Strang Splitting Versus Implicit-Explicit Methods in Solving Chemistry Transport Models. A contribution to subproject GLOREAM. O. Knoth and R.

Size: px
Start display at page:

Download "Strang Splitting Versus Implicit-Explicit Methods in Solving Chemistry Transport Models. A contribution to subproject GLOREAM. O. Knoth and R."

Transcription

1 Strang Splitting Versus Implicit-Explicit Methods in Solving Chemistry Transport Models A contribution to subproject GLOREAM O. Knoth and R. Wolke Institutfur Tropospharenforschung, Permoserstr. 15, Leipzig, Germany Introduction Usually transport-chemistry models are solved by operator-splitting methods where the chemistry and the vertical transport processes are integrated in a coupled way by implicit methods of order two or higher with automatic error control. In mesoscale applications the integration intervals are relatively short and small initial transients occur for the chemistry-diffusion operator which are an artefact of the operator-splitting approach. Integration methods with error control are quite sensitive to this initial transients which results in rather small step sizes to start up the integration. However to take into account effectively changes inside the chemistry-diffusion process (sunset, sunrise, change of the mixing height) an error control is held indispensible. Implicit-explicit methods recently introduced which are of the same complexity as operator-splitting methods do not suffer from this drawback which means that the initial transients are much smaller in comparison to the operatorsplitting method. Furthermore, these new methods allow an effective use of information from previous time levels to speed up the computation on the next time level. A numerical comparison is presented of the Strang operator splitting method to the new implicit-explicit methods in connection with a specially tuned implicit integrator for the coupled solution of the chemistry diffusion operator. Both artificial as real life problems show a smoother behaviour of our new approach with respect to the step sizes and a decreased number of integration steps and function evaluations of the implicit integrator. Editors: P.M. Borrell and P. Borrell 1999: WITPRESS, Southampton

2 Strang Splitting 525 Source splitting with Runge-Kutta methods After the spatial discretisation the transport-chemistry equations can be represented as a huge system of ordinary differential equations by: y = AW + /w (i) where /E (y) represents the horizontal advection and fi(y) includes the vertical transport processes and the chemistry. Starting from the initial value j/o the implicit-explicit integration method (Knoth and Wolke, 1998) is defined for a given step size h by dt where r= The coefficients 5L and c, are free parameters and have to be derived from the order conditions. The stage values 7, are the solution of a differential equation and any suitable solution method can be used there. In the case where fi (y) = 0 the classical Runge-Kutta scheme is obtained. Two classical Runge- Kutta methods which are of special interest in our context are the first order Euler forward method and Heun's second order method (Hairer et #/., 1993). Comparison of source splitting and Strang splitting Symmetric operator splitting which is also called Strang splitting applied to equation (1) requires the solution of three differential equations, two with the explicit operator ^ (y) and in between one with the implicit operator fj (y). When the two equations with the explicit operator are solved for instance by the explicit second order Heun method and only one step is performed one Strang splitting cycle needs the same number of evaluations of the function fa as two integration steps of the implicit-explicit Runge-Kutta method used also in conjunction with the Heun method. Since both methods are of second order the comparison depends on the efficient solution of the equation which involve the implicit operator. The following simple example will illustrate the differences. Let us take^ (y) = A = 0.3 and^ (y) = -y.

3 526 O. Knoth and R. Wolke For this example Strang splitting consists of the following three steps for a given approximation v* at time / Step 2: Step 3: Solve ** ** dt v_, = Our source splitting method is reduced for this example to the solution of the original problem in a sequence of intervals [*, r, + h\. In Fig. 1 we have plotted all output points of the implicit integrator (Step 2 in the Strang splitting approach) including the starting and end point. Note that for our method the starting point for the next interval is the end point from the last integration. In the Strang splitting method these points differ which results in the zig-zag curve Fig. I: Output of the implicit integrator.

4 Strang Splitting 527 This zig-zag curve shows the transient behaviour which has to be resolved by the implicit integration method during every integration interval. Therefore the integrator LSODE (Hindmarsh 1980) which is based on the BDF method requires four times more steps and function evaluations inside the Strang splitting approach than in the source-splitting method. Both methods are available in the transport code MUSCAT (Knoth and Wolke, 1998). The implicit integrator (Knoth and Wolke. 1995) used is an adapted version of the LSODE programme. The order of the BDF is restricted to two. The linear system solver has been replaced by a Gauss-Seidel or block Gauss- Seidel method The Jacobian matrices are stored in a sparse format and their computation time is comparable to that of one function evaluation. The information from stored backward values is exploited in continuing the implicit integration for a new submterval. The spatial discretisation is of second order The necessary meteorological information is taken online from a mesoscale meteorological model which can be driven with its own step size control in time. In Table 1 both methods are compared for a summer smog situation. The model area covers a region of 160 km x 140 km with a horizontal resolution of 4 km and 27 non-equidistant vertical layers. The simulation time is 24 hours. The chemical reaction mechanism involves 71 species and 192 reactions. The tolerance rtol is an input to the implicit integrator and controls the local error. The stepsize h is a multiple of the horizontal Courant number h<$. Both methods show a larger increase in the number of function evaluations than in the number of successful steps for the tighter tolerance. However this increase is much more pronounced for Strang splitting where the automatic error control leads to a decrease in the stepsize at the beginning of every new integration cycle. Table 1 : Comparison for a summer si- nog episc»de (CPU time in hours:minuteis) Source splitting (h = 0.65 w Stratig splitting (h = 1.3 \ w rtol steps functions Jacobians CPU steps functions Jacobian CPU lo-* : : : :12

5 528 O. Knoth and R. Wolke References E. Hairer, S.P. N0rsett, G. Wanner, Solving ordinary differential equations I, Nonstiff problems, Second Edition, Springer Verlag, Heildelberg A.C. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation solver, ACM-SIGNUM Newsletter 15 (1980) O. Knoth, R. Wolke, Numerical methods for the solution of large kinetic systems, Appl. Numer.Math 18(1995) O. Knoth, R. Wolke, An explicit-implicit numerical approach for atmospheric chemistry-transport-modelling, Atmos. Environ, 32 (1998) O. Knoth, R. Wolke, Implicit-explicit Runge-Kutta methods for computing atmospheric reactiveflows,appl Numer. Math. 28 (1998)

The vertical stratification is modeled by 4 layers in which we work with averaged concentrations in vertical direction:

The vertical stratification is modeled by 4 layers in which we work with averaged concentrations in vertical direction: Numerical methods in smog prediction M. van Loon Center for Mathematics and Computer Science, dep. AW, P.O. Boz ^072 J(%%? GB Ams

More information

Modelling Atmospheric Transport, Dispersion and Deposition on Short and Long Range Validation against ETEX-1 and ETEX-2, and Chernobyl

Modelling Atmospheric Transport, Dispersion and Deposition on Short and Long Range Validation against ETEX-1 and ETEX-2, and Chernobyl Modelling Atmospheric Transport, Dispersion and Deposition on Short and Long Range Validation against ETEX-1 and ETEX-2, and Chernobyl A contribution to subproject GLOREAM Annemarie Bastrup-Birk, J0rgen

More information

Using efficient numerical methods in large-scale air pollution modelling

Using efficient numerical methods in large-scale air pollution modelling Using efficient numerical methods in large-scale air pollution modelling ZAHARI ZLATEV National Environmental Research Institute, Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, DENMARK Abstract:

More information

Parallel implicit ordinary differential equation solver for cuda. Tomasz M. Kardaś

Parallel implicit ordinary differential equation solver for cuda. Tomasz M. Kardaś Parallel implicit ordinary differential equation solver for cuda Tomasz M. Kardaś August 11, 2014 Chapter 1 Parallel Implicit Ordinary Differential Equations Solver A simplest definition of stiffness,

More information

Thursday 1/8 1 * syllabus, Introduction * preview reading assgt., chapter 1 (modeling) * HW review chapters 1, 2, & 3

Thursday 1/8 1 * syllabus, Introduction * preview reading assgt., chapter 1 (modeling) * HW review chapters 1, 2, & 3 Topics and Syllabus Class # Text Reading I. NUMERICAL ANALYSIS CHAPRA AND CANALE A. INTRODUCTION AND MATLAB REVIEW :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::Week

More information

Differential equations for chemical kinetics

Differential equations for chemical kinetics Differential equations for chemical kinetics Atmospheric Modelling course Sampo Smolander sampo.smolander@helsinki.fi 15.11.2010 Sampo Smolander Chemical kinetics 15.11.2010 1 / 24 Chemical equation reactants

More information

Horizontal Mixing in the WRF-ARW Model. Russ Schumacher AT April 2006

Horizontal Mixing in the WRF-ARW Model. Russ Schumacher AT April 2006 Horizontal Mixing in the WRF-ARW Model Russ Schumacher AT 730 5 April 2006 Overview Description of implicit and explicit horizontal mixing in WRF Evaluation of WRF s implicit mixing Model options for explicit

More information

Polymath 6. Overview

Polymath 6. Overview Polymath 6 Overview Main Polymath Menu LEQ: Linear Equations Solver. Enter (in matrix form) and solve a new system of simultaneous linear equations. NLE: Nonlinear Equations Solver. Enter and solve a new

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

MPI OpenMP algorithms for the parallel space time solution of Time Dependent PDEs

MPI OpenMP algorithms for the parallel space time solution of Time Dependent PDEs MPI OpenMP algorithms for the parallel space time solution of Time Dependent PDEs Ronald D. Haynes 1 and Benjamin Ong 2 1 Introduction Modern high performance computers offer hundreds of thousands of processors

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

J. Vira, M. Sofiev SILAM winter school, February 2013, FMI

J. Vira, M. Sofiev SILAM winter school, February 2013, FMI Numerical aspects of the advection-diffusion equation J. Vira, M. Sofiev SILAM winter school, February 2013, FMI Outline Intro Some common requirements for numerical transport schemes Lagrangian approach

More information

Performance Evaluation of Multiple and Mixed Precision Iterative Refinement Method and its Application to High-Order Implicit Runge-Kutta Method

Performance Evaluation of Multiple and Mixed Precision Iterative Refinement Method and its Application to High-Order Implicit Runge-Kutta Method Performance Evaluation of Multiple and Mixed Precision Iterative Refinement Method and its Application to High-Order Implicit Runge-Kutta Method Tomonori Kouya Shizuoa Institute of Science and Technology,

More information

Ordinary Differential Equations

Ordinary Differential Equations Next: Partial Differential Equations Up: Numerical Analysis for Chemical Previous: Numerical Differentiation and Integration Subsections Runge-Kutta Methods Euler's Method Improvement of Euler's Method

More information

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data Data-Driven Modeling & Scientific Computation Methods for Complex Systems & Big Data J. NATHAN KUTZ Department ofapplied Mathematics University of Washington OXPORD UNIVERSITY PRESS Contents Prolegomenon

More information

Discontinuous Galerkin Sparse Grid method for Maxwell s equations

Discontinuous Galerkin Sparse Grid method for Maxwell s equations Discontinuous Galerkin Sparse Grid method for Maxwell s equations Student: Tianyang Wang Mentor: Dr. Lin Mu, Dr. David L.Green, Dr. Ed D Azevedo, Dr. Kwai Wong Motivation u We consider the Maxwell s equations,

More information

3-D Multi-scale air pollution modelling using adaptive unstructured meshes

3-D Multi-scale air pollution modelling using adaptive unstructured meshes Environmental Modelling & Software 15 (2000) 681 692 www.elsevier.com/locate/envsoft 3-D Multi-scale air pollution modelling using adaptive unstructured meshes A.S. Tomlin a,*, S. Ghorai a, G. Hart a,

More information

GPU Implementation of Implicit Runge-Kutta Methods

GPU Implementation of Implicit Runge-Kutta Methods GPU Implementation of Implicit Runge-Kutta Methods Navchetan Awasthi, Abhijith J Supercomputer Education and Research Centre Indian Institute of Science, Bangalore, India navchetanawasthi@gmail.com, abhijith31792@gmail.com

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

MPI OpenMP algorithms for the parallel space time solution of Time Dependent PDEs

MPI OpenMP algorithms for the parallel space time solution of Time Dependent PDEs MPI OpenMP algorithms for the parallel space time solution of Time Dependent PDEs Ronald D. Haynes 1 and Benjamin W. Ong 2 1 Introduction Modern high performance computers offer hundreds of thousands of

More information

Journal of Computational Physics

Journal of Computational Physics Journal of Computational Physics 3 () 56 577 Contents lists available at SciVerse ScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp A robust and efficient method

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

The Nagumo Equation with Comsol Multiphysics

The Nagumo Equation with Comsol Multiphysics The Nagumo Equation with Comsol Multiphysics Denny Otten 1 Christian Döding 2 Department of Mathematics Bielefeld University 33501 Bielefeld Germany Date: 25. April 2016 1. Traveling Front in the Nagumo

More information

over The idea is to construct an algorithm to solve the IVP ODE (8.1)

over The idea is to construct an algorithm to solve the IVP ODE (8.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (8.1) over To obtain the solution point we can use the fundamental theorem

More information

RK-Time Integration and High-Order Spatial Discretization a New Dynamical Core for the LMK

RK-Time Integration and High-Order Spatial Discretization a New Dynamical Core for the LMK RK-Time Integration and High-Order Spatial Discretization a New Dynamical Core for the LMK Jochen Förstner Deutscher Wetterdienst, Kaiserleistraße 35, 63067 Offenbach am Main jochen.foerstner@dwd.de COSMO

More information

C++ Playground for Numerical Integration Method Developers

C++ Playground for Numerical Integration Method Developers C++ Playground for Numerical Integration Method Developers Stepan Orlov Computer Technologies in Engineering dept. Peter the Great St. Petersburg Polytechnic University St. Petersburg, Russian Federation

More information

Matlab Handout Nancy Chen Math 19 Fall 2004

Matlab Handout Nancy Chen Math 19 Fall 2004 Matlab Handout Nancy Chen Math 19 Fall 2004 Introduction Matlab is a useful program for algorithm development, numerical computation, and data analysis and visualization. In this class you will only need

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

MOL Solvers for Hyperbolic PDEs with Source Terms. I. Ahmad and M. Berzins

MOL Solvers for Hyperbolic PDEs with Source Terms. I. Ahmad and M. Berzins MOL Solvers for Hyperbolic PDEs with Source Terms. I. Ahmad and M. Berzins School of Computer Studies, The University of Leeds, Leeds LS2 9JT, UK. Abstract A method-of-lines solution solution algorithm

More information

COMSOL Model Report. 1. Table of Contents. 2. Model Properties. 3. Constants

COMSOL Model Report. 1. Table of Contents. 2. Model Properties. 3. Constants COMSOL Model Report 1. Table of Contents Title - COMSOL Model Report Table of Contents Model Properties Constants Global Expressions Geometry Geom1 Integration Coupling Variables Solver Settings Postprocessing

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

Sparse Matrices. Mathematics In Science And Engineering Volume 99 READ ONLINE

Sparse Matrices. Mathematics In Science And Engineering Volume 99 READ ONLINE Sparse Matrices. Mathematics In Science And Engineering Volume 99 READ ONLINE If you are looking for a ebook Sparse Matrices. Mathematics in Science and Engineering Volume 99 in pdf form, in that case

More information

Institut für Mathematik. A MATLAB Toolbox for the Numerical Solution of Differential-Algebraic Equations

Institut für Mathematik. A MATLAB Toolbox for the Numerical Solution of Differential-Algebraic Equations Technische Universität Berlin Institut für Mathematik A MATLAB Toolbox for the Numerical Solution of Differential-Algebraic Equations Peter Kunkel, Volker Mehrmann, and Stefan Seidel Preprint 16/2005 Preprint-Reihe

More information

Solver Settings. Introductory FLUENT Training ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Solver Settings. Introductory FLUENT Training ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary Solver Settings Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 5-2 Outline Using the Solver Setting Solver Parameters Convergence Definition Monitoring

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Object-Oriented Implementation of Software for Solving Ordinary Differential Equations

Object-Oriented Implementation of Software for Solving Ordinary Differential Equations Object-Oriented Implementation of Software for Solving Ordinary Differential Equations KJELL GUSTAFSSON Department of Automatic Control, Lund Institute of Technology, S-22100 Lund, Sweden ABSTRACT We describe

More information

RT3D User-Defined Reactions

RT3D User-Defined Reactions GMS 7.0 TUTORIALS RT3D User-Defined Reactions The objective of this chapter is to describe the steps involved in developing a user defined reaction module for simulating reactions that can not be simulated

More information

METU Mechanical Engineering Department ME 582 Finite Element Analysis in Thermofluids Spring 2018 (Dr. C. Sert) Handout 12 COMSOL 1 Tutorial 3

METU Mechanical Engineering Department ME 582 Finite Element Analysis in Thermofluids Spring 2018 (Dr. C. Sert) Handout 12 COMSOL 1 Tutorial 3 METU Mechanical Engineering Department ME 582 Finite Element Analysis in Thermofluids Spring 2018 (Dr. C. Sert) Handout 12 COMSOL 1 Tutorial 3 In this third COMSOL tutorial we ll solve Example 6 of Handout

More information

v. 9.1 GMS 9.1 Tutorial RT3D User-Defined Reactions Prerequisite Tutorials Time Required Components

v. 9.1 GMS 9.1 Tutorial RT3D User-Defined Reactions Prerequisite Tutorials Time Required Components v. 9.1 GMS 9.1 Tutorial RT3D User-Defined Reactions SUBROUTINE rxns(ncomp,nvrxndata,j,i,k,y,dydt, $ poros,rhob,reta,rc,nlay,nrow,ncol,vrc) c ***** Block 1: Comments block ******* c23456789012345678901234567890123456789012345678901234567890123456789012

More information

Mass-flux parameterization in the shallow convection gray zone

Mass-flux parameterization in the shallow convection gray zone Mass-flux parameterization in the shallow convection gray zone LACE stay report Toulouse Centre National de Recherche Meteorologique, 15. September 2014 26. September 2014 Scientific supervisor: Rachel

More information

Challenges Simulating Real Fuel Combustion Kinetics: The Role of GPUs

Challenges Simulating Real Fuel Combustion Kinetics: The Role of GPUs Challenges Simulating Real Fuel Combustion Kinetics: The Role of GPUs M. J. McNenly and R. A. Whitesides GPU Technology Conference March 27, 2014 San Jose, CA LLNL-PRES-652254! This work performed under

More information

An Introduction to Flow Visualization (1) Christoph Garth

An Introduction to Flow Visualization (1) Christoph Garth An Introduction to Flow Visualization (1) Christoph Garth cgarth@ucdavis.edu Motivation What will I be talking about? Classical: Physical experiments to understand flow. 2 Motivation What will I be talking

More information

3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs

3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs 3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs H. Knibbe, C. W. Oosterlee, C. Vuik Abstract We are focusing on an iterative solver for the three-dimensional

More information

Cloth Simulation. COMP 768 Presentation Zhen Wei

Cloth Simulation. COMP 768 Presentation Zhen Wei Cloth Simulation COMP 768 Presentation Zhen Wei Outline Motivation and Application Cloth Simulation Methods Physically-based Cloth Simulation Overview Development References 2 Motivation Movies Games VR

More information

A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain

A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain 2th Annual CFD Symposium, August 9-1, 218, Bangalore A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain S. M. Joshi & A. Chatterjee Department of Aerospace Engineering Indian Institute

More information

Excel for Chemists. Second Edition

Excel for Chemists. Second Edition Excel for Chemists Second Edition This page intentionally left blank ExceL for Chemists A Comprehensive Guide Second Edition E. Joseph Billo Department of Chemistry Boston College Chestnut Hill, Massachusetts

More information

Part I: Theoretical Background and Integration-Based Methods

Part I: Theoretical Background and Integration-Based Methods Large Vector Field Visualization: Theory and Practice Part I: Theoretical Background and Integration-Based Methods Christoph Garth Overview Foundations Time-Varying Vector Fields Numerical Integration

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17 Bibliography [1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

More information

HPC Methods for Coupling Spectral Cloud Microphysics with the COSMO Model

HPC Methods for Coupling Spectral Cloud Microphysics with the COSMO Model Center for Information Services and High Performance Computing (ZIH) HPC Methods for Coupling Spectral Cloud Microphysics with the COSMO Model Max Planck Institute for Meteorology 17 March 2011 Matthias

More information

An explicit and conservative remapping strategy for semi-lagrangian advection

An explicit and conservative remapping strategy for semi-lagrangian advection An explicit and conservative remapping strategy for semi-lagrangian advection Sebastian Reich Universität Potsdam, Potsdam, Germany January 17, 2007 Abstract A conservative semi-lagrangian advection scheme

More information

Step 1: Problem Type Specification. (1) Open COMSOL Multiphysics 4.1. (2) Under Select Space Dimension tab, select 2D Axisymmetric.

Step 1: Problem Type Specification. (1) Open COMSOL Multiphysics 4.1. (2) Under Select Space Dimension tab, select 2D Axisymmetric. Step 1: Problem Type Specification (1) Open COMSOL Multiphysics 4.1. (2) Under Select Space Dimension tab, select 2D Axisymmetric. (3) Click on blue arrow next to Select Space Dimension title. (4) Click

More information

On the Numerical Solution of the One Trap One Recombination Model for First Order Kinetic

On the Numerical Solution of the One Trap One Recombination Model for First Order Kinetic AASCIT Journal of Physics 2017; 3(5): 36-43 http://www.aascit.org/journal/physics ISSN: 2381-1358 (Print); ISSN: 2381-1366 (Online) On the Numerical Solution of the One Trap One Recombination Model for

More information

New formulations of the semi-lagrangian method for Vlasov-type equations

New formulations of the semi-lagrangian method for Vlasov-type equations New formulations of the semi-lagrangian method for Vlasov-type equations Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 17 September 2008 In collaboration

More information

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction Background Scaling results Tensor product geometric multigrid Summary and Outlook 1/21 Scalability of Elliptic Solvers in Numerical Weather and Climate- Prediction Eike Hermann Müller, Robert Scheichl

More information

Model Reduction for High Dimensional Micro-FE Models

Model Reduction for High Dimensional Micro-FE Models Model Reduction for High Dimensional Micro-FE Models Rudnyi E. B., Korvink J. G. University of Freiburg, IMTEK-Department of Microsystems Engineering, {rudnyi,korvink}@imtek.uni-freiburg.de van Rietbergen

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

Post Processing, Visualization, and Sample Output

Post Processing, Visualization, and Sample Output Chapter 7 Post Processing, Visualization, and Sample Output Upon successful execution of an ADCIRC run, a number of output files will be created. Specifically which files are created depends upon how the

More information

Project assignment: Particle-based simulation of transport by ocean currents

Project assignment: Particle-based simulation of transport by ocean currents Project assignment: Particle-based simulation of transport by ocean currents Tor Nordam, Jonas Blomberg Ghini, Jon Andreas Støvneng 1 Introduction It is probably well known that the Norwegian Meteorological

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Global Solution of Mixed-Integer Dynamic Optimization Problems

Global Solution of Mixed-Integer Dynamic Optimization Problems European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 25 Elsevier Science B.V. All rights reserved. Global Solution of Mixed-Integer Dynamic Optimization

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

over The idea is to construct an algorithm to solve the IVP ODE (9.1)

over The idea is to construct an algorithm to solve the IVP ODE (9.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (9.1) over To obtain the solution point we can use the fundamental theorem

More information

Manual for explicit parallel peer code EPPEER

Manual for explicit parallel peer code EPPEER Manual for explicit parallel peer code EPPEER Bernhard A. Schmitt (Univ. Marburg, Germany) Rüdiger Weiner (Univ. Halle, Germany) August 24, 202 eppeer is a FORTRAN95 code with OpenMP parallelization solving

More information

A parallel matrix-free implementation of a Runge-Kutta code

A parallel matrix-free implementation of a Runge-Kutta code A parallel matrix-free implementation of a Runge-Kutta code Kevin Burrage, Craig Eldershaw and Roger Sidje Department of Mathematics, The University of Queensland, Queensland 4072, Australia. kb@maths.uq.edu.au,

More information

USC GEOL557: Numerical Modeling of Earth Systems Spring 2016

USC GEOL557: Numerical Modeling of Earth Systems Spring 2016 USC GEOL557: Numerical Modeling of Earth Systems Spring 2016 Instructor Prof. Thorsten W. Becker (ZHS269; (213)740-8365; twb@usc.edu), with help from Dr. Rob Porritt and Adam Holt Class Logistics Class/lab

More information

Discontinuous Galerkin Spectral Element Approximations for CFD

Discontinuous Galerkin Spectral Element Approximations for CFD Discontinuous Galerkin Spectral Element Approimations for CFD D.A. Kopriva Florida State Universit Tallahassee, FL 3236 G.B. Jacobs San Diego State Universit San Diego, CA 92182 September 3, 211 1 Code

More information

10th August Part One: Introduction to Parallel Computing

10th August Part One: Introduction to Parallel Computing Part One: Introduction to Parallel Computing 10th August 2007 Part 1 - Contents Reasons for parallel computing Goals and limitations Criteria for High Performance Computing Overview of parallel computer

More information

Excel Scientific and Engineering Cookbook

Excel Scientific and Engineering Cookbook Excel Scientific and Engineering Cookbook David M. Bourg O'REILLY* Beijing Cambridge Farnham Koln Paris Sebastopol Taipei Tokyo Preface xi 1. Using Excel 1 1.1 Navigating the Interface 1 1.2 Entering Data

More information

GPU-optimized computational speed-up for the atmospheric chemistry box model from CAM4-Chem

GPU-optimized computational speed-up for the atmospheric chemistry box model from CAM4-Chem GPU-optimized computational speed-up for the atmospheric chemistry box model from CAM4-Chem Presenter: Jian Sun Advisor: Joshua S. Fu Collaborator: John B. Drake, Qingzhao Zhu, Azzam Haidar, Mark Gates,

More information

Modelling of scattering of sound from trees by the PSTD method

Modelling of scattering of sound from trees by the PSTD method Modelling of scattering of sound from trees by the PSTD method M. Hornikx KU Leuven, Celestijnenlaan 300b - bus 2420, 3001 Leuven, Belgium. D. Botteldooren, T. Van Renterghem INTEC, Ghent University, St.

More information

A TIMING AND SCALABILITY ANALYSIS OF THE PARALLEL PERFORMANCE OF CMAQ v4.5 ON A BEOWULF LINUX CLUSTER

A TIMING AND SCALABILITY ANALYSIS OF THE PARALLEL PERFORMANCE OF CMAQ v4.5 ON A BEOWULF LINUX CLUSTER A TIMING AND SCALABILITY ANALYSIS OF THE PARALLEL PERFORMANCE OF CMAQ v4.5 ON A BEOWULF LINUX CLUSTER Shaheen R. Tonse* Lawrence Berkeley National Lab., Berkeley, CA, USA 1. INTRODUCTION The goal of this

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

Isothermal Batch Reactor Modeling

Isothermal Batch Reactor Modeling Instructions for use of the tutorial: Download the compressed file Example1.zip and store it on a folder of your choice on your desktop, or in a location where you have rights to read and write. Open the

More information

CMAQ PARALLEL PERFORMANCE WITH MPI AND OPENMP**

CMAQ PARALLEL PERFORMANCE WITH MPI AND OPENMP** CMAQ 5.2.1 PARALLEL PERFORMANCE WITH MPI AND OPENMP** George Delic* HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA 1. INTRODUCTION This presentation reports on implementation of the

More information

Evaluating the Performance and Energy Efficiency of the COSMO-ART Model System

Evaluating the Performance and Energy Efficiency of the COSMO-ART Model System Evaluating the Performance and Energy Efficiency of the COSMO-ART Model System Joseph Charles & William Sawyer (CSCS), Manuel F. Dolz (UHAM), Sandra Catalán (UJI) EnA-HPC, Dresden September 1-2, 2014 1

More information

ASYMPTOTICALLY CORRECT INTERPOLATION-BASED SPATIAL ERROR ESTIMATION FOR 1D PDE SOLVERS

ASYMPTOTICALLY CORRECT INTERPOLATION-BASED SPATIAL ERROR ESTIMATION FOR 1D PDE SOLVERS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 20, Number 3, Fall 2012 ASYMPTOTICALLY CORRECT INTERPOLATION-BASED SPATIAL ERROR ESTIMATION FOR 1D PDE SOLVERS TOM ARSENAULT, TRISTAN SMITH, PAUL MUIR AND

More information

Differentiation. J. Gerlach November 2010

Differentiation. J. Gerlach November 2010 Differentiation J. Gerlach November 200 D and diff The limit definition of the derivative is covered in the Limit tutorial. Here we look for direct ways to calculate derivatives. Maple has two commands

More information

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits Solving ODEs General Stuff ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits need workhorse solvers to deal

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

Fault Tolerant Domain Decomposition for Parabolic Problems

Fault Tolerant Domain Decomposition for Parabolic Problems Fault Tolerant Domain Decomposition for Parabolic Problems Marc Garbey and Hatem Ltaief Department of Computer Science, University of Houston, Houston, TX 77204 USA garbey@cs.uh.edu, ltaief@cs.uh.edu 1

More information

Solving systems of nonlinear equations with arbitrary precision

Solving systems of nonlinear equations with arbitrary precision Solving systems of nonlinear equations with arbitrary precision CES Seminar January 2017 Presented by Supervisor Gregor Heiming Dr. Ralf Hannemann-Tamás Systemverfahrenstechnik AVT, RWTH Aachen University

More information

A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems Wing-Cheong Lo a,b,c,d, Long Chen a,b,c, Ming Wang a,e, Qing Nie a,b,c a Departments of Mathematics, University of

More information

OPTIMIZATION AND SENSITIVITY ANALYSIS FOR MULTIRESPONSE PARAMETER ESTIMATION IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS. M.

OPTIMIZATION AND SENSITIVITY ANALYSIS FOR MULTIRESPONSE PARAMETER ESTIMATION IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS. M. OPTIMIZATION AND SENSITIVITY ANALYSIS FOR MULTIRESPONSE PARAMETER ESTIMATION IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS by M. Guay Department of Chemical Engineering Queen s University Kingston, Ontario,

More information

Modeling unsteady reacting flow with operator splitting and ISAT

Modeling unsteady reacting flow with operator splitting and ISAT Combustion and Flame 147 (2006) 150 162 www.elsevier.com/locate/combustflame Modeling unsteady reacting flow with operator splitting and ISAT Michael A. Singer a,, Stephen B. Pope b, Habib N. Najm c a

More information

Ordinary differential equations solving methods

Ordinary differential equations solving methods Radim Hošek, A07237 radhost@students.zcu.cz Ordinary differential equations solving methods Problem: y = y2 (1) y = x y (2) y = sin ( + y 2 ) (3) Where it is possible we try to solve the equations analytically,

More information

Implicit schemes for wave models

Implicit schemes for wave models Implicit schemes for wave models Mathieu Dutour Sikirić Rudjer Bo sković Institute, Croatia and Universität Rostock April 17, 2013 I. Wave models Stochastic wave modelling Oceanic models are using grids

More information

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden Volume Tracking: A New Method for Visualization of Intracardiac Blood Flow from Three-Dimensional, Time-Resolved, Three-Component Magnetic Resonance Velocity Mapping Appendix: Theory and Numerical Implementation

More information

Homework Set 5 (Sections )

Homework Set 5 (Sections ) Homework Set 5 (Sections.4-.6) 1. Consider the initial value problem (IVP): = 8xx yy, yy(1) = 3 a. Do 10 steps of Euler s Method, using a step size of 0.1. Write the details in the table below. Work to

More information

LAB #8 Numerical Methods

LAB #8 Numerical Methods LAB #8 Numerical Methods Goal: The purpose of this lab is to explain how computers numerically approximate solutions to differential equations. Required tools: Matlab routine dfield ; numerical routines

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Moving Finite Element Simulations for Reaction-Diffusion Systems

Moving Finite Element Simulations for Reaction-Diffusion Systems Advances in Applied Mathematics and Mechanics Adv. Appl. Math. Mech., Vol. 4, No. 3, pp. 365-381 DOI: 10.4208/aamm.10-m11180 June 2012 Moving Finite Element Simulations for Reaction-Diffusion Systems Guanghui

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Efficient Simulation of a Reaction-Diffusion System with a Fast Reaction in the Asymptotic Limit

Efficient Simulation of a Reaction-Diffusion System with a Fast Reaction in the Asymptotic Limit ,,, Efficient Simulation of a Reaction-Diffusion System with a Fast Reaction in the Asymptotic Limit Aaron Churchill a, Guan Wang a, Matthias K. Gobbert a,, Thomas I. Seidman a a Department of Mathematics

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Implementation of a compressible-flow simulation code in the D programming language

Implementation of a compressible-flow simulation code in the D programming language Implementation of a compressible-flow simulation code in the D programming language Peter Jacobsa * and Rowan Gollanb School of Mechanical and Mining Engineering, The University of Queensland, Brisbane,

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information