Week 10. Topic 1 Polynomial Functions

Size: px
Start display at page:

Download "Week 10. Topic 1 Polynomial Functions"

Transcription

1 Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up in a variet of applications where the simpler graphs of our basic functions aren t quite right. We alread use some polnomial functions: f() = 2 and g() = 3 are ver simple polnomials, and we ve seen more complicated cubics like h() = ( 1)( + 2) 2. In fact, here s the graph of h(): 5-5 While we re looking at the graph, let s look at some relationships between the graph and the equation. If we epand h(), we get h() = Power functions are in the form f() = k n, so like 3 2 or The eponents are non-negative integers onl.

2 Week 10 Topic 1 Polnomial Functions 2 You ma remember from Math 65 that the polnomial has degree 3. In general, the degree is the biggest eponent 2. Degree of a Polnomial Function Degree tells us a few things about the graph: For a polnomial function with Degree = n 1. The graph has at most n zeros For eample, a quadratic is degree 2 and has 0, 1, or 2 zeros. 2. The graph turns around at most (n 1) times For eample, a quadratic turns around once; the cubic above turns around 2 times. The function f() = 3 never turns around. 3. In the long-run, the graph looks like the graph of the term with the highest degree To see what point 3 means, let s look at the cubic equation h() = at different zoom levels: See how the dip becomes less and less noticeable as we zoom out further and further? Think about what happens when ou put a big number into h(). 2 Assuming the eponents are all positive and there s onl one variable

3 Week 10 Topic 1 Polnomial Functions 3 For eample, h(10) = The first term is 1000 and the second term is onl 300. Or evaluate h(100) = The first term is 1,000,000, and the second term is onl 30,000. The 3 term grows so much faster than the 2 term (even compared with 3 2 ), that eventuall it dominates what the graph looks like. The other terms contributions to the total output (-value) are smaller and smaller as gets bigger. Zeroes of a Polnomial Function Degree gives us some information. What else can we get? If h() = ( 1)( + 2) 2, here s the graph again: 5-5 The zeros of h are -2 and 1. Notice the formula for h has factors of ( 1) and ( + 2). B the zero-product principle, when ou substitute in -2, ( + 2) = 0, which makes h = 0. If ou have a polnomial in factored form, identifing the zeros is prett eas 3, but we can see even more than that. Notice we could also write h() = ( 1)( + 2)( + 2). The ( + 2) is a repeated factor. We sa it has multiplicit 2. The factor ( 1) onl appears once. It has multiplicit 1. 3 And if ou have a function like g() = ( + 1)( + 2)( + 3), the onl zeros it can have are 0, -1, -2, and -3. Don t add others to our graph.

4 Week 10 Topic 1 Polnomial Functions 4 Look at the graph s behavior near = -2. See how it touches the -ais but turns around without passing through? Not so at = 1 where the graph goes right through the ais without a pause. In general, an time a polnomial has a zero of even multiplicit (2, 4, 6, etc.), the graph touches at that point but does not pass through. The function will pass through the -ais for an zero with odd multiplicit (1, 3, 5, etc.) This makes sense when ou look at the graph of a quadratic function with onl one real zero. The graph of f() = ( + 2) 2 looks like this: This is the graph of = 2 shifted left 2 units. It has the same behavior near = -2 as the graph of h() on the previous page: it touches the ais and turns around. Of course, the -values are negative for h() and positive for f(); the other factors affect what direction it goes. 5 Eample 1: Sketch the graph of P() = ( 1) 2 (3 + 2)( + 3) 3 Solution: First, get the zeroes and the multiplicit: Zero Multiplicit Behavior 1 2 Touches and turns around, like a parabola -2/3 1 Passes right though, like a line -3 3 Flattens out and passes through, like = 3 Another eas point to get is the -intercept: P(0) = (0 1) 2 ( )(0 + 3) 3 P(0) = 54

5 Week 10 Topic 1 Polnomial Functions 5 Now put those on the graph: Known Points We also need the function s long-run behavior. If we epand out the polnomial, we get: P() = The long run behavior is like = 3 6, so we know P() is decreasing, has some zeroes and ups and downs, and then increases again eventuall. Notice we don t even need to epand the whole polnomial, we can just look at the pieces with in them and their coefficients. (Look at the formula on the previous page, make sure that makes sense.) We ll add long-run behavior arrows to our graph: Known Points <-- Long-Run Behavior Arrow Long-Run Behavior Arrow --> Now we pla Graph Detective and fill in the missing parts of the curve. Look again at the table with the multiplicit of each zero. As we read from left to right, the graph decreases, flattens out near (-3, 0), and passes through. The graph has to pass through (-2/3, 0), so it has to turn around (we don t know where eactl, but we know it has to) and go through there.

6 Week 10 Topic 1 Polnomial Functions 6 After that, it has to hit the -ais at (1, 0) and turn around. So it must increase to some maimum near = 0 (again, not sure where eactl, could be on either side) pass through (0, 54), and decrease to (1, 0). Then it can hit the ais, turn around, and meet up with the long-run behavior arrow. Here s what the actual graph looks like. P() We need a graphing utilit to get this eactl, but we can figure out the basic shape and get a rough idea with just a little information from the equation. As long as our graph shows all that information (intercepts, multiplicit, long-run behavior, detective work in-between), ou re doing great! Eample 2: Find a formula for the polnomial function shown in this graph. Note the point (0, 9) is on the graph. Q() Solution: Looking at the long-run behavior, we know it s a polnomial of odd degree, with an - ais reflection. Let s make a table to summarize the information from the zeroes:

7 Week 10 Topic 1 Polnomial Functions 7 Zero Multiplicit Factor of Q() = -4 2 (or 4, 6, 8, etc.) ( + 4) 2 = 2 3 (or 5, 7, 9, etc.) ( 2) 3 Based on this information, we can write the function as: Q() = a( + 4) 2 ( 2) 3 We put the constant a out front as a shape factor. We need that to make Q(0) = 9 and account for the -ais reflection. We solve for a using the -intercept: And our final function is to be sure matches the graph. 9 = a(0 + 4) (0 3) 9 = a = a Q( ) ( 4) ( 2) = +, which we check on the calculator Summar In conclusion, if ou want to graph a polnomial function Identif the zeros and the behavior near the zeros Identif the long-run behavior Sketch a smooth continuous curve that fits the conditions above Eamples 1 and 2 are ver common problems. If the final eam has a big question about polnomials (and it probabl will), it ll look ver similar to one of those two. Rational functions net week keep all the same ideas we have for polnomials, so get these down and it ll be smoother sailing for the rest of the term. Tetbook Book pages (ou can skip the last bit about building cubic models from data). The section seems long, but there are onl a few ke ideas. You have to know all of them to sketch a good graph of a polnomial though, so take notes or make flash cards or whatever ou need to do so that ou can see a polnomial and instantl think of all the things ou know.

8 Week 10 Topic 1 Polnomial Functions 8 Be especiall careful not to mi up our facts about polnomials with facts about eponentials. The both have formulas with eponents, but polnomial and power functions have numbers in the eponents. Eponential functions have the variable in the eponent.

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

Week 3. Topic 5 Asymptotes

Week 3. Topic 5 Asymptotes Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique).

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions Math 3200 Unit I Ch 3 - Polnomial Functions 1 Unit I - Chapter 3 Polnomial Functions 3.1 Characteristics of Polnomial Functions Goal: To Understand some Basic Features of Polnomial functions: Continuous

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam Sections.1,.2,.3, 8.1,8.6 & 8.7 Practice for the Eam MAC 1 -- Sulivan 8th Ed Name: Date: Class/Section: State whether the function is a polnomial function or not. If it is, give its degree. If it is not,

More information

Graphing Polynomial Functions

Graphing Polynomial Functions LESSON 7 Graphing Polnomial Functions Graphs of Cubic and Quartic Functions UNDERSTAND A parent function is the most basic function of a famil of functions. It preserves the shape of the entire famil.

More information

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function?

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function? 3.3 Characteristics of Polnomial Functions in Factored Form INVESTIGATE the Math The graphs of the functions f () 5 1 and g() 5 1 are shown.? GOAL Determine the equation of a polnomial function that describes

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals . A Rational Shift in Behavior LEARnIng goals In this lesson, ou will: Analze rational functions with a constant added to the denominator. Compare rational functions in different forms. Identif vertical

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

Polynomial Functions I

Polynomial Functions I Name Student ID Number Group Name Group Members Polnomial Functions I 1. Sketch mm() =, nn() = 3, ss() =, and tt() = 5 on the set of aes below. Label each function on the graph. 15 5 3 1 1 3 5 15 Defn:

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Begin b graphing the standard quadratic function f() =. Then use transformations of this

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

Further Differentiation

Further Differentiation Worksheet 39 Further Differentiation Section Discriminant Recall that the epression a + b + c is called a quadratic, or a polnomial of degree The graph of a quadratic is called a parabola, and looks like

More information

1 Shapes of Power Functions

1 Shapes of Power Functions MA 1165 - Lecture 06 1 Wednesday, 1/28/09 1 Shapes of Power Functions I would like you to be familiar with the shape of the power functions, that is, the functions of the form f(x) = x n, (1) for n = 1,

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

Math College Algebra

Math College Algebra Math 5 - College Algebra Eam # - 08.0. Solutions. Below is the graph of a function f(), using the information on the graph, sketch on a separate graph the function F () = f( + ) +. Be sure to include important

More information

Graphing Review. Math Tutorial Lab Special Topic

Graphing Review. Math Tutorial Lab Special Topic Graphing Review Math Tutorial Lab Special Topic Common Functions and Their Graphs Linear Functions A function f defined b a linear equation of the form = f() = m + b, where m and b are constants, is called

More information

Functions Project Core Precalculus Extra Credit Project

Functions Project Core Precalculus Extra Credit Project Name: Period: Date Due: 10/10/1 (for A das) and 10/11/1(for B das) Date Turned In: Functions Project Core Precalculus Etra Credit Project Instructions and Definitions: This project ma be used during the

More information

Section 4.2 Graphs of Exponential Functions

Section 4.2 Graphs of Exponential Functions 238 Chapter 4 Section 4.2 Graphs of Eponential Functions Like with linear functions, the graph of an eponential function is determined by the values for the parameters in the function s formula. To get

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

Math 111 Lecture Notes Section 3.3: Graphing Rational Functions

Math 111 Lecture Notes Section 3.3: Graphing Rational Functions Math 111 Lecture Notes Section 3.3: Graphing Rational Functions A rational function is of the form R() = p() q() where p and q are polnomial functions. The zeros of a rational function occur where p()

More information

Re - do all handouts and do the review from the book. Remember to SHOW ALL STEPS. You must be able to solve analytically and then verify with a graph.

Re - do all handouts and do the review from the book. Remember to SHOW ALL STEPS. You must be able to solve analytically and then verify with a graph. Math 180 - Review Chapter 3 Name Re - do all handouts and do the review from the book. Remember to SHOW ALL STEPS. You must be able to solve analticall and then verif with a graph. Find the rational zeros

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) Chapter Outline. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

TIPS4RM: MHF4U: Unit 1 Polynomial Functions

TIPS4RM: MHF4U: Unit 1 Polynomial Functions TIPSRM: MHFU: Unit Polnomial Functions 008 .5.: Polnomial Concept Attainment Activit Compare and contrast the eamples and non-eamples of polnomial functions below. Through reasoning, identif attributes

More information

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions?

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions? .1 Graphing Polnomial Functions COMMON CORE Learning Standards HSF-IF.B. HSF-IF.C.7c Essential Question What are some common characteristics of the graphs of cubic and quartic polnomial functions? A polnomial

More information

4.2 Graphs of Rational Functions

4.2 Graphs of Rational Functions 0 Rational Functions. Graphs of Rational Functions In this section, we take a closer look at graphing rational functions. In Section., we learned that the graphs of rational functions ma have holes in

More information

Four Ways to Represent a Function: We can describe a specific function in the following four ways: * verbally (by a description in words);

Four Ways to Represent a Function: We can describe a specific function in the following four ways: * verbally (by a description in words); MA19, Activit 23: What is a Function? (Section 3.1, pp. 214-22) Date: Toda s Goal: Assignments: Perhaps the most useful mathematical idea for modeling the real world is the concept of a function. We eplore

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A rational function is of the form R() = p() q() where p and q are polnomial functions. A rational function is undefined where the denominator equals zero, as this would cause division b zero. The zeros

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Essential Question How many turning points can the graph of a polynomial function have?

Essential Question How many turning points can the graph of a polynomial function have? .8 Analzing Graphs of Polnomial Functions Essential Question How man turning points can the graph of a polnomial function have? A turning point of the graph of a polnomial function is a point on the graph

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions.

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions. YOU WILL NEED graph paper coloured pencils or pens graphing calculator or graphing software Eploring Quotients of Polnomial Functions EXPLORE the Math Each row shows the graphs of two polnomial functions.

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0 8. Graphs of Quadratic Functions In an earlier section, we have learned that the graph of the linear function = m + b, where the highest power of is 1, is a straight line. What would the shape of the graph

More information

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS 1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS: A graph can be drawn to represent are equation connecting two variables. There are different tpes of equations which

More information

4.3 Graph the function f by starting with the graph of y =

4.3 Graph the function f by starting with the graph of y = Math 0 Eam 2 Review.3 Graph the function f b starting with the graph of = 2 and using transformations (shifting, compressing, stretching, and/or reflection). 1) f() = -2-6 Graph the function using its

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T9 GRAPHING LINEAR EQUATIONS REVIEW - 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) -INTERCEPT = the point where the graph touches or crosses the -ais. It occurs when = 0. ) -INTERCEPT = the

More information

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions?

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions? 1.2 Characteristics of Polnomial Functions In Section 1.1, ou eplored the features of power functions, which are single-term polnomial functions. Man polnomial functions that arise from real-world applications

More information

Vocabulary. Term Page Definition Clarifying Example. dependent variable. domain. function. independent variable. parent function.

Vocabulary. Term Page Definition Clarifying Example. dependent variable. domain. function. independent variable. parent function. CHAPTER 1 Vocabular The table contains important vocabular terms from Chapter 1. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. dependent variable Term Page

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

Quadratics Functions: Review

Quadratics Functions: Review Quadratics Functions: Review Name Per Review outline Quadratic function general form: Quadratic function tables and graphs (parabolas) Important places on the parabola graph [see chart below] vertex (minimum

More information

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form QUADRATIC FUNCTIONS Investigating Quadratic Functions in Verte Form The two forms of a quadratic function that have been eplored previousl are: Factored form: f ( ) a( r)( s) Standard form: f ( ) a b c

More information

Lesson 3: Investigating the Parts of a Parabola

Lesson 3: Investigating the Parts of a Parabola Opening Exercise 1. Use the graph at the right to fill in the Answer column of the chart below. (You ll fill in the last column in Exercise 9.) Question Answer Bring in the Math! A. What is the shape of

More information

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition Calculus & Its Applications Larr J. Goldstein David La Nakhle I. Asmar David I. Schneider Thirteenth Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM20 2JE England and Associated Companies

More information

It s Not Complex Just Its Solutions Are Complex!

It s Not Complex Just Its Solutions Are Complex! It s Not Comple Just Its Solutions Are Comple! Solving Quadratics with Comple Solutions 15.5 Learning Goals In this lesson, ou will: Calculate comple roots of quadratic equations and comple zeros of quadratic

More information

4.1 Graph Quadratic Functions in

4.1 Graph Quadratic Functions in 4. Graph Quadratic Functions in Standard Form Goal p Graph quadratic functions. Your Notes VOCABULARY Quadratic function Parabola Verte Ais of smmetr Minimum and maimum value PARENT FUNCTION FOR QUADRATIC

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz Name: Block: Unit 4 Part 1: Graphing Quadratic Functions Da 1: Verte Form Da 2: Intercept Form Da 3: Standard Form Da 4: Review Da 5: Quiz 1 Quadratic Functions Da1: Introducing.. the QUADRATIC function

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions.

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions. 1-1 Functions What You ll Learn Scan Lesson 1- Write two things that ou alread know about functions. Lesson 1-1 Active Vocabular New Vocabular Write the definition net to each term. domain dependent variable

More information

7. f(x) = 1 2 x f(x) = x f(x) = 4 x at x = 10, 8, 6, 4, 2, 0, 2, and 4.

7. f(x) = 1 2 x f(x) = x f(x) = 4 x at x = 10, 8, 6, 4, 2, 0, 2, and 4. Section 2.2 The Graph of a Function 109 2.2 Eercises Perform each of the following tasks for the functions defined b the equations in Eercises 1-8. i. Set up a table of points that satisf the given equation.

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM FOM 11 T7 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM 1 1 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM I) THE STANDARD FORM OF A QUADRATIC FUNCTION (PARABOLA) IS = a +b +c. To graph a quadratic function

More information

Exponential Functions. Christopher Thomas

Exponential Functions. Christopher Thomas Mathematics Learning Centre Eponential Functions Christopher Thomas c 1998 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Eponential Functions 1.1 The functions =2 and =2 From our

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

NOTES: ALGEBRA FUNCTION NOTATION

NOTES: ALGEBRA FUNCTION NOTATION STARTER: 1. Graph f by completing the table. f, y -1 0 1 4 5 NOTES: ALGEBRA 4.1 FUNCTION NOTATION y. Graph f 4 4 f 4 4, y --5-4 - - -1 0 1 y A Brief Review of Function Notation We will be using function

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs Quadratic Functions: - functions defined by quadratic epressions (a 2 + b + c) o the degree of a quadratic function is ALWAYS 2 - the most common way to write a quadratic function (and the way we have

More information

Chapter 3. Exponential and Logarithmic Functions. Selected Applications

Chapter 3. Exponential and Logarithmic Functions. Selected Applications Chapter Eponential and Logarithmic Functions. Eponential Functions and Their Graphs. Logarithmic Functions and Their Graphs. Properties of Logarithms. Solving Eponential and Logarithmic Equations.5 Eponential

More information

SECONDARY MATH TRANSFORMATIONS

SECONDARY MATH TRANSFORMATIONS SECONDARY MATH 3 3-3 TRANSFORMATIONS WARM UP WHAT YOU WILL LEARN How to transform functions from the parent function How to describe a transformation How to write an equation of a transformed function

More information

Chapter 5: Polynomial Functions

Chapter 5: Polynomial Functions Chapter : Polnomial Functions Section.1 Chapter : Polnomial Functions Section.1: Eploring the Graphs of Polnomial Functions Terminolog: Polnomial Function: A function that contains onl the operations of

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Online Homework Hints and Help Extra Practice

Online Homework Hints and Help Extra Practice Evaluate: Homework and Practice Use a graphing calculator to graph the polnomial function. Then use the graph to determine the function s domain, range, and end behavior. (Use interval notation for the

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

Name: Date: Absolute Value Transformations

Name: Date: Absolute Value Transformations Name: Date: Absolute Value Transformations Vocab: Absolute value is the measure of the distance awa from zero on a number line. Since absolute value is the measure of distance it can never be negative!

More information

COLLEGE ALGEBRA REVIEW FOR TEST 3

COLLEGE ALGEBRA REVIEW FOR TEST 3 COLLEGE ALGEBRA REVIEW FOR TEST If the following is a polnomial function, then state its degree and leading coefficient. If it is not, then state this fact. ) a) f() = + 9 + + 9 + b) f() = + 9 Provide

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Name Class Date 5.2 Graphing Polnomial Functions Essential Question: How do ou sketch the graph of a polnomial function in intercept form? Eplore 1 Investigating the End Behavior of the Graphs of Simple

More information

3-2. Families of Graphs. Look Back. OBJECTIVES Identify transformations of simple graphs. Sketch graphs of related functions.

3-2. Families of Graphs. Look Back. OBJECTIVES Identify transformations of simple graphs. Sketch graphs of related functions. 3-2 BJECTIVES Identif transformations of simple graphs. Sketch graphs of related functions. Families of Graphs ENTERTAINMENT At some circuses, a human cannonball is shot out of a special cannon. In order

More information

Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems

Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems Black Level Hperbola. Give the graph and find the range and domain for. EXPONENTIAL Functions - The following

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form:

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form: Name: Date: Period: Chapter 2: Polynomial and Rational Functions Topic 6: Rational Functions & Their Graphs Rational functions, like rational numbers, will involve a fraction. We will discuss rational

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section.5 Transformation of Functions 6 Section.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x Section 6.3 Etrema and Models 593 6.3 Eercises In Eercises 1-8, perform each of the following tasks for the given polnomial. i. Without the aid of a calculator, use an algebraic technique to identif the

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

A Rational Existence Introduction to Rational Functions

A Rational Existence Introduction to Rational Functions Lesson. Skills Practice Name Date A Rational Eistence Introduction to Rational Functions Vocabular Write the term that best completes each sentence.. A rational function is an function that can be written

More information

Developed in Consultation with Tennessee Educators

Developed in Consultation with Tennessee Educators Developed in Consultation with Tennessee Educators Table of Contents Letter to the Student........................................ Test-Taking Checklist........................................ Tennessee

More information

MATHEMATICAL METHODS UNITS 3 AND Sketching Polynomial Graphs

MATHEMATICAL METHODS UNITS 3 AND Sketching Polynomial Graphs Maths Methods 1 MATHEMATICAL METHODS UNITS 3 AND 4.3 Sketching Polnomial Graphs ou are required to e ale to sketch the following graphs. 1. Linear functions. Eg. = ax + These graphs when drawn will form

More information

Answers. Investigation 4. ACE Assignment Choices. Applications

Answers. Investigation 4. ACE Assignment Choices. Applications Answers Investigation ACE Assignment Choices Problem. Core Other Connections, ; Etensions ; unassigned choices from previous problems Problem. Core, 7 Other Applications, ; Connections ; Etensions ; unassigned

More information

8.5 Quadratic Functions and Their Graphs

8.5 Quadratic Functions and Their Graphs CHAPTER 8 Quadratic Equations and Functions 8. Quadratic Functions and Their Graphs S Graph Quadratic Functions of the Form f = + k. Graph Quadratic Functions of the Form f = - h. Graph Quadratic Functions

More information

Evaluate and Graph Polynomial Functions

Evaluate and Graph Polynomial Functions 5.2 Evaluate and Graph Polnomial Functions Before You evaluated and graphed linear and quadratic functions. Now You will evaluate and graph other polnomial functions. Wh? So ou can model skateboarding

More information

Preparing for AS Level Further Mathematics

Preparing for AS Level Further Mathematics Preparing for AS Level Further Mathematics Algebraic skills are incredibly important in the study of further mathematics at AS and A level. You should therefore make sure you are confident with all of

More information

Graphing Quadratics: Vertex and Intercept Form

Graphing Quadratics: Vertex and Intercept Form Algebra : UNIT Graphing Quadratics: Verte and Intercept Form Date: Welcome to our second function famil...the QUADRATIC FUNCTION! f() = (the parent function) What is different between this function and

More information

UNIT P1: PURE MATHEMATICS 1 QUADRATICS

UNIT P1: PURE MATHEMATICS 1 QUADRATICS QUADRATICS Candidates should able to: carr out the process of completing the square for a quadratic polnomial, and use this form, e.g. to locate the vertex of the graph of or to sketch the graph; find

More information

These are square roots, cube roots, etc. Intermediate algebra Class notes Radicals and Radical Functions (section 10.1)

These are square roots, cube roots, etc. Intermediate algebra Class notes Radicals and Radical Functions (section 10.1) Intermediate algebra Class notes Radicals and Radical Functions (section 10.1) These are square roots, cube roots, etc. Worksheet: Graphing Calculator Basics: This will go over basic home screen and graphing

More information