abstract

More information

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by:

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by: T305 T325 B BLOCK 4 T325 Summary Prepared by: Session 3 [Type Dr. Saatchi, your address] Seyed Mohsen [Type your phone number] [Type your e-mail address] Dr. Saatchi, Seyed Mohsen T325 Error Control Coding

More information

BELOW, we consider decoding algorithms for Reed Muller

BELOW, we consider decoding algorithms for Reed Muller 4880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006 Error Exponents for Recursive Decoding of Reed Muller Codes on a Binary-Symmetric Channel Marat Burnashev and Ilya Dumer, Senior

More information

On the construction of Tanner graphs

On the construction of Tanner graphs On the construction of Tanner graphs Jesús Martínez Mateo Universidad Politécnica de Madrid Outline Introduction Low-density parity-check (LDPC) codes LDPC decoding Belief propagation based algorithms

More information

CSEP 561 Error detection & correction. David Wetherall

CSEP 561 Error detection & correction. David Wetherall CSEP 561 Error detection & correction David Wetherall djw@cs.washington.edu Codes for Error Detection/Correction ti ti Error detection and correction How do we detect and correct messages that are garbled

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

ERROR CONTROL CODING FOR B3G/4G WIRELESS SYSTEMS

ERROR CONTROL CODING FOR B3G/4G WIRELESS SYSTEMS ERROR CONTROL CODING FOR B3G/4G WIRELESS SYSTEMS PAVING THE WAY TO IMT-ADVANCED STANDARDS Edited by Dr. Thierry Lestable SAGEMCOM, France (formerly with Samsung Electronics) Dr. Moshe Ran H.I.T - Holon

More information

Construction C : an inter-level coded version of Construction C

Construction C : an inter-level coded version of Construction C Construction C : an inter-level coded version of Construction C arxiv:1709.06640v2 [cs.it] 27 Dec 2017 Abstract Besides all the attention given to lattice constructions, it is common to find some very

More information

The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1].

The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1]. Lekha IP Core: LW RI 1002 3GPP LTE Turbo Decoder IP Core V1.0 The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS 36.212 V 10.5.0 Release 10[1]. Introduction The Lekha IP 3GPP

More information

Compression of a Binary Source with Side Information Using Parallelly Concatenated Convolutional Codes

Compression of a Binary Source with Side Information Using Parallelly Concatenated Convolutional Codes Compression of a Binary Source with Side Information Using Parallelly Concatenated Convolutional Codes Zhenyu Tu, Jing Li (Tiffany) and Rick S. Blum Electrical and Computer Engineering Department Lehigh

More information

The BICM Capacity of Coherent Continuous-Phase Frequency Shift Keying

The BICM Capacity of Coherent Continuous-Phase Frequency Shift Keying The BICM Capacity of Coherent Continuous-Phase Frequency Shift Keying Rohit Iyer Seshadri 1 Shi Cheng 1 Matthew C. Valenti 1 1 Lane Department of Computer Science and Electrical Engineering West Virginia

More information

The Extraction and Complexity Limits of Graphical Models for Linear Codes

The Extraction and Complexity Limits of Graphical Models for Linear Codes 1 The Extraction and omplexity Limits of Graphical Models for Linear odes Thomas R. Halford and Keith M. hugg ommunication Sciences Institute Department of Electrical Engineering - Systems University of

More information

6.962 Graduate Seminar in Communications Turbo-Like Codes: Structure, Design Criteria, and Variations

6.962 Graduate Seminar in Communications Turbo-Like Codes: Structure, Design Criteria, and Variations 6.962 Graduate Seminar in Communications Turbo-Like Codes: Structure, Design Criteria, and Variations Presenter: J. Nicholas Laneman October 18, 2000 1 Summary Broadening our treatment of capacity-approaching

More information

FUZZY LOGIC BASED CONVOLUTIONAL DECODER FOR USE IN MOBILE TELEPHONE SYSTEMS

FUZZY LOGIC BASED CONVOLUTIONAL DECODER FOR USE IN MOBILE TELEPHONE SYSTEMS FUZZY LOGIC BASED CONVOLUTIONAL DECODER FOR USE IN MOBILE TELEPHONE SYSTEMS A. Falkenberg A. Kunz Siemens AG Frankenstrasse 2, D-46393 Bocholt, Germany Tel.: +49 2871 91 3697, Fax: +49 2871 91 3387 email:

More information

Error Resilience: A Distinct Approach for Comparative Analysis of Error Correcting Codes

Error Resilience: A Distinct Approach for Comparative Analysis of Error Correcting Codes I J C T A, 9(32), 2016, pp. 73-78 International Science Press ISSN: 0974-5572 Error Resilience: A Distinct Approach for Comparative Analysis of Error Correcting Codes P. Ratna Kamala* and R.V.S. Satyanarayana**

More information

Ch. 7 Error Detection and Correction

Ch. 7 Error Detection and Correction Ch. 7 Error Detection and Correction Error Detection and Correction Data can be corrupted during transmission. Some applications require that errors be detected and corrected. 2 1. Introduction Let us

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Implementation of a Turbo Encoder and Turbo Decoder on DSP Processor-TMS320C6713

Implementation of a Turbo Encoder and Turbo Decoder on DSP Processor-TMS320C6713 International Journal of Engineering Research and Development e-issn : 2278-067X, p-issn : 2278-800X,.ijerd.com Volume 2, Issue 5 (July 2012), PP. 37-41 Implementation of a Turbo Encoder and Turbo Decoder

More information

Formally Self-Dual Codes Related to Type II Codes

Formally Self-Dual Codes Related to Type II Codes Formally Self-Dual Codes Related to Type II Codes Koichi Betsumiya Graduate School of Mathematics Nagoya University Nagoya 464 8602, Japan and Masaaki Harada Department of Mathematical Sciences Yamagata

More information

Interleavers for Turbo Codes

Interleavers for Turbo Codes UNIVERSITY OF MALTA Faculty of Engineering Department of Communications and Computer Engineering M. Phil. Interleavers for Turbo Codes by Johann Briffa A dissertation submitted in fulfilment of the requirements

More information

Code Design in the Short Block Length Regime

Code Design in the Short Block Length Regime October 8, 2014 Code Design in the Short Block Length Regime Gianluigi Liva, gianluigi.liva@dlr.de Institute for Communications and Navigation German Aerospace Center, DLR Outline 1 Introduction 2 Overview:

More information

A Method for Determining the Distance Profile of Turbo Codes

A Method for Determining the Distance Profile of Turbo Codes A Method for Determining the Distance Profile of Turbo Codes Marco Breiling and Johannes Huber Lehrstuhl für Nachrichtentechnik II Universität Erlangen-Nürnberg E-Mail: breiling@nt.e-technik.uni-erlangen.de

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 ISSN 255 CORRECTIONS TO FAULT SECURE OF MAJORITY LOGIC DECODER AND DETECTOR FOR MEMORY APPLICATIONS Viji.D PG Scholar Embedded Systems Prist University, Thanjuvr - India Mr.T.Sathees Kumar AP/ECE Prist University,

More information

EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS

EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS LECTURE 6: CODING THEORY - 2 Fall 2014 Avinash Kodi kodi@ohio.edu Acknowledgement: Daniel Sorin, Behrooz Parhami, Srinivasan Ramasubramanian Agenda Hamming Codes

More information

Super Codes: A Flexible Multi Rate Coding System

Super Codes: A Flexible Multi Rate Coding System Super Codes: A Flexible Multi Rate Coding System Steven S. Pietrobon Small World Communications, 6 First Avenue, Payneham South SA 57, Australia. E mail: steven@sworld.com.au Abstract: We define super

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, June 8, 27 Solutions to Practice Final Examination (Spring 26) There are 4 problems, each problem with multiple parts, each part worth points. Your

More information

THERE has been great interest in recent years in coding

THERE has been great interest in recent years in coding 186 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998 Concatenated Decoding with a Reduced-Search BCJR Algorithm Volker Franz and John B. Anderson, Fellow, IEEE Abstract We

More information

Comparison of Decoding Algorithms for Concatenated Turbo Codes

Comparison of Decoding Algorithms for Concatenated Turbo Codes Comparison of Decoding Algorithms for Concatenated Turbo Codes Drago Žagar, Nenad Falamić and Snježana Rimac-Drlje University of Osijek Faculty of Electrical Engineering Kneza Trpimira 2b, HR-31000 Osijek,

More information

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Balanced Box-Decomposition trees for Approximate nearest-neighbor 11 Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Nearest Neighbor A set S of n points is given in some metric

More information

LP Decoding. LP Decoding: - LP relaxation for the Maximum-Likelihood (ML) decoding problem. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.

LP Decoding. LP Decoding: - LP relaxation for the Maximum-Likelihood (ML) decoding problem. J. Feldman, D. Karger, M. Wainwright, LP Decoding p. LP Decoding Allerton, 2003 Jon Feldman jonfeld@ieor.columbia.edu Columbia University David Karger karger@theory.lcs.mit.edu MIT Martin Wainwright wainwrig@eecs.berkeley.edu UC Berkeley J. Feldman, D. Karger,

More information

EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL INTERLEAVER FOR LONG TERM EVOLUTION SYSTEMS

EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL INTERLEAVER FOR LONG TERM EVOLUTION SYSTEMS Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 61, 1, pp. 53 57, Bucarest, 016 Électronique et transmission de l information EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL

More information

IN this paper, our goal is to design new decoding algorithms

IN this paper, our goal is to design new decoding algorithms IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004 811 Recursive Decoding and Its Performance for Low-Rate Reed Muller Codes Ilya Dumer, Member, IEEE Abstract Recursive decoding techniques

More information

Stochastic branch & bound applying. target oriented branch & bound method to. optimal scenario tree reduction

Stochastic branch & bound applying. target oriented branch & bound method to. optimal scenario tree reduction Stochastic branch & bound applying target oriented branch & bound method to optimal scenario tree reduction Volker Stix Vienna University of Economics Department of Information Business Augasse 2 6 A-1090

More information

Graph based codes for distributed storage systems

Graph based codes for distributed storage systems /23 Graph based codes for distributed storage systems July 2, 25 Christine Kelley University of Nebraska-Lincoln Joint work with Allison Beemer and Carolyn Mayer Combinatorics and Computer Algebra, COCOA

More information

Adaptive Heuristic Search for Soft-Input Soft-Output Decoding of Arithmetic Codes

Adaptive Heuristic Search for Soft-Input Soft-Output Decoding of Arithmetic Codes Adaptive Heuristic Search for Soft-Input Soft-Output of Arithmetic Codes Yali Liu 1, Jiangtao Wen 1 Dept. of Electronics Engineering Tsinghua University Beijing 184, P.R. China E-mail: liuyl@mails.tsinghua.edu.cn

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

TURBO codes, [1], [2], have attracted much interest due

TURBO codes, [1], [2], have attracted much interest due 800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 Zigzag Codes and Concatenated Zigzag Codes Li Ping, Member, IEEE, Xiaoling Huang, and Nam Phamdo, Senior Member, IEEE Abstract

More information

Computation of posterior marginals on aggregated state models for soft source decoding

Computation of posterior marginals on aggregated state models for soft source decoding Computation of posterior marginals on aggregated state models for soft source decoding Simon Malinowski IRISA/University of Rennes Hervé Jégou INRIA Christine Guillemot IRISA/INRIA Abstract Optimum soft

More information

Ad hoc and Sensor Networks Chapter 6: Link layer protocols. Holger Karl

Ad hoc and Sensor Networks Chapter 6: Link layer protocols. Holger Karl Ad hoc and Sensor Networks Chapter 6: Link layer protocols Holger Karl Goals of this chapter Link layer tasks in general Framing group bit sequence into packets/frames Important: format, size Error control

More information

Chapter 13: Query Processing

Chapter 13: Query Processing Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

More information

MT365 Examination 2017 Part 1 Solutions Part 1

MT365 Examination 2017 Part 1 Solutions Part 1 MT xamination 0 Part Solutions Part Q. G (a) Number of vertices in G =. Number of edges in G = (i) The graph G is simple no loops or multiple edges (ii) The graph G is not regular it has vertices of deg.,

More information

COMPARISON OF SIMPLIFIED GRADIENT DESCENT ALGORITHMS FOR DECODING LDPC CODES

COMPARISON OF SIMPLIFIED GRADIENT DESCENT ALGORITHMS FOR DECODING LDPC CODES COMPARISON OF SIMPLIFIED GRADIENT DESCENT ALGORITHMS FOR DECODING LDPC CODES Boorle Ashok Kumar 1, G Y. Padma Sree 2 1 PG Scholar, Al-Ameer College Of Engineering & Information Technology, Anandapuram,

More information

Modern Communications Chapter 5. Low-Density Parity-Check Codes

Modern Communications Chapter 5. Low-Density Parity-Check Codes 1/14 Modern Communications Chapter 5. Low-Density Parity-Check Codes Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2017 2/14 History

More information

Chapter 12: Query Processing

Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Overview Chapter 12: Query Processing Measures of Query Cost Selection Operation Sorting Join

More information

Kevin Buckley

Kevin Buckley Kevin Buckley - 69 ECE877 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 3 Convolutional Codes x c (a) (b) (,) (,) (,) (,)

More information

Approximation Algorithms

Approximation Algorithms 18.433 Combinatorial Optimization Approximation Algorithms November 20,25 Lecturer: Santosh Vempala 1 Approximation Algorithms Any known algorithm that finds the solution to an NP-hard optimization problem

More information

INPUT TO (TM/TC) CHANNEL CODING GREEN BOOK(s) AS DISCUSSED AT THE MEETING IN CRYSTAL CITY, VA (USA) on 12 March Frame Error Control Field

INPUT TO (TM/TC) CHANNEL CODING GREEN BOOK(s) AS DISCUSSED AT THE MEETING IN CRYSTAL CITY, VA (USA) on 12 March Frame Error Control Field INUT TO (TM/TC) CHANNEL CODING GREEN BOOK(s) AS DISCUSSED AT THE MEETING IN CRYSTAL CITY, VA (USA) on 12 March 28 --------- Frame Error Control Field [Reply to comment GC2] - Section 8.4.2 of CCSDS 13.1-G-1

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 56, NO. 1, JANUARY 2009 81 Bit-Level Extrinsic Information Exchange Method for Double-Binary Turbo Codes Ji-Hoon Kim, Student Member,

More information

! A relational algebra expression may have many equivalent. ! Cost is generally measured as total elapsed time for

! A relational algebra expression may have many equivalent. ! Cost is generally measured as total elapsed time for Chapter 13: Query Processing Basic Steps in Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 1. Parsing and

More information

Chapter 13: Query Processing Basic Steps in Query Processing

Chapter 13: Query Processing Basic Steps in Query Processing Chapter 13: Query Processing Basic Steps in Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 1. Parsing and

More information

Link Layer: Error detection and correction

Link Layer: Error detection and correction Link Layer: Error detection and correction Topic Some bits will be received in error due to noise. What can we do? Detect errors with codes Correct errors with codes Retransmit lost frames Later Reliability

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Example: Bioinformatics. Soft Constraint Processing. From Optimal CSP to Soft CSP. Overview. From Optimal CSP to Soft CSP.

Example: Bioinformatics. Soft Constraint Processing. From Optimal CSP to Soft CSP. Overview. From Optimal CSP to Soft CSP. Example: Bioinformatics Soft Constraint Processing 16.412J/6.834J Cognitive Robotics Martin Sachenbacher (Using material from Thomas Schiex) RNA is single-strand molecule, composed of A,U,G,C Function

More information

Problem:Given a list of n orderable items (e.g., numbers, characters from some alphabet, character strings), rearrange them in nondecreasing order.

Problem:Given a list of n orderable items (e.g., numbers, characters from some alphabet, character strings), rearrange them in nondecreasing order. BRUTE FORCE 3.1Introduction Brute force is a straightforward approach to problem solving, usually directly based on the problem s statement and definitions of the concepts involved.though rarely a source

More information

Efficient Majority Logic Fault Detector/Corrector Using Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes

Efficient Majority Logic Fault Detector/Corrector Using Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes Efficient Majority Logic Fault Detector/Corrector Using Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes 1 U.Rahila Begum, 2 V. Padmajothi 1 PG Student, 2 Assistant Professor 1 Department Of

More information

Lecture 19 Apr 25, 2007

Lecture 19 Apr 25, 2007 6.851: Advanced Data Structures Spring 2007 Prof. Erik Demaine Lecture 19 Apr 25, 2007 Scribe: Aditya Rathnam 1 Overview Previously we worked in the RA or cell probe models, in which the cost of an algorithm

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

ELG3175 Introduction to Communication Systems. Introduction to Error Control Coding

ELG3175 Introduction to Communication Systems. Introduction to Error Control Coding ELG375 Introduction to Communication Systems Introduction to Error Control Coding Types of Error Control Codes Block Codes Linear Hamming, LDPC Non-Linear Cyclic BCH, RS Convolutional Codes Turbo Codes

More information

BECAUSE of their superior performance capabilities on

BECAUSE of their superior performance capabilities on 1340 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 4, APRIL 2005 Packet-LDPC Codes for Tape Drives Yang Han and William E. Ryan, Senior Member, IEEE Electrical and Computer Engineering Department, University

More information

A New List Decoding Algorithm for Short-Length TBCCs With CRC

A New List Decoding Algorithm for Short-Length TBCCs With CRC Received May 15, 2018, accepted June 11, 2018, date of publication June 14, 2018, date of current version July 12, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2847348 A New List Decoding Algorithm

More information

Explicit Polar Codes with Small Scaling Exponent

Explicit Polar Codes with Small Scaling Exponent Explicit Polar Codes with Small Scaling Exponent arxiv:9.886v [cs.it] 24 Jan 29 Hanwen Yao University of California San Diego 95 Gilman Drive, La Jolla, CA 9293 hay25@ucsd.edu Alexander Vardy University

More information

Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC Codes

Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC Codes Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC Codes Yongmei Dai and Zhiyuan Yan Department of Electrical and Computer Engineering Lehigh University, PA 18015, USA E-mails: {yod304, yan}@lehigh.edu

More information

C LDPC Coding Proposal for LBC. This contribution provides an LDPC coding proposal for LBC

C LDPC Coding Proposal for LBC. This contribution provides an LDPC coding proposal for LBC C3-27315-3 Title: Abstract: Source: Contact: LDPC Coding Proposal for LBC This contribution provides an LDPC coding proposal for LBC Alcatel-Lucent, Huawei, LG Electronics, QUALCOMM Incorporated, RITT,

More information

OVer past decades, iteratively decodable codes, such as

OVer past decades, iteratively decodable codes, such as 1 Trellis-based Extended Min-Sum Algorithm for Non-binary LDPC Codes and its Hardware Structure Erbao Li, David Declercq Senior Member, IEEE, and iran Gunnam Senior Member, IEEE Abstract In this paper,

More information

On the Design of Iterative Codes for Magnetic Recording Channel. Greg Burd, Panu Chaichanavong, Nitin Nangare, Nedeljko Varnica 12/07/2006

On the Design of Iterative Codes for Magnetic Recording Channel. Greg Burd, Panu Chaichanavong, Nitin Nangare, Nedeljko Varnica 12/07/2006 On the Design of Iterative Codes for Magnetic Recording Channel Greg Burd, Panu Chaichanavong, Nitin Nangare, Nedeljko Varnica 12/07/2006 Outline Two classes of Iterative architectures RS-plus Iterative

More information

Chapter 12: Query Processing. Chapter 12: Query Processing

Chapter 12: Query Processing. Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 12: Query Processing Overview Measures of Query Cost Selection Operation Sorting Join

More information

Efficient Content Delivery and Low Complexity Codes. Amin Shokrollahi

Efficient Content Delivery and Low Complexity Codes. Amin Shokrollahi Efficient Content Delivery and Low Complexity Codes Amin Shokrollahi Content Goals and Problems TCP/IP, Unicast, and Multicast Solutions based on codes Applications Goal Want to transport data from a transmitter

More information

CS321: Computer Networks Error Detection and Correction

CS321: Computer Networks Error Detection and Correction CS321: Computer Networks Error Detection and Correction Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Error Detection and Correction Objective: System must

More information

Weight distribution of turbo codes with convolutional interleavers

Weight distribution of turbo codes with convolutional interleavers University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 27 distribution of turbo codes with convolutional interleavers S. Vafi

More information

The Extended Quadratic Residue Code is the only (48; 24; 12) Self-Dual Doubly-Even Code

The Extended Quadratic Residue Code is the only (48; 24; 12) Self-Dual Doubly-Even Code Brock University Department of Computer Science The Extended Quadratic Residue Code is the only (48; 24; 12) Self-Dual Doubly-Even Code Sheridan K. Houghten, C.W.H. Lam, L.H. Thiel, and J.A. Parker Technical

More information

ORF 307: Lecture 14. Linear Programming: Chapter 14: Network Flows: Algorithms

ORF 307: Lecture 14. Linear Programming: Chapter 14: Network Flows: Algorithms ORF 307: Lecture 14 Linear Programming: Chapter 14: Network Flows: Algorithms Robert J. Vanderbei April 10, 2018 Slides last edited on April 10, 2018 http://www.princeton.edu/ rvdb Agenda Primal Network

More information

EXIT Charts. JASS05 Course 4: The Turbo Principle in Communications Prof. Dr.-Ing. Joachim Hagenauer

EXIT Charts. JASS05 Course 4: The Turbo Principle in Communications Prof. Dr.-Ing. Joachim Hagenauer EXIT Charts JASS05 Course 4: The Turbo Principle in Communications Prof. Dr.-Ing. Joachim Hagenauer Presented by: 4.4.2005, St. Petersburg Overview Why EXIT Charts? How EXIT Charts work? How to draw EXIT

More information

Chapter 18 Indexing Structures for Files

Chapter 18 Indexing Structures for Files Chapter 18 Indexing Structures for Files Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Disk I/O for Read/ Write Unit for Disk I/O for Read/ Write: Chapter 18 One Buffer for

More information

A completely safe early-stopping criterion for max-log Turbo code decoding

A completely safe early-stopping criterion for max-log Turbo code decoding A completely safe early-stopping criterion for max-log Turbo code decoding Andrew Hunt, Stewart Crozier, Ken Gracie, and Paul Guinand Communications Research Centre (CRC), Ottawa, Canada, www.crc.ca/fec

More information

Towards and ASIP optimized for multi-standard turbo decoding

Towards and ASIP optimized for multi-standard turbo decoding Towards and ASIP optimized for multi-standard turbo decoding Rachid Al Khayat To cite this version: Rachid Al Khayat. Towards and ASIP optimized for multi-standard turbo decoding. Electronics. Télécom

More information

Hyper-Trellis Decoding of Pixel-Domain Wyner-Ziv Video Coding

Hyper-Trellis Decoding of Pixel-Domain Wyner-Ziv Video Coding 1 Hyper-Trellis Decoding of Pixel-Domain Wyner-Ziv Video Coding Arun Avudainayagam, John M. Shea, and Dapeng Wu Wireless Information Networking Group (WING) Department of Electrical and Computer Engineering

More information

Communication Systems, 5e Chapter 13: Channel Coding

Communication Systems, 5e Chapter 13: Channel Coding Communication Systems, 5e Chapter 13: Channel Coding A. Bruce Carlson Paul B. Crilly Pop Quiz 1) The sampling rate for CD audio is. a) 22.0 khz b) 44.1 khz 2) CD audio format does not allow for any form

More information