A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

Size: px
Start display at page:

Download "A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines"

Transcription

1 A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this new space of derived input features Model a linear basis expansion: M f (X ) = β m h m (X ) m=1 where h m : R p R is the m-th transformation. 1 Section based on chapter 5 Examples of transformations Piecewise-polynomials and splines h m (x) = x for m = 1,..., p is the original linear model h m (x) = xj 2 or h m (x) = x i x j for i, j = 1,..., p enables to consider polynomial terms h m (x) = log(x j ) or h m (x) = x j or h m (x) = x... h m (x) = 1 Lm x U m In this section, we consider piecewise-polynomials and splines. Consider until further notice that x is one-dimensional. Piecewise polynomial function: divide the domain into continuous intervals represent f by a polynomial in each interval Examples: piecewise constant, piecewise linear,...etc... We may want to incorporate continuity restrictions at the knots.

2 Piecewise constant and linear Incorporate constraints in the basis Smoother functions are often preferred. These can be obtained by increasing the order of the local polynomial. Cubic spline: continuous function with continuous first and second derivatives at the knots The following basis represent a cubic spline with knots at ξ 1 and ξ 2 : h 1 (x) = 1 h 3 (x) = x 2 h 5 (x) = (x ξ 1 ) 3 + h 2 (x) = x h 4 (x) = x 3 h 6 (x) = (x ξ 2 ) 3 + A natural cubic spline basis has additionnal constraints beyond the boundary knots. Order-M splines An order-m spline with knots ξ j, j = 1... K is a piecewise polynomial of order M and has continuous derivatives up to the order M 2. The general form of the basis set is h j (x) = x j 1 for j = 1... M h M+k (x) = (x ξ k ) M 1 + for k = 1... K

3 Regression spline Fixed-knot splines are also called regression splines: needs to select (i) the order of the spline (M), (ii) the number of knots (K) and (iii) their placement. The spline is fitted via regression using the model y = f (x) = M+K m=1 β m h m (x) Often the quantiles of the observations are used to determine the position of the knots (see R function bs) The smoothness of the curve is determined by the number and position of the knots: with fewer knots, the curve is smoother ydat x Smoothing splines Avoid the knot selection problem by: maximising the number of knots adding a regularization term Determine the function f that minimises the penalised residual sum of squares RSS(f, λ) = (y i f (x i )) 2 + λ (f (t)) 2 dt i=1 where λ is a smoothing parameter. If λ = 0: any function f which interpolates the data are eligible if λ = : the simplest least-square line fit It can be shown that a natural spline minimises the criteria: f (x) = N j (x)θ j where N j (x) are set of basis functions for representing the family of natural splines. We denote by {N} ij = N j (x i ). Therefore j=1 RSS(f, λ) = (y Nθ) T (y Nθ) + λθ T Ω N θ where {Ω N } jk = N j (t)n (t)dt and the fitted smoothing spline is where k f (x) = N j (x) θ j j=1 θ = (N T N + λω N ) 1 N T y.

4 Degree of freedom and smoother matrix Automatic selection of the smoothing parameter The estimated parameter θ is linear in y. The smoother matrix S λ = (N T N + λω N ) 1 N T only depends on the {x i } i. The effective degree of freedom of a smoothing spline is df λ = trace(s λ ) Multi-dimensional splines Other regularisation methods Each of the approaches have multidimensional analogs. Consider x = (x 1, x 2 ) T R 2, a basis of functions h ik, k = 1,... M i, for representing functions of x i, i = 1, 2, then we can represent any function of x using tensor product basis M 1 M 2 g(x) = θ jk g jk (x) j=1 k=1 Regularization and Reproducing Kernel Hilbert Spaces Wavelet Smoothing... where g jk (x) = h 1j (x 1 )h 2k (x 2 ) Smoothing splines can also be generalised Curse of dimensionality: the dimension of the basis grows exponentially fast

5 Kernel smoothing methods: class of regression techniques to estimate a regression function f (x) over the domain R p by fitting a different simple model separately query point x Kernel smoothing methods 2 Only use the observation close to x 0 to fit the simple model. The resulting estimated function f (x) is smooth. The weighting function or kernel K λ (x 0, x i ) assigns a weight to the observation x i based on its distance from x 0. λ typically controls the width of the neighbourhood this is the only parameter that needs to be determined from the training data. 2 Section based on chapter 6 Be careful: same name for different notions! One-dimensional kernel smoother The word kernel is often associated to various distinct mathematical objects. The kernel smoothing methods should not be confused with the kernel methods (that you have seen in the Data Mining course) which consider a positive definite kernel and an associated reproducible kernel Hilbert space. In kernel methods, the kernel defines an inner product between feature maps. In this section, the kernel (in one dimension) can be written as follows ( ) x x0 K λ (x 0, x) = D h λ (x 0 ) where D is a non-negative real-valued integrable function (that integrates to 1). Intuitive estimate of a regression function f (x) = E(Y X = x): For each x, use the set N k (x) of k nearest neighbours of x Estimate f (x) by Remark: f (x) is discontinuous in x. f (x) = Average(yi x i N k (x)) Rather than give all the points in the neighbourhood the same weight, we can assign weights that depends on the distance between the observation.

6 One-dimensional kernel smoother Example: the Nadarya-Watson kernle-weigthed average f (x) = N i=1 K λ(x, x i )y i N i=1 K λ(x, x i ) with the Epanechnikov kernel ( ) x0 x K λ (x 0, x) = D λ and D(t) = 3 4 (1 t2 ) if t 1 and 0 otherwise. Settings to determine The main settings characterising a kernel smoother ( ) x x0 K λ (x 0, x) = D h λ (x 0 ) are: the smoothing parameter λ controls the width: large λ implies lower variance but higher bias the function h λ : constant h λ (x) tend to keep bias of the estimate constant the function D; typical examples are the Epanechnikov kernel the tri-cube function where D(t) = (1 t 3 ) 3 if t 1, 0 otherwise the gaussian density function, where the standard deviation plays the role of the window size

7 Local linear regression Local linear regression Locally weighted regression solves a separated least square problems at each target point x 0 : and then min α(x 0),β(x 0) K λ (x 0, x i )[y i α(x 0 ) β(x 0 )x i ] 2 i=1 f (x0 ) = α(x 0 ) + β(x 0 )x 0 = b(x 0 ) T (B T W (x 0 )B) 1 B T W (x 0 )y = l i (x 0 )y i i=1 The estimate is linear in y. The weights l i (x 0 ) combine weighting kernels K λ (x 0,.) and the least squares operations. It is often called the equivalent kernel. Using the linearity of the local regression and a series expansion of f around x 0 we can show that the bias E( f (x 0 )) f (x 0 ) only depends on quadratic and higher terms in the expansion of f. where b(x 0 ) T = (1, x 0 ), B T = (b(x 1 ), b(x 2 ),... b(x N )) and W (x 0 ) is a N N diagonal matrix with i-th diagonal element equal to K λ (x 0, x i ). Local polynomial regression Selecting the width of the kernel Simiarly, we can fit local polynomial of any degree d. with solution min α(x 0),β j (x 0),j=1,...d K λ (x 0, x i )[y i α(x 0 ) i=1 f (x0 = α(x 0 ) + d β j (x 0 )x j 0. j=1 d j=1 β j (x 0 )x j i ]2 The bias only depends on terms of degree d + 1 or higher in the expansion of f. Local linear fits tend to be biased in region of curvature of true function; local quadratic regression usually correct this bias. Price for this bias reduction: increased variance, especially in the tails. There is a natural bias-variance tradeoff as we change the width of the kernel. Narrow window: f (x 0 ) estimated based on small number of points, therefore small bias but large variance Wide window: the variance of f (x 0 ) will be small relative to the variance of any y i but the bias will be higher As in previous section, λ can be chosen via cross-validation.

8 In R The function loess fit a polynomial surface determined by one or more numerical predictors, using local fitting. It uses a tri-cube function. The degree of the polynomial can be chosen as well as the smoothing parameter. Example from period <- 120 > x <- 1:120 > y <- sin(2*pi*x/period) + runif(length(x),-1,1) > plot(x,y, main="sine Curve + Uniform Noise") > y.loess <- loess(y ~ x, span=0.75, data.frame(x=x, y=y)) > y.predict <- predict(y.loess, data.frame(x=x)) > lines(x,y.predict) Figure from Local regression in R p Kernel smoothing and local regression generalise very naturally to two or more dimensions. However Boundary effects are a much bigger problem in two or higher dimensions than in one because the fractions of points on the boundary is larger. It is impossible to simultaneously maintain low bias and low variance as the dimension increases without the total sample size increasing exponentially in p When dimension to sample-size ratio increases, we may want to incorporate some structural assumptions about the model.

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

Splines and penalized regression

Splines and penalized regression Splines and penalized regression November 23 Introduction We are discussing ways to estimate the regression function f, where E(y x) = f(x) One approach is of course to assume that f has a certain shape,

More information

Lecture 7: Splines and Generalized Additive Models

Lecture 7: Splines and Generalized Additive Models Lecture 7: and Generalized Additive Models Computational Statistics Thierry Denœux April, 2016 Introduction Overview Introduction Simple approaches Polynomials Step functions Regression splines Natural

More information

Splines. Patrick Breheny. November 20. Introduction Regression splines (parametric) Smoothing splines (nonparametric)

Splines. Patrick Breheny. November 20. Introduction Regression splines (parametric) Smoothing splines (nonparametric) Splines Patrick Breheny November 20 Patrick Breheny STA 621: Nonparametric Statistics 1/46 Introduction Introduction Problems with polynomial bases We are discussing ways to estimate the regression function

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

STA 414/2104 S: February Administration

STA 414/2104 S: February Administration 1 / 16 Administration HW 2 posted on web page, due March 4 by 1 pm Midterm on March 16; practice questions coming Lecture/questions on Thursday this week Regression: variable selection, regression splines,

More information

Chapter 5: Basis Expansion and Regularization

Chapter 5: Basis Expansion and Regularization Chapter 5: Basis Expansion and Regularization DD3364 April 1, 2012 Introduction Main idea Moving beyond linearity Augment the vector of inputs X with additional variables. These are transformations of

More information

Lecture 17: Smoothing splines, Local Regression, and GAMs

Lecture 17: Smoothing splines, Local Regression, and GAMs Lecture 17: Smoothing splines, Local Regression, and GAMs Reading: Sections 7.5-7 STATS 202: Data mining and analysis November 6, 2017 1 / 24 Cubic splines Define a set of knots ξ 1 < ξ 2 < < ξ K. We want

More information

Nonparametric Regression

Nonparametric Regression Nonparametric Regression John Fox Department of Sociology McMaster University 1280 Main Street West Hamilton, Ontario Canada L8S 4M4 jfox@mcmaster.ca February 2004 Abstract Nonparametric regression analysis

More information

Nonparametric regression using kernel and spline methods

Nonparametric regression using kernel and spline methods Nonparametric regression using kernel and spline methods Jean D. Opsomer F. Jay Breidt March 3, 016 1 The statistical model When applying nonparametric regression methods, the researcher is interested

More information

Lecture 16: High-dimensional regression, non-linear regression

Lecture 16: High-dimensional regression, non-linear regression Lecture 16: High-dimensional regression, non-linear regression Reading: Sections 6.4, 7.1 STATS 202: Data mining and analysis November 3, 2017 1 / 17 High-dimensional regression Most of the methods we

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity The truth is never linear! 1/23 Moving Beyond Linearity The truth is never linear! r almost never! 1/23 Moving Beyond Linearity The truth is never linear! r almost never! But often

More information

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or STA 450/4000 S: February 2 2005 Flexible modelling using basis expansions (Chapter 5) Linear regression: y = Xβ + ɛ, ɛ (0, σ 2 ) Smooth regression: y = f (X) + ɛ: f (X) = E(Y X) to be specified Flexible

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2010 1 / 26 Additive predictors

More information

STAT 705 Introduction to generalized additive models

STAT 705 Introduction to generalized additive models STAT 705 Introduction to generalized additive models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Generalized additive models Consider a linear

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Basis Functions Tom Kelsey School of Computer Science University of St Andrews http://www.cs.st-andrews.ac.uk/~tom/ tom@cs.st-andrews.ac.uk Tom Kelsey ID5059-02-BF 2015-02-04

More information

1 Standard Errors on Different Models

1 Standard Errors on Different Models 1 Standard Errors on Different Models Math 158, Spring 2018 Jo Hardin Regression Splines & Smoothing/Kernel Splines R code First we scrape some weather data from NOAA. The resulting data we will use is

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Learning from Data Linear Parameter Models

Learning from Data Linear Parameter Models Learning from Data Linear Parameter Models Copyright David Barber 200-2004. Course lecturer: Amos Storkey a.storkey@ed.ac.uk Course page : http://www.anc.ed.ac.uk/ amos/lfd/ 2 chirps per sec 26 24 22 20

More information

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines Spline Models Introduction to CS and NCS Regression splines Smoothing splines 3 Cubic Splines a knots: a< 1 < 2 < < m

More information

Curve fitting using linear models

Curve fitting using linear models Curve fitting using linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark September 28, 2012 1 / 12 Outline for today linear models and basis functions polynomial regression

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Module 4. Non-linear machine learning econometrics: Support Vector Machine

Module 4. Non-linear machine learning econometrics: Support Vector Machine Module 4. Non-linear machine learning econometrics: Support Vector Machine THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Introduction When the assumption of linearity

More information

Applied Statistics : Practical 9

Applied Statistics : Practical 9 Applied Statistics : Practical 9 This practical explores nonparametric regression and shows how to fit a simple additive model. The first item introduces the necessary R commands for nonparametric regression

More information

1D Regression. i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is...

1D Regression. i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is... 1D Regression i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is... 1 Non-linear problems What if the underlying function is

More information

3 Nonlinear Regression

3 Nonlinear Regression 3 Linear models are often insufficient to capture the real-world phenomena. That is, the relation between the inputs and the outputs we want to be able to predict are not linear. As a consequence, nonlinear

More information

Economics Nonparametric Econometrics

Economics Nonparametric Econometrics Economics 217 - Nonparametric Econometrics Topics covered in this lecture Introduction to the nonparametric model The role of bandwidth Choice of smoothing function R commands for nonparametric models

More information

Rational Bezier Surface

Rational Bezier Surface Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

Generalized Additive Model

Generalized Additive Model Generalized Additive Model by Huimin Liu Department of Mathematics and Statistics University of Minnesota Duluth, Duluth, MN 55812 December 2008 Table of Contents Abstract... 2 Chapter 1 Introduction 1.1

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Nonparametric Approaches to Regression

Nonparametric Approaches to Regression Nonparametric Approaches to Regression In traditional nonparametric regression, we assume very little about the functional form of the mean response function. In particular, we assume the model where m(xi)

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Distribution-free Predictive Approaches

Distribution-free Predictive Approaches Distribution-free Predictive Approaches The methods discussed in the previous sections are essentially model-based. Model-free approaches such as tree-based classification also exist and are popular for

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

The theory of the linear model 41. Theorem 2.5. Under the strong assumptions A3 and A5 and the hypothesis that

The theory of the linear model 41. Theorem 2.5. Under the strong assumptions A3 and A5 and the hypothesis that The theory of the linear model 41 Theorem 2.5. Under the strong assumptions A3 and A5 and the hypothesis that E(Y X) =X 0 b 0 0 the F-test statistic follows an F-distribution with (p p 0, n p) degrees

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

A Practical Review of Uniform B-Splines

A Practical Review of Uniform B-Splines A Practical Review of Uniform B-Splines Kristin Branson A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline of order k is a piecewise order k Bezier curve, and

More information

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2)

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2) SOC6078 Advanced Statistics: 9. Generalized Additive Models Robert Andersen Department of Sociology University of Toronto Goals of the Lecture Introduce Additive Models Explain how they extend from simple

More information

Nonparametric Regression and Generalized Additive Models Part I

Nonparametric Regression and Generalized Additive Models Part I SPIDA, June 2004 Nonparametric Regression and Generalized Additive Models Part I Robert Andersen McMaster University Plan of the Lecture 1. Detecting nonlinearity Fitting a linear model to a nonlinear

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Smooth Curve from noisy 2-Dimensional Dataset

Smooth Curve from noisy 2-Dimensional Dataset Smooth Curve from noisy 2-Dimensional Dataset Avik Kumar Mahata 1, Utpal Borah 2,, Aravind Da Vinci 3, B.Ravishankar 4, Shaju Albert 5 1,4 Material Science and Engineering, National Institute of Technology,

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Machine Learning. Topic 4: Linear Regression Models

Machine Learning. Topic 4: Linear Regression Models Machine Learning Topic 4: Linear Regression Models (contains ideas and a few images from wikipedia and books by Alpaydin, Duda/Hart/ Stork, and Bishop. Updated Fall 205) Regression Learning Task There

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 Tobler s Law All places are related, but nearby places are related more than distant places Corollary:

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

Lecture 9: Introduction to Spline Curves

Lecture 9: Introduction to Spline Curves Lecture 9: Introduction to Spline Curves Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points (knots) and a function that generates a curve through

More information

COMP3421. Global Lighting Part 2: Radiosity

COMP3421. Global Lighting Part 2: Radiosity COMP3421 Global Lighting Part 2: Radiosity Recap: Global Lighting The lighting equation we looked at earlier only handled direct lighting from sources: We added an ambient fudge term to account for all

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Spatial Interpolation - Geostatistics 4/3/2018

Spatial Interpolation - Geostatistics 4/3/2018 Spatial Interpolation - Geostatistics 4/3/201 (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Distance between pairs of points Lag Mean Tobler s Law All places are related, but nearby places

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 3, 208 Locality sensitive hashing for approximate NN

More information

TECHNICAL REPORT NO December 11, 2001

TECHNICAL REPORT NO December 11, 2001 DEPARTMENT OF STATISTICS University of Wisconsin 2 West Dayton St. Madison, WI 5376 TECHNICAL REPORT NO. 48 December, 2 Penalized Log Likelihood Density Estimation, via Smoothing-Spline ANOVA and rangacv

More information

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked Plotting Menu: QCExpert Plotting Module graphs offers various tools for visualization of uni- and multivariate data. Settings and options in different types of graphs allow for modifications and customizations

More information

Four equations are necessary to evaluate these coefficients. Eqn

Four equations are necessary to evaluate these coefficients. Eqn 1.2 Splines 11 A spline function is a piecewise defined function with certain smoothness conditions [Cheney]. A wide variety of functions is potentially possible; polynomial functions are almost exclusively

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Robust Poisson Surface Reconstruction

Robust Poisson Surface Reconstruction Robust Poisson Surface Reconstruction V. Estellers, M. Scott, K. Tew, and S. Soatto Univeristy of California, Los Angeles Brigham Young University June 2, 2015 1/19 Goals: Surface reconstruction from noisy

More information

Basis Functions. Volker Tresp Summer 2017

Basis Functions. Volker Tresp Summer 2017 Basis Functions Volker Tresp Summer 2017 1 Nonlinear Mappings and Nonlinear Classifiers Regression: Linearity is often a good assumption when many inputs influence the output Some natural laws are (approximately)

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 3 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 15 5633-Numerical Methods Organisational Assignment

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Multivariate Conditional Distribution Estimation and Analysis

Multivariate Conditional Distribution Estimation and Analysis IT 14 62 Examensarbete 45 hp Oktober 14 Multivariate Conditional Distribution Estimation and Analysis Sander Medri Institutionen för informationsteknologi Department of Information Technology Abstract

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

CPSC 340: Machine Learning and Data Mining. More Regularization Fall 2017

CPSC 340: Machine Learning and Data Mining. More Regularization Fall 2017 CPSC 340: Machine Learning and Data Mining More Regularization Fall 2017 Assignment 3: Admin Out soon, due Friday of next week. Midterm: You can view your exam during instructor office hours or after class

More information

A Comparative Study of LOWESS and RBF Approximations for Visualization

A Comparative Study of LOWESS and RBF Approximations for Visualization A Comparative Study of LOWESS and RBF Approximations for Visualization Michal Smolik, Vaclav Skala and Ondrej Nedved Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, CZ 364 Plzen,

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K.

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K. A toolbo of smooths Simon Wood Mathematical Sciences, University of Bath, U.K. Smooths for semi-parametric GLMs To build adequate semi-parametric GLMs requires that we use functions with appropriate properties.

More information

Statistical Modeling with Spline Functions Methodology and Theory

Statistical Modeling with Spline Functions Methodology and Theory This is page 1 Printer: Opaque this Statistical Modeling with Spline Functions Methodology and Theory Mark H Hansen University of California at Los Angeles Jianhua Z Huang University of Pennsylvania Charles

More information

Remark. Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 331

Remark. Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 331 Remark Reconsidering the motivating example, we observe that the derivatives are typically not given by the problem specification. However, they can be estimated in a pre-processing step. A good estimate

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING Luca Bortolussi Department of Mathematics and Geosciences University of Trieste Office 238, third floor, H2bis luca@dmi.units.it Trieste, Winter Semester

More information

NONPARAMETRIC REGRESSION TECHNIQUES

NONPARAMETRIC REGRESSION TECHNIQUES NONPARAMETRIC REGRESSION TECHNIQUES C&PE 940, 28 November 2005 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 864-2093 Overheads and other resources available at: http://people.ku.edu/~gbohling/cpe940

More information

Statistical Modeling with Spline Functions Methodology and Theory

Statistical Modeling with Spline Functions Methodology and Theory This is page 1 Printer: Opaque this Statistical Modeling with Spline Functions Methodology and Theory Mark H. Hansen University of California at Los Angeles Jianhua Z. Huang University of Pennsylvania

More information

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni Nonparametric Risk Attribution for Factor Models of Portfolios October 3, 2017 Kellie Ottoboni Outline The problem Page 3 Additive model of returns Page 7 Euler s formula for risk decomposition Page 11

More information

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines CS 475 / CS 675 - Computer Graphics Modelling Curves 3 - Bézier Splines n P t = i=0 No local control. B i J n,i t with 0 t 1 J n,i t = n i t i 1 t n i Degree restricted by the control polygon. http://www.cs.mtu.edu/~shene/courses/cs3621/notes/spline/bezier/bezier-move-ct-pt.html

More information

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Generalized Additive Models

Generalized Additive Models :p Texts in Statistical Science Generalized Additive Models An Introduction with R Simon N. Wood Contents Preface XV 1 Linear Models 1 1.1 A simple linear model 2 Simple least squares estimation 3 1.1.1

More information

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017 CPSC 340: Machine Learning and Data Mining Kernel Trick Fall 2017 Admin Assignment 3: Due Friday. Midterm: Can view your exam during instructor office hours or after class this week. Digression: the other

More information

Nonlinearity and Generalized Additive Models Lecture 2

Nonlinearity and Generalized Additive Models Lecture 2 University of Texas at Dallas, March 2007 Nonlinearity and Generalized Additive Models Lecture 2 Robert Andersen McMaster University http://socserv.mcmaster.ca/andersen Definition of a Smoother A smoother

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Automated Parameterization of the Joint Space Dynamics of a Robotic Arm. Josh Petersen

Automated Parameterization of the Joint Space Dynamics of a Robotic Arm. Josh Petersen Automated Parameterization of the Joint Space Dynamics of a Robotic Arm Josh Petersen Introduction The goal of my project was to use machine learning to fully automate the parameterization of the joint

More information

A dimension adaptive sparse grid combination technique for machine learning

A dimension adaptive sparse grid combination technique for machine learning A dimension adaptive sparse grid combination technique for machine learning Jochen Garcke Abstract We introduce a dimension adaptive sparse grid combination technique for the machine learning problems

More information

Cubic smoothing spline

Cubic smoothing spline Cubic smooting spline Menu: QCExpert Regression Cubic spline e module Cubic Spline is used to fit any functional regression curve troug data wit one independent variable x and one dependent random variable

More information

Non-Parametric Modeling

Non-Parametric Modeling Non-Parametric Modeling CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Non-Parametric Density Estimation Parzen Windows Kn-Nearest Neighbor

More information

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines DATA MINING LECTURE 10B Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines NEAREST NEIGHBOR CLASSIFICATION 10 10 Illustrating Classification Task Tid Attrib1

More information

Perceptron as a graph

Perceptron as a graph Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 10 th, 2007 2005-2007 Carlos Guestrin 1 Perceptron as a graph 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-6 -4-2

More information

Generalized additive models I

Generalized additive models I I Patrick Breheny October 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/18 Introduction Thus far, we have discussed nonparametric regression involving a single covariate In practice, we often

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information