Lesson 6 MA Nick Egbert

Size: px
Start display at page:

Download "Lesson 6 MA Nick Egbert"

Transcription

1 Overview From kindergarten we all know ow to find te slope of a line: rise over run, or cange in over cange in. We want to be able to determine slopes of functions wic are not lines. To do tis we use te idea of te derivative, wic is te instantaneous rate of cange at a single point. Lesson Secant and tangent lines Before we figure out ow to formall define te derivative we first need te notion of a secant line and a tangent line. Consider te grap of f() below. f() a b Te red line wic passes troug te points (a, f(a)) and (b, f(b)) is called a secant line. In general an line wic intersects te curve at two points we call a secant line. Te green line above is called a tangent line at a. In oter words, a tangent line touces (but does not cross) te curve locall. Te word locall ere just means tat it s possible for te line to intersect te curve at multiple points. If tis appens we just restrict our attention to a smaller interval. For eample, if we etended te green line to te left, we would eventuall cross te curve at some negative -value. We are eventuall after te slope of te tangent line at a, wic is wat we will call te derivative of f at a. Tis is no eas task, so we start wit an easier problem: finding te slope of te secant line between a and b. As we mentioned before, we alread know ow to do tis from kindergarten. Te slope of te secant line between te points (a, f(a)) and (b, f(b)) is given b slope f(b) f(a). b a So ow are we going to find te slope of te tangent line at a? Using te notion of limits from te previous few lessons of course! If we imagine moving b closer and closer to a, ten eventuall our secant line will move into te tangent line. To visualize tis, we ll sow a progression of a few graps tat demonstrate tis idea. 1

2 f() f() f() f() Te difference quotient Now tat we know were we re eaded, let us again consider te original grap wit te secant line. f() a b We will denote b a; tat is, is te distance along te -ais from a to b. Some people will also denote tis. Tis means tat we can rewrite b a +, and ten we can write te slope of te secant line as slope f(a + ) f(a) (a + ) a Notice tat we can simplif te denominator b canceling out te a and a. We call tis te difference quotient, wic we often denote f(a + ) f(a) 2

3 Te important takeawa from te difference quotient is tat it is just te slope of te secant line between a and b a +. Recall tat we wanted to move te point (b, f(b)) closer and closer to te point (a, f(a)). Matematicall tis means we want to take te limit at goes to 0. Since te derivative is also a function of (meaning tat te point a tat we picked wasn t special), we ll replace a wit, and we ave te following definition. Te derivative of f() at, denoted f () is f f( + ) f() () lim. 0 Remark. Te definition in te bo above is often referred to as te formal definition of te derivative. Alternativel, finding te derivative in tis manner is referred to as using te limit process to find te slope of te tangent line. Important. In subsequent lessons we will learn more efficient metods for computing te derivative. However, trougout tis lesson and wenever specified, ou must compute te derivative in tis manner. Eamples Eample 1. Use te limit process to find te slope of te tangent line to te grap of at. f() 8 3 Solution. Step one in tese problems is alwas to find te difference quotient, DQ. Here, So Ten b definition, f( + ) 8 3( + ) f( + ) f() (8 3) f () lim Tis souldn t be surprising since f() is a line wose slope is 3. 3

4 Note. Recall tat f( + ) means tat we want to plug in ( + ) for ever instance of tat we see. Tat is, we are evaluating f at +. Eample 2. Use te limit process to find te slope of te tangent line to te grap of at. Solution. In tis case, Now, Finall, f() f( + ) 6( + ) ( ) f( + ) f() ( ) (12 + 6) f () lim 0 (12 + 6) 12. Remark. Simplifing te difference quotient completel is generall te ke to being able to take te limit as 0. Notice tat as we tried just evaluating at 0 from te beginning, we would ave gotten 0 0. Eample 3. Find te equation of te tangent line to te grap of at 1. f() Remark. In order to find te equation of a line, we need to pieces of information: te slope and a point. From tere we will be able to use point-slope form to determine te equation of te line: m( 1 ) + 1 were m denotes te slope of te line and ( 1, 1 ) is a point on tat line. 4

5 Solution to Eample 3. B te above remark we need te slope and a point. Te onl point we know for sure tat will be on te tangent line is at 1. To find te -value, we simpl plug 1 into f(). Doing so, we get f(1) 7 6. So (1, 7/6) is a point on te tangent line. Now we need to find te slope. As ou ll recall f (1) is te slope of te tangent line at 1. So we need to find te derivative evaluated at 1. We start b computing te difference quotient. Observe first tat f( + ) 7 6( + ) 2 so tat f( + ) f() 7 6(+) (+) 2 7(+)2 6 2 (+) (+) (+) ( + ) ( + ) ( ) 6 2 ( + ) ( + ) ( + ) 2 ( 14 7) 6 2 ( + ) 2 ( 14 7) 6 2 ( + ) 2. And finall we are read to take te limit as 0. f ( 14 () lim 0 7) ( + ) But unfortunatel we re still not finised. We need to find te equation of te tangent line 5

6 at 1. As mentioned above, te slope of tis line is simpl f (1). Well, f (1) 7 3(1) Now all tat s left to do is to plug tis into point-slope form: 7 3 ( 1) Remark. Te given answer is a fine and complete final answer. Point-slope form is an equation of a line. If ou prefer slope-intercept form or if ou are asked to give an answer in slope-intercept form, we could also write tis as 7 3 ( 1) In particular, on Loncapa ou ma leave our answer in point-slope form. 6

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

Section 1.2 The Slope of a Tangent

Section 1.2 The Slope of a Tangent Section 1.2 Te Slope of a Tangent You are familiar wit te concept of a tangent to a curve. Wat geometric interpretation can be given to a tangent to te grap of a function at a point? A tangent is te straigt

More information

MTH-112 Quiz 1 - Solutions

MTH-112 Quiz 1 - Solutions MTH- Quiz - Solutions Words in italics are for eplanation purposes onl (not necessar to write in te tests or. Determine weter te given relation is a function. Give te domain and range of te relation. {(,

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

4.2 The Derivative. f(x + h) f(x) lim

4.2 The Derivative. f(x + h) f(x) lim 4.2 Te Derivative Introduction In te previous section, it was sown tat if a function f as a nonvertical tangent line at a point (x, f(x)), ten its slope is given by te it f(x + ) f(x). (*) Tis is potentially

More information

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector.

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Adam Clinc Lesson: Deriving te Derivative Grade Level: 12 t grade, Calculus I class Materials: Witeboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Goals/Objectives:

More information

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

CHAPTER 7: TRANSCENDENTAL FUNCTIONS

CHAPTER 7: TRANSCENDENTAL FUNCTIONS 7.0 Introduction and One to one Functions Contemporary Calculus 1 CHAPTER 7: TRANSCENDENTAL FUNCTIONS Introduction In te previous capters we saw ow to calculate and use te derivatives and integrals of

More information

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by Section. Te Tangent Line Problem 89 87. r 5 sin, e, 88. r sin sin Parabola 9 9 Hperbola e 9 9 9 89. 7,,,, 5 7 8 5 ortogonal 9. 5, 5,, 5, 5. Not multiples of eac oter; neiter parallel nor ortogonal 9.,,,

More information

More on Functions and Their Graphs

More on Functions and Their Graphs More on Functions and Teir Graps Difference Quotient ( + ) ( ) f a f a is known as te difference quotient and is used exclusively wit functions. Te objective to keep in mind is to factor te appearing in

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

Limits and Continuity

Limits and Continuity CHAPTER Limits and Continuit. Rates of Cange and Limits. Limits Involving Infinit.3 Continuit.4 Rates of Cange and Tangent Lines An Economic Injur Level (EIL) is a measurement of te fewest number of insect

More information

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

( )( ) ( ) MTH 95 Practice Test 1 Key = 1+ x = f x. g. ( ) ( ) The only zero of f is 7 2. The only solution to g( x ) = 4 is 2.

( )( ) ( ) MTH 95 Practice Test 1 Key = 1+ x = f x. g. ( ) ( ) The only zero of f is 7 2. The only solution to g( x ) = 4 is 2. Mr. Simonds MTH 95 Class MTH 95 Practice Test 1 Key 1. a. g ( ) ( ) + 4( ) 4 1 c. f ( x) 7 7 7 x 14 e. + 7 + + 4 f g 1+ g. f 4 + 4 7 + 1+ i. g ( 4) ( 4) + 4( 4) k. g( x) x 16 + 16 0 x 4 + 4 4 0 x 4x+ 4

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 2.1 Derivatives and Rates of Change In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a slope of a tangent line, or a velocity, or any instantaneous

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

2.4. Rates of Change and Tangent Lines. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

2.4. Rates of Change and Tangent Lines. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 2.4 Rates of Change and Tangent Lines Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall What you ll learn about Average Rates of Change Tangent to a Curve Slope of a Curve Normal

More information

11.3 The Tangent Line Problem

11.3 The Tangent Line Problem 11.3 The Tangent Line Problem Copyright Cengage Learning. All rights reserved. What You Should Learn Understand the tangent line problem. Use a tangent line to approximate the slope of a graph at a point.

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

6 Computing Derivatives the Quick and Easy Way

6 Computing Derivatives the Quick and Easy Way Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we

More information

The Euler and trapezoidal stencils to solve d d x y x = f x, y x

The Euler and trapezoidal stencils to solve d d x y x = f x, y x restart; Te Euler and trapezoidal stencils to solve d d x y x = y x Te purpose of tis workseet is to derive te tree simplest numerical stencils to solve te first order d equation y x d x = y x, and study

More information

, etc. Let s work with the last one. We can graph a few points determined by this equation.

, etc. Let s work with the last one. We can graph a few points determined by this equation. 1. Lines By a line, we simply mean a straight curve. We will always think of lines relative to the cartesian plane. Consider the equation 2x 3y 4 = 0. We can rewrite it in many different ways : 2x 3y =

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

Numerical Derivatives

Numerical Derivatives Lab 15 Numerical Derivatives Lab Objective: Understand and implement finite difference approximations of te derivative in single and multiple dimensions. Evaluate te accuracy of tese approximations. Ten

More information

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result RT. Complex Fractions Wen working wit algebraic expressions, sometimes we come across needing to simplify expressions like tese: xx 9 xx +, xx + xx + xx, yy xx + xx + +, aa Simplifying Complex Fractions

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

EXERCISES 6.1. Cross-Sectional Areas. 6.1 Volumes by Slicing and Rotation About an Axis 405

EXERCISES 6.1. Cross-Sectional Areas. 6.1 Volumes by Slicing and Rotation About an Axis 405 6. Volumes b Slicing and Rotation About an Ais 5 EXERCISES 6. Cross-Sectional Areas In Eercises and, find a formula for te area A() of te crosssections of te solid perpendicular to te -ais.. Te solid lies

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

What is the reasonable domain of this volume function? (c) Can there exist a volume of 0? (d) Estimate a maximum volume for the open box.

What is the reasonable domain of this volume function? (c) Can there exist a volume of 0? (d) Estimate a maximum volume for the open box. MA 15800 Lesson 11 Summer 016 E 1: From a rectangular piece of cardboard having dimensions 0 inches by 0 inches, an open bo is to be made by cutting out identical squares of area from each corner and,

More information

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved.

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved. Differentiation Copyright Cengage Learning. All rights reserved. The Derivative and the Tangent Line Problem Copyright Cengage Learning. All rights reserved. 1 Objectives Find the slope of the tangent

More information

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval.

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval. 1.1 Concepts: 1. f() is INCREASING on an interval: Definition: If a < b, then f(a) < f(b) for every a and b in that interval. A positive slope for the secant line. A positive slope for the tangent line.

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

Haar Transform CS 430 Denbigh Starkey

Haar Transform CS 430 Denbigh Starkey Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

Notes: Dimensional Analysis / Conversions

Notes: Dimensional Analysis / Conversions Wat is a unit system? A unit system is a metod of taking a measurement. Simple as tat. We ave units for distance, time, temperature, pressure, energy, mass, and many more. Wy is it important to ave a standard?

More information

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem 1. Secant lines and tangents The derivative of a function at one point A secant line (or just secant ) is a line passing through two points of a curve. As the two points are brought together (or, more

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 9 duce a scatter plot in the viewing window. Choose 8 for the viewing window. (B) It appears that a sine curve of the form k

More information

1.4 RATIONAL EXPRESSIONS

1.4 RATIONAL EXPRESSIONS 6 CHAPTER Fundamentals.4 RATIONAL EXPRESSIONS Te Domain of an Algebraic Epression Simplifying Rational Epressions Multiplying and Dividing Rational Epressions Adding and Subtracting Rational Epressions

More information

Fault Localization Using Tarantula

Fault Localization Using Tarantula Class 20 Fault localization (cont d) Test-data generation Exam review: Nov 3, after class to :30 Responsible for all material up troug Nov 3 (troug test-data generation) Send questions beforeand so all

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

Proofs of Derivative Rules

Proofs of Derivative Rules Proos o Derivative Rules Ma 16010 June 2018 Altoug proos are not generally a part o tis course, it s never a ba iea to ave some sort o explanation o wy tings are te way tey are. Tis is especially relevant

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

1 Teaching Objective(s) *Lesson Plan designed for 3-5 days The student will: II (c): complete a function based on a given rule.

1 Teaching Objective(s) *Lesson Plan designed for 3-5 days The student will: II (c): complete a function based on a given rule. ! "# Teaching Objective(s) *Lesson Plan designed for 3-5 das The student will: II (c): complete a function based on a given rule. II (e): appl the principles of graphing in the coordinate sstem. II (f):

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON LESSON THE INVERSE GRAPH The reflection of a graph in the line = will be the graph of its inverse. f() f () The line = is drawn as the dotted line. Imagine folding the page along the dotted line, the two

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

CHECK Your Understanding

CHECK Your Understanding CHECK Your Understanding. State the domain and range of each relation. Then determine whether the relation is a function, and justif our answer.. a) e) 5(, ), (, 9), (, 7), (, 5), (, ) 5 5 f) 55. State

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T9 GRAPHING LINEAR EQUATIONS REVIEW - 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) -INTERCEPT = the point where the graph touches or crosses the -ais. It occurs when = 0. ) -INTERCEPT = the

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

4.1 The Coordinate Plane

4.1 The Coordinate Plane 4. The Coordinate Plane Goal Plot points in a coordinate plane. VOCABULARY Coordinate plane Origin -ais -ais Ordered pair -coordinate -coordinate Quadrant Scatter plot Copright McDougal Littell, Chapter

More information

Example 1: Use the graph of the function f given below to find the following. a. Find the domain of f and list your answer in interval notation

Example 1: Use the graph of the function f given below to find the following. a. Find the domain of f and list your answer in interval notation When working with the graph of a function, the inputs (the elements of the domain) are always the values on the horizontal ais (-ais) and the outputs (the elements of the range) are always the values on

More information

Integrated Algebra A Notes/Homework Packet 9

Integrated Algebra A Notes/Homework Packet 9 Name Date Integrated Algebra A Notes/Homework Packet 9 Lesson Homework Graph Using the Calculator HW # Graph with Slope/Intercept Method HW # Graph with Slope/Intercept Method-Continued HW #3 Review Put

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Implicit Differentiation - the basics

Implicit Differentiation - the basics x x 6 Implicit Differentiation - the basics Implicit differentiation is the name for the method of differentiation that we use when we have not explicitl solved for in terms of x (that means we did not

More information

We can determine this with derivatives: the graph rises where its slope is positive.

We can determine this with derivatives: the graph rises where its slope is positive. Math 1 Derivatives and Graphs Stewart. Increasing and decreasing functions. We will see how to determine the important features of a graph y = f(x) from the derivatives f (x) and f (x), summarizing our

More information

z = x 2 xy + y 2 clf // c6.1(2)contour Change to make a contour plot of z=xy.

z = x 2 xy + y 2 clf // c6.1(2)contour Change to make a contour plot of z=xy. 190 Lecture 6 3D equations formatting Open Lecture 6. See Capter 3, 10 of text for details. Draw a contour grap and a 3D grap of z = 1 x 2 y 2 = an upper emispere. For Classwork 1 and 2, you will grap

More information

Unit #5 - Implicit Differentiation, Related Rates Section 3.7

Unit #5 - Implicit Differentiation, Related Rates Section 3.7 Unit #5 - Implicit Differentiation, Relate Rates Section 3.7 Some material from Calculus, Single an MultiVariable b Hughes-Hallett, Gleason, McCallum et. al. Copright 005 b John Wile & Sons, Inc. This

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 4 Friday Homework (1321979) Question 1234567891011121314151617181920 1. Question DetailsSCalcET6 2.7.003. [1287988] Consider te parabola y 7x - x 2. (a) Find te slope of te tangent line to te parabola

More information

Sect Linear Inequalities in Two Variables

Sect Linear Inequalities in Two Variables Sect 9. - Linear Inequalities in Two Variables Concept # Graphing a Linear Inequalit in Two Variables Definition Let a, b, and c be real numbers where a and b are not both zero. Then an inequalit that

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

Section 4.3 Features of a Line

Section 4.3 Features of a Line Section.3 Features of a Line Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif the - and -intercepts of a line. Plotting points in the --plane

More information

MAC-CPTM Situations Project

MAC-CPTM Situations Project raft o not use witout permission -P ituations Project ituation 20: rea of Plane Figures Prompt teacer in a geometry class introduces formulas for te areas of parallelograms, trapezoids, and romi. e removes

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

2D transformations Homogeneous coordinates. Uses of Transformations

2D transformations Homogeneous coordinates. Uses of Transformations 2D transformations omogeneous coordinates Uses of Transformations Modeling: position and resize parts of a complex model; Viewing: define and position te virtual camera Animation: define ow objects move/cange

More information

Learning Objectives for Section Graphs and Lines. Cartesian coordinate system. Graphs

Learning Objectives for Section Graphs and Lines. Cartesian coordinate system. Graphs Learning Objectives for Section 3.1-2 Graphs and Lines After this lecture and the assigned homework, ou should be able to calculate the slope of a line. identif and work with the Cartesian coordinate sstem.

More information

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text)

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text) MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of tet) The property of the graph of a function curving upward or downward is defined as the concavity of the graph of a function. Concavity if how

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information

4.4. Concavity and Curve Sketching. Concavity

4.4. Concavity and Curve Sketching. Concavity 4.4 Concavit and Curve Sketching 267 4.4 Concavit and Curve Sketching f' decreases CONCAVE DOWN 3 f' increases 0 CONCAVE UP FIGURE 4.25 The graph of ƒsd = 3 is concave down on s - q, 0d and concave up

More information

Math 1: Solutions to Written Homework 1 Due Friday, October 3, 2008

Math 1: Solutions to Written Homework 1 Due Friday, October 3, 2008 Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates, the tutors and/or the instructors. After working doing so, please write up

More information

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions.

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions. 1-1 Functions What You ll Learn Scan Lesson 1- Write two things that ou alread know about functions. Lesson 1-1 Active Vocabular New Vocabular Write the definition net to each term. domain dependent variable

More information

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form.

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. A. Intro to Graphs of Quadratic Equations:! = ax + bx + c A is a function

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

Graphs, Linear Equations, and Functions

Graphs, Linear Equations, and Functions Graphs, Linear Equations, and Functions. The Rectangular R. Coordinate Fractions Sstem bjectives. Interpret a line graph.. Plot ordered pairs.. Find ordered pairs that satisf a given equation. 4. Graph

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267 Slide / 67 Slide / 67 lgebra I Graphing Linear Equations -- www.njctl.org Slide / 67 Table of ontents Slide () / 67 Table of ontents Linear Equations lick on the topic to go to that section Linear Equations

More information

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards Contents 1.1 Functions.............................................. 2 1.2 Analzing Graphs of Functions.................................. 5 1.3 Shifting and Reflecting Graphs..................................

More information

Section 4.4 Concavity and Points of Inflection

Section 4.4 Concavity and Points of Inflection Section 4.4 Concavit and Points of Inflection In Chapter 3, ou saw that the second derivative of a function has applications in problems involving velocit and acceleration or in general rates-of-change

More information

Outputs. Inputs. the point where the graph starts, as we ll see on Example 1.

Outputs. Inputs. the point where the graph starts, as we ll see on Example 1. We ve seen how to work with functions algebraically, by finding domains as well as function values. In this set of notes we ll be working with functions graphically, and we ll see how to find the domain

More information

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity MA123, Chapter 6: Etreme values, Mean Value Theorem, Curve sketching, and Concavit Chapter Goals: Appl the Etreme Value Theorem to find the global etrema for continuous function on closed and bounded interval.

More information

Week 3. Topic 5 Asymptotes

Week 3. Topic 5 Asymptotes Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique).

More information

5.4 Sum and Difference Formulas

5.4 Sum and Difference Formulas 380 Capter 5 Analtic Trigonometr 5. Sum and Difference Formulas Using Sum and Difference Formulas In tis section and te following section, ou will stud te uses of several trigonometric identities and formulas.

More information

F8-18 Finding the y-intercept from Ordered Pairs

F8-18 Finding the y-intercept from Ordered Pairs F8-8 Finding the -intercept from Ordered Pairs Pages 5 Standards: 8.F.A., 8.F.B. Goals: Students will find the -intercept of a line from a set of ordered pairs. Prior Knowledge Required: Can add, subtract,

More information

Name: NOTES 5: LINEAR EQUATIONS AND THEIR GRAPHS. Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 RATE OF CHANGE AND SLOPE. A. Finding rates of change

Name: NOTES 5: LINEAR EQUATIONS AND THEIR GRAPHS. Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 RATE OF CHANGE AND SLOPE. A. Finding rates of change NOTES : LINEAR EQUATIONS AND THEIR GRAPHS Name: Date: Period: Mrs. Nguen s Initial: LESSON. RATE OF CHANGE AND SLOPE A. Finding rates of change vertical change Rate of change = = change in x The rate of

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information