over The idea is to construct an algorithm to solve the IVP ODE (8.1)

Size: px
Start display at page:

Download "over The idea is to construct an algorithm to solve the IVP ODE (8.1)"

Transcription

1 Runge- Ku(a Methods

2 Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (8.1) over To obtain the solution point we can use the fundamental theorem of calculus and integrate to get over (8.2)

3 Review of Heun s Method (Deriva:on from Integra:on) When equation (8.2) is solved from the result is (8.3) A numerical integration method can be used to approximate the definite integral in equation (8.3). If the trapezoidal rule (Lecture 5) is used with the step size the result is (8.4)

4 Review of Heun s Method (Deriva:on from Integra:on) Notice that the formula on the right hand side of (8.4) involves the yet to be determined value To estimate we use Euler s forward method or, for our case (8.5) Substituting (8.5) into (8.4), the resulting formula is called Heun s method, given as (8.6)

5 Review of Heun s Method (Deriva:on from Integra:on) In Heun s method, at each step: (a) the Euler s (forward) method is used as a prediction, and then, (b) the trapezoidal rule is used to make a correction to obtain the final value. The general step for Heun s method is Predictor: Corrector: (8.7)

6 Example Use Heun s method to solve the IVP Compare solutions for Solution: (1) For we use to calculate

7 Example, the predictor: which we use to calculate Thus, the corrector:

8 Example x i y i y exact h = 0.5 h = 0.25 h = (0.0127%) (0.1055%) (0.0252%) (0.037%) (0.8785%) (0.1999%) (0.0477%) (0.2726%) (0.0649%) (1.3986%) (0.3177%) (0.0758%) (1.4623%) (0.3318%) (0.0791%) (1.2639%) (0.2865%) (0.0683%) (1.0004%) (0.2265%) (0.054%) (0.7626%) (0.1725%) (0.0411%)

9 MATLAB Implementa:ons function [x,y] = HeunMethod(f,xinit,xend,yinit,h) % Number of iterations N = (xend-xinit)/h; x = zeros(1, N); y = zeros(1, N); y(1) = yinit; x(1) = xinit; for i=1:n x(i+1) = x(i)+h; y0 = y(i) + feval(f,x(i),y(i))*h; pred1 = feval(f,x(i),y(i)); pred2 = feval(f,x(i+1),y0); y(i+1) = y(i) + h*(pred1+pred2)/2; end function dydx = Example_HeunMethod(x,y) dydx = (x-y)/2; end

10 MATLAB Implementa:ons

11 Runge- Ku(a Method Here we see that Heun's method is an improvement over the rather simple Euler s (forward) method. Although the method uses Euler's method as a basis, it goes beyond it, it attempts to compensate for the Euler method's failure to take the curvature of the solution curve into account. Heun's method is one of the simplest of a class of methods called predictor-corrector algorithms. One of the most powerful predictor-corrector algorithms of all one which is so accurate, that most computer packages designed to find numerical solutions for differential equations will use it by default is the fourth order Runge-Kutta method.

12 Second- Order Runge- Ku(a Methods The 2 nd order Runge-Kutta method simulates the accuracy of the Taylor series method of order 2. Recall the Taylor series formula for Where C T is a constant involving the third derivative of and the other terms in the series involve powers of for n > 3. (8.8) The derivatives must expressed in terms of and its partial derivatives. Recall that (8.9)

13 Second- Order Runge- Ku(a Methods Equation (8.9) can be differentiated using the chain rule for differentiating a function of two variables, for example: then Back to the equation (8.9),

14 Second- Order Runge- Ku(a Methods Another notation for partial derivatives: hence (8.10) Substitute the derivatives (8.9) and (8.10) into the Taylor series (8.8): (8.11)

15 Second- Order Runge- Ku(a Methods For second order, equation (8.11) can be rewritten as a linear combination of two function values to express where (8.12) (8.13) Next, we determine the values of A, B, P and Q.

16 Second- Order Runge- Ku(a Methods Recall Taylor series for functions more than one variable (Lecture 1): and use it to expand f 1 in equation (8.13) to get (8.14)

17 Second- Order Runge- Ku(a Methods Then (8.14) is used in (8.12) to get the second-order Runge- Kutta expression for or (8.15)

18 Second- Order Runge- Ku(a Methods Comparing similar terms in equations (8.11) and (8.15): implies that implies that implies that

19 Second- Order Runge- Ku(a Methods Hence, we require that A, B, P, and Q satisfy the relations (8.16) The second-order Runge-Kutta method in (8.15) will have the same order of accuracy as the Taylor s method in (8.11). Now, there are 4 unknowns with only three equations, hence the system of equations (8.16) is undetermined, and we are permitted to choose one of the coefficients. Case (i): Choose This choice leads to

20 Second- Order Runge- Ku(a Methods Substituting these values into equation (8.12) and (8.13) yields (8.17) Case (ii): Choose This choice leads to Substituting these values into equation (8.12) and (8.13) yields (8.18)

21 Example MATLAB implementations of 2 nd order Runge-Kutta methods for IVP

22 Example MATLAB implementations of 2 nd order Runge-Kutta methods for IVP

23 Third- Order Runge- Ku(a Methods The general formula is where (8.19)

24 Fourth- Order Runge- Ku(a Methods The classical fourth-order Runge-Kutta method where (8.20)

25 Higher- Order Runge- Ku(a Methods (1) Butcher s fifth-order Runge-Kutta method: where (8.21)

26 Higher- Order Runge- Ku(a Methods (1) Butcher s fifth-order Runge-Kutta method:

27 Higher- Order Runge- Ku(a Methods (2) Runge-Kutta-Fehlberg (RKF45) method Each step requires the use of the following six values

28 Higher- Order Runge- Ku(a Methods An approximation using a fourth-order Runge-Kutta method is given by: (8.22)

29 Example MATLAB implementations of 2 nd order, 3 rd order, and 4 th order Runge-Kutta methods for IVP and step size The exact solution is

30 h = 0.2

31 h = 0.1

32 Precision of the Runge- Ku(a Method Assume that y(x) is the solution of the IVP. If is the sequence of approximations generated by the Runge-Kutta method of order 4, then In particular, the global error at the end of the interval will satisfy

33 Precision of the Runge- Ku(a Method If approximations are computed using the step size h and h/2, we should have The idea is that, if the step size in Runge-Kutta order 4 is reduced by a factor of ½, we can expect that the global error will be reduced by a factor of

over The idea is to construct an algorithm to solve the IVP ODE (9.1)

over The idea is to construct an algorithm to solve the IVP ODE (9.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (9.1) over To obtain the solution point we can use the fundamental theorem

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

Ordinary Differential Equations

Ordinary Differential Equations Next: Partial Differential Equations Up: Numerical Analysis for Chemical Previous: Numerical Differentiation and Integration Subsections Runge-Kutta Methods Euler's Method Improvement of Euler's Method

More information

Module1: Numerical Solution of Ordinary Differential Equations. Lecture 6. Higher order Runge Kutta Methods

Module1: Numerical Solution of Ordinary Differential Equations. Lecture 6. Higher order Runge Kutta Methods Module1: Numerical Solution of Ordinary Differential Equations Lecture 6 Higher order Runge Kutta Methods Keywords: higher order methods, functional evaluations, accuracy Higher order Runge Kutta Methods

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits Solving ODEs General Stuff ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits need workhorse solvers to deal

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method Mrs. P. Sampoornam P.K.R Arts College for Women, Gobichettipalayam Abstract: In this paper, I will discuss the Runge

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 16 Lecture 16 May 3, 2018 Numerical solution of systems

More information

ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab

ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab Tutorial 6: Numerical Solution of ODE Gerardine G. Botte This handout contains information

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

Lecture 8: Euler s Methods

Lecture 8: Euler s Methods Lecture 8: Euler s Methods Forward Euler Method The formula for the forward Euler method is given by equation (8.2) in the lecture note for week 8, as y i+1 = y i + f(x i, y i )h. (1) where f(x i, y i

More information

Homework Set 5 (Sections )

Homework Set 5 (Sections ) Homework Set 5 (Sections.4-.6) 1. Consider the initial value problem (IVP): = 8xx yy, yy(1) = 3 a. Do 10 steps of Euler s Method, using a step size of 0.1. Write the details in the table below. Work to

More information

Mathematical Methods and Modeling Laboratory class. Numerical Integration of Ordinary Differential Equations

Mathematical Methods and Modeling Laboratory class. Numerical Integration of Ordinary Differential Equations Mathematical Methods and Modeling Laboratory class Numerical Integration of Ordinary Differential Equations Exact Solutions of ODEs Cauchy s Initial Value Problem in normal form: Recall: if f is locally

More information

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka.

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka. P. April 14, 2015 1/51 Overview We discuss the following important methods of solving ordinary differential equations of first / second order. Picard s method of successive approximations (Method of successive

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Thursday 1/8 1 * syllabus, Introduction * preview reading assgt., chapter 1 (modeling) * HW review chapters 1, 2, & 3

Thursday 1/8 1 * syllabus, Introduction * preview reading assgt., chapter 1 (modeling) * HW review chapters 1, 2, & 3 Topics and Syllabus Class # Text Reading I. NUMERICAL ANALYSIS CHAPRA AND CANALE A. INTRODUCTION AND MATLAB REVIEW :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::Week

More information

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods We have seen examples of first-order differential equations which can, by one method of another, be solved

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

The Euler Equidimensional Equation ( 3.2)

The Euler Equidimensional Equation ( 3.2) The Euler Equidimensional Equation ( 3.) The Euler Equidimensional Equation ( 3.) The Euler Equidimensional Equation Definition The Euler equidimensional equation for the unknown function y with singular

More information

The listing says y(1) = How did the computer know this?

The listing says y(1) = How did the computer know this? 18.03 Class 2, Feb 3, 2010 Numerical Methods [1] How do you know the value of e? [2] Euler's method [3] Sources of error [4] Higher order methods [1] The study of differential equations has three parts:.

More information

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved.

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved. Differentiation Copyright Cengage Learning. All rights reserved. The Derivative and the Tangent Line Problem Copyright Cengage Learning. All rights reserved. 1 Objectives Find the slope of the tangent

More information

Homework Set #2-3, Math 475B

Homework Set #2-3, Math 475B Homework Set #2-3, Math 475B Part I: Matlab In the last semester you learned a number of essential features of MATLAB. 1. In this instance, you will learn to make 3D plots and contour plots of z = f(x,

More information

MAT 275 Laboratory 3 Numerical Solutions by Euler and Improved Euler Methods (scalar equations)

MAT 275 Laboratory 3 Numerical Solutions by Euler and Improved Euler Methods (scalar equations) MATLAB sessions: Laboratory 3 1 MAT 275 Laboratory 3 Numerical Solutions by Euler and Improved Euler Methods (scalar equations) In this session we look at basic numerical methods to help us understand

More information

An Introduction to Flow Visualization (1) Christoph Garth

An Introduction to Flow Visualization (1) Christoph Garth An Introduction to Flow Visualization (1) Christoph Garth cgarth@ucdavis.edu Motivation What will I be talking about? Classical: Physical experiments to understand flow. 2 Motivation What will I be talking

More information

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations Chapter 6 Some Methods in the Calculus of Variations In this Chapter we focus on an important method of solving certain problems in Classical Mechanics. In many problems we need to determine how a system

More information

Lecture 22: Rules for Solving IVP

Lecture 22: Rules for Solving IVP cs412: introduction to numerical analysis 12/7/10 Lecture 22: Rules for Solving IVP Instructor: Professor Amos Ron Scribes: Yunpeng Li, Pratap Ramamurthy, Mark Cowlishaw, Nathanael Fillmore 1 Review Recall

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

and F is an antiderivative of f

and F is an antiderivative of f THE EVALUATION OF DEFINITE INTEGRALS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! We have finally reached a point,

More information

MATH2071: LAB 2: Explicit ODE methods

MATH2071: LAB 2: Explicit ODE methods MATH2071: LAB 2: Explicit ODE methods 1 Introduction Introduction Exercise 1 Euler s method review Exercise 2 The Euler Halfstep (RK2) Method Exercise 3 Runge-Kutta Methods Exercise 4 The Midpoint Method

More information

37 Self-Assessment. 38 Two-stage Runge-Kutta Methods. Chapter 10 Runge Kutta Methods

37 Self-Assessment. 38 Two-stage Runge-Kutta Methods. Chapter 10 Runge Kutta Methods Chapter 10 Runge Kutta Methods In the previous lectures, we have concentrated on multi-step methods. However, another powerful set of methods are known as multi-stage methods. Perhaps the best known of

More information

Application 2.4 Implementing Euler's Method

Application 2.4 Implementing Euler's Method Application 2.4 Implementing Euler's Method One's understanding of a numerical algorithm is sharpened by considering its implementation in the form of a calculator or computer program. Figure 2.4.13 in

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Homework 14 solutions

Homework 14 solutions Section 9.1: Ex 1,5,10,15,16 Section 9.: Ex 1,8,9; AP 1-5,9 Section 9.3: AP 1-5 Section 9.1 Homework 14 solutions 1. (a) Show that y( is a solution to the differential equation by substitution. (b) Find

More information

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D In two dimensions we have previously used Riemann sums to approximate ( ) following steps: with the 1. Divide the region

More information

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 1 Lecture 24 Attention: The last homework HW5 and the last project are due on Tuesday November

More information

the Simulation of Dynamics Using Simulink

the Simulation of Dynamics Using Simulink INTRODUCTION TO the Simulation of Dynamics Using Simulink Michael A. Gray CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group an informa business

More information

AMSC/CMSC 460 Final Exam, Fall 2007

AMSC/CMSC 460 Final Exam, Fall 2007 AMSC/CMSC 460 Final Exam, Fall 2007 Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university

More information

Section 4.3: Derivatives and the Shapes of Curves

Section 4.3: Derivatives and the Shapes of Curves 1 Section 4.: Derivatives and the Shapes of Curves Practice HW from Stewart Textbook (not to hand in) p. 86 # 1,, 7, 9, 11, 19, 1,, 5 odd The Mean Value Theorem If f is a continuous function on the closed

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

MAT 275 Laboratory 3 Numerical Solutions by Euler and Improved Euler Methods (scalar equations)

MAT 275 Laboratory 3 Numerical Solutions by Euler and Improved Euler Methods (scalar equations) MAT 275 Laboratory 3 Numerical Solutions by Euler and Improved Euler Methods (scalar equations) In this session we look at basic numerical methods to help us understand the fundamentals of numerical approximations.

More information

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS www.tinspireapps.com Functions READ: Linear Functions Find Slope Find y=mx+b All-in-one-Function Explorer Evaluate Function Find Domain of f(x) Find

More information

16.1 Runge-Kutta Method

16.1 Runge-Kutta Method 70 Chapter 6. Integration of Ordinary Differential Equations CITED REFERENCES AND FURTHER READING: Gear, C.W. 97, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs,

More information

Numerical Methods for Differential Equations Contents Review of numerical integration methods Rectangular Rule Trapezoidal Rule Simpson s Rule How to

Numerical Methods for Differential Equations Contents Review of numerical integration methods Rectangular Rule Trapezoidal Rule Simpson s Rule How to Numerical Methods for Differential Equations Contents Review of numerical integration methods Rectangular Rule Trapezoidal Rule Simpson s Rule How to make a connect-the-dots graphic Numerical Methods for

More information

Ordinary differential equations solving methods

Ordinary differential equations solving methods Radim Hošek, A07237 radhost@students.zcu.cz Ordinary differential equations solving methods Problem: y = y2 (1) y = x y (2) y = sin ( + y 2 ) (3) Where it is possible we try to solve the equations analytically,

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

Approximate Solutions to Differential Equations Slope Fields (graphical) and Euler s Method (numeric) by Dave Slomer

Approximate Solutions to Differential Equations Slope Fields (graphical) and Euler s Method (numeric) by Dave Slomer Approximate Solutions to Differential Equations Slope Fields (graphical) and Euler s Method (numeric) by Dave Slomer Leonhard Euler was a great Swiss mathematician. The base of the natural logarithm function,

More information

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes Final Examination May 10, 2011 75 Questions, 170 minutes Notes: 1. Before you begin, please check that your exam has 28 pages (including this one). 2. Write your name and student ID number clearly on your

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

Lecture 9. Curve fitting. Interpolation. Lecture in Numerical Methods from 28. April 2015 UVT. Lecture 9. Numerical. Interpolation his o

Lecture 9. Curve fitting. Interpolation. Lecture in Numerical Methods from 28. April 2015 UVT. Lecture 9. Numerical. Interpolation his o Curve fitting. Lecture in Methods from 28. April 2015 to ity Interpolation FIGURE A S Splines Piecewise relat UVT Agenda of today s lecture 1 Interpolation Idea 2 3 4 5 6 Splines Piecewise Interpolation

More information

The Euler and trapezoidal stencils to solve d d x y x = f x, y x

The Euler and trapezoidal stencils to solve d d x y x = f x, y x restart; Te Euler and trapezoidal stencils to solve d d x y x = y x Te purpose of tis workseet is to derive te tree simplest numerical stencils to solve te first order d equation y x d x = y x, and study

More information

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs).

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). D.I. Lanlege, Ph.D. * ; U.M. Garba, B.Sc.; and A. Aluebho, B.Sc. Department

More information

CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX

CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX www.tinspireapps.com Physics Apps Center of Mass (2D) 1. Moment of Mass about x and y-axis Mass of Lamina - f(x) Mass of Lamina

More information

Physics Tutorial 2: Numerical Integration Methods

Physics Tutorial 2: Numerical Integration Methods Physics Tutorial 2: Numerical Integration Methods Summary The concept of numerically solving differential equations is explained, and applied to real time gaming simulation. Some objects are moved in a

More information

AP Calculus. Slide 1 / 213 Slide 2 / 213. Slide 3 / 213. Slide 4 / 213. Slide 4 (Answer) / 213 Slide 5 / 213. Derivatives. Derivatives Exploration

AP Calculus. Slide 1 / 213 Slide 2 / 213. Slide 3 / 213. Slide 4 / 213. Slide 4 (Answer) / 213 Slide 5 / 213. Derivatives. Derivatives Exploration Slide 1 / 213 Slide 2 / 213 AP Calculus Derivatives 2015-11-03 www.njctl.org Slide 3 / 213 Table of Contents Slide 4 / 213 Rate of Change Slope of a Curve (Instantaneous ROC) Derivative Rules: Power, Constant,

More information

Part I: Theoretical Background and Integration-Based Methods

Part I: Theoretical Background and Integration-Based Methods Large Vector Field Visualization: Theory and Practice Part I: Theoretical Background and Integration-Based Methods Christoph Garth Overview Foundations Time-Varying Vector Fields Numerical Integration

More information

AP Calculus BC Course Description

AP Calculus BC Course Description AP Calculus BC Course Description COURSE OUTLINE: The following topics define the AP Calculus BC course as it is taught over three trimesters, each consisting of twelve week grading periods. Limits and

More information

Suppose we want to find approximate values for the solution of the differential equation

Suppose we want to find approximate values for the solution of the differential equation A course in differential equations Chapter 2. Numerical methods of solution We shall discuss the simple numerical method suggested in the last chapter, and explain several more sophisticated ones. We shall

More information

Application 7.6A The Runge-Kutta Method for 2-Dimensional Systems

Application 7.6A The Runge-Kutta Method for 2-Dimensional Systems Application 7.6A The Runge-Kutta Method for -Dimensional Systems Figure 7.6. in the text lists TI-85 and BASIC versions of the program RKDIM that implements the Runge-Kutta iteration k (,, ) = f tn xn

More information

7.1 First-order initial-value problems

7.1 First-order initial-value problems 7.1 First-order initial-value problems A first-order initial-value problem (IVP) is a first-order ordinary differential equation with a specified value: d dt y t y a y f t, y t That is, this says that

More information

Linear and Quadratic Least Squares

Linear and Quadratic Least Squares Linear and Quadratic Least Squares Prepared by Stephanie Quintal, graduate student Dept. of Mathematical Sciences, UMass Lowell in collaboration with Marvin Stick Dept. of Mathematical Sciences, UMass

More information

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore,

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore, 13.4. Curvature Curvature Let F(t) be a vector values function. We say it is regular if F (t)=0 Let F(t) be a vector valued function which is arclength parametrized, which means F t 1 for all t. Then,

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

POLYMATH Example for the Numerical Solution of ODEs

POLYMATH Example for the Numerical Solution of ODEs for the Numerical Solution of ODEs Differential Equations... 1 POLYMATH 5.0... 2 POLYMATH 6.0... 15 The equations & methods outlined here provide a framework with which one could create programs or spreadsheets

More information

Parallel implicit ordinary differential equation solver for cuda. Tomasz M. Kardaś

Parallel implicit ordinary differential equation solver for cuda. Tomasz M. Kardaś Parallel implicit ordinary differential equation solver for cuda Tomasz M. Kardaś August 11, 2014 Chapter 1 Parallel Implicit Ordinary Differential Equations Solver A simplest definition of stiffness,

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

A First Course on Kinetics and Reaction Engineering Example S4.5

A First Course on Kinetics and Reaction Engineering Example S4.5 Example S4.5 Problem Purpose The purpose of this example is to illustrate how to use the MATLAB template file FitNumDifMR.m to perform a regression analysis for multiple response data with a model that

More information

Computer Simulations

Computer Simulations Computer Simulations A practical approach to simulation Semra Gündüç gunduc@ankara.edu.tr Ankara University Faculty of Engineering, Department of Computer Engineering 2014-2015 Spring Term Ankara University

More information

Finite Difference Calculus

Finite Difference Calculus Chapter 2 Finite Difference Calculus In this chapter we review the calculus of finite differences. The topic is classic and covered in many places. The Taylor series is fundamental to most analysis. A

More information

Investigation on Multilayer Raster Cellular Neural Network by Arithmetic and Heronian Mean RKAHeM(4,4)

Investigation on Multilayer Raster Cellular Neural Network by Arithmetic and Heronian Mean RKAHeM(4,4) Proceedings of the World Congress on Engineering 007 Vol I WCE 007 July - 4 007 London U.K. Investigation on Multilayer Raster Cellular Neural Networ by Arithmetic and Heronian Mean RKAHeM(44 R. Ponalagusamy

More information

New formulations of the semi-lagrangian method for Vlasov-type equations

New formulations of the semi-lagrangian method for Vlasov-type equations New formulations of the semi-lagrangian method for Vlasov-type equations Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 17 September 2008 In collaboration

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

USING SPREADSHEETS AND DERIVE TO TEACH DIFFERENTIAL EQUATIONS

USING SPREADSHEETS AND DERIVE TO TEACH DIFFERENTIAL EQUATIONS USING SPREADSHEETS AND DERIVE TO TEACH DIFFERENTIAL EQUATIONS Kathleen Shannon, Ph.D. Salisbury State University Department of Mathematics and Computer Science Salisbury, MD 21801 KMSHANNON@SAE.SSU.UMD.EDU

More information

Chemical Reaction Engineering - Part 4 - Integration Richard K. Herz,

Chemical Reaction Engineering - Part 4 - Integration Richard K. Herz, Chemical Reaction Engineering - Part 4 - Integration Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Integrating the component balance for a batch reactor For a single reaction in a batch reactor,

More information

99 International Journal of Engineering, Science and Mathematics

99 International Journal of Engineering, Science and Mathematics Journal Homepage: Applications of cubic splines in the numerical solution of polynomials Najmuddin Ahmad 1 and Khan Farah Deeba 2 Department of Mathematics Integral University Lucknow Abstract: In this

More information

Exact equations are first order DEs of the form M(x, y) + N(x, y) y' = 0 for which we can find a function f(x, φ(x)) so that

Exact equations are first order DEs of the form M(x, y) + N(x, y) y' = 0 for which we can find a function f(x, φ(x)) so that Section 2.6 Exact Equations (ONLY) Key Terms: Exact equations are first order DEs of the form M(x, y) + N(x, y) y' = 0 for which we can find a function f(x, φ(x)) so that The construction of f(x, φ(x))

More information

Numerical Integration

Numerical Integration Numerical Integration Numerical Integration is the process of computing the value of a definite integral, when the values of the integrand function, are given at some tabular points. As in the case of

More information

Numerical Method (2068 Third Batch)

Numerical Method (2068 Third Batch) 1. Define the types of error in numerical calculation. Derive the formula for secant method and illustrate the method by figure. There are different types of error in numerical calculation. Some of them

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Optimization. A first course on mathematics for economists Problem set 6: Linear programming

Optimization. A first course on mathematics for economists Problem set 6: Linear programming Optimization. A first course on mathematics for economists Problem set 6: Linear programming Xavier Martinez-Giralt Academic Year 2015-2016 6.1 A company produces two goods x and y. The production technology

More information

Tangent & normal vectors The arc-length parameterization of a 2D curve The curvature of a 2D curve

Tangent & normal vectors The arc-length parameterization of a 2D curve The curvature of a 2D curve Local Analysis of 2D Curve Patches Topic 4.2: Local analysis of 2D curve patches Representing 2D image curves Estimating differential properties of 2D curves Tangent & normal vectors The arc-length parameterization

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 016, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Section 5.5 Piecewise Interpolation

Section 5.5 Piecewise Interpolation Section 5.5 Piecewise Interpolation Key terms Runge phenomena polynomial wiggle problem Piecewise polynomial interpolation We have considered polynomial interpolation to sets of distinct data like {( )

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 6. Euler s method. for approximate solutions of IVP s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 6. Euler s method. for approximate solutions of IVP s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 6 Euler s method for approximate solutions of IVP s What ou need to know alread: What an initial value problem is.

More information

Workpackage 5 - Ordinary Differential Equations

Workpackage 5 - Ordinary Differential Equations Mathematics for I Workpackage 5 - Ordinary Differential Equations Introduction During this laboratory you will be introduced to some of Matlab s facilities for solving ordinary differential equations (ode).

More information

TEACHING & EXAMINATION SCHEME For the Examination COMPUTER SCIENCE. B.Sc. Part-I

TEACHING & EXAMINATION SCHEME For the Examination COMPUTER SCIENCE. B.Sc. Part-I TEACHING & EXAMINATION SCHEME For the Examination -2015 COMPUTER SCIENCE THEORY B.Sc. Part-I CS.101 Paper I Computer Oriented Numerical Methods and FORTRAN Pd/W Exam. Max. (45mts.) Hours Marks 150 2 3

More information

Differentiation. J. Gerlach November 2010

Differentiation. J. Gerlach November 2010 Differentiation J. Gerlach November 200 D and diff The limit definition of the derivative is covered in the Limit tutorial. Here we look for direct ways to calculate derivatives. Maple has two commands

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

=.1( sin(2πx/24) y) y(0) = 70.

=.1( sin(2πx/24) y) y(0) = 70. Differential Equations, Spring 2017 Computer Project 2, Due 11:30 am, Friday, March 10 The goal of this project is to implement the Euler Method and the Improved Euler Method, and to use these methods

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Problem Exam Review ER-1. (E & P Exercise 2.4-6, Symbolic Solution)

Problem Exam Review ER-1. (E & P Exercise 2.4-6, Symbolic Solution) Name Class Time Math 2250 Maple Project 3: Numerical Methods S2010 Due date: See the internet due dates. Maple lab 3 has three problems L3.1, L3.2, L3.3. References: Code in maple appears in 2250mapleL3-S2010.txt

More information

Polynomial Approximation and Interpolation Chapter 4

Polynomial Approximation and Interpolation Chapter 4 4.4 LAGRANGE POLYNOMIALS The direct fit polynomial presented in Section 4.3, while quite straightforward in principle, has several disadvantages. It requires a considerable amount of effort to solve the

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information