Contents. I The Basic Framework for Stationary Problems 1

Size: px
Start display at page:

Download "Contents. I The Basic Framework for Stationary Problems 1"

Transcription

1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs Laplace s equation; elliptic BVPs Physical experiments modeled by Laplace s equation Other elliptic BVPs The equations of isotropic elasticity General linear elasticity Exercises for Chapter The weak form of a BVP Review of vector calculus The divergence theorem Green s identity Other forms of the divergence theorem and Green s identity The weak form of a BVP Minimization of energy Relaxing the PDE A few details about Sobolev spaces The weak form for other boundary conditions and PDEs Neumann conditions and the weak form Mixed boundary conditions Inhomogeneous boundary conditions Other elliptic BVPs Existence and uniqueness theory for the weak form of a BVP Vector spaces and inner products Hilbert spaces Linear functionals The Riesz representation theorem Variational problems and the Riesz representation theorem 42 vii

2 page v viii 2.5 Examples of ellipticity The model problem The equations of isotropic elasticity Variational formulation of nonsymmetric problems Exercises for Chapter The Galerkin method The projection theorem The Galerkin method for a variational problem Another interpretation of the Galerkin method The Galerkin method for a nonsymmetric problem Exercises for Chapter Piecewise polynomials and the finite element method Piecewise linear functions defined on a triangular mesh Using piecewise linear functions in Galerkin s method The sparsity of the stiffness matrix Quadratic Lagrange triangles Continuous piecewise quadratic functions The finite element method with quadratic Lagrange triangles Cubic Lagrange triangles Continuous piecewise cubic functions The finite element method with cubic Lagrange triangles Lagrange triangles of arbitrary degree Hierarchical bases for finite element spaces Other finite elements: Rectangles and quadrilaterals Rectangular elements General quadrilaterals Using a reference triangle in finite element calculations Isoparametric finite element methods Isoparametric quadratic triangles Isoparametric triangles of higher degree Exercises for Chapter Convergence of the finite element method Approximating smooth functions by continuous piecewise linear functions The standard refinement of a triangulation Nondegenerate families of triangulations Approximation by piecewise linear functions Approximation by higher-order piecewise polynomials Convergence in the energy norm Convergence in the L 2 -norm Variational crimes Numerical integration...118

3 page ix ix Outline of the analysis of the effect of quadrature Isoparametric finite elements Exercises for Chapter II Data Structures and Implementation The mesh data structure Programming the finite element method Assembling the stiffness matrix Computing the load vector The mesh data structure The list of nodes The list of edges The list of elements The list of free boundary edges Other fields in the mesh data structure The MATLAB implementation Generating a mesh by refinement Generating a mesh from a triangle-node list Assessing the quality of a triangulation Viewing a mesh Handling a domain with a curved boundary Viewing a piecewise linear function MATLAB functions A summary of the notation Exercises for Chapter Programming the finite element method: Linear Lagrange triangles Quadrature Gaussian quadrature Evaluating the standard basis functions on a triangle Quadrature over a square Assembling the stiffness matrix Computing the load vector Inhomogeneous Dirichlet conditions Inhomogeneous Neumann conditions Examples Homogeneous boundary conditions Inhomogeneous boundary conditions A more realistic example The MATLAB implementation MATLAB functions Exercises for Chapter

4 pagex x 8 Lagrange triangles of arbitrary degree Quadrature for higher-order elements Assembling the stiffness matrix and load vector Implementing the isoparametric method Placement of nodes in the isoparametric method Examples The MATLAB implementation version version Exercises for Chapter The finite element method for general BVPs Scalar BVPs An example Isotropic elasticity Mesh locking The MATLAB implementation Exercises for Chapter III Solving the Finite Element Equations Direct solution of sparse linear systems The Cholesky factorization for positive definite matrices The Cholesky factorization for dense matrices The Cholesky factorization for banded matrices Factoring general sparse matrices Exercises for Chapter Iterative methods: Conjugate gradients The CG method The CG algorithm Convergence of the CG algorithm Hierarchical bases for finite element spaces Hierarchical bases for linear Lagrange triangles Relationship between the stiffness matrices in nodal and hierarchical bases The hierarchical basis CG method The preconditioned CG method Alternate derivation of PCG Preconditioners The pure Neumann problem The MATLAB implementation MATLAB functions Exercises for Chapter

5 page x xi 12 The classical stationary iterations Stationary iterations Matrix norms Convergence of stationary iterations The classical iterations Jacobi iteration Gauss Seidel iteration SOR iteration Symmetric SOR CG with SSOR preconditioning The MATLAB implementation MATLAB functions Exercises for Chapter The multigrid method Stationary iterations as smoothers The stiffness matrix for the model problem Fourier modes and the spectral decomposition of K Jacobi iteration Weighted Jacobi iteration The coarse grid correction algorithm Projecting the equation onto a coarser mesh The projected equation and the Galerkin idea The two-grid multigrid algorithm The multigrid V-cycle W-cycles and µ-cycles Full multigrid Discretization, algebraic, and total errors The MATLAB implementation MATLAB functions Exercises for Chapter IV Adaptive Methods Adaptive mesh generation Algorithms for local mesh refinement Algorithms based on the standard refinement Algorithms based on bisection Selecting triangles for local refinement A complete adaptive algorithm The MATLAB implementation MATLAB functions Exercises for Chapter

6 page x xii 15 Error estimators and indicators An explicit error indicator based on estimating the curvature of the solution An explicit error indicator based on the residual The element residual error estimator Some final examples A discontinuous coefficient A reentrant corner Transition from Dirichlet to Neumann conditions The MATLAB implementation MATLAB functions Exercises for Chapter Bibliography 353 Index 357

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17 Bibliography [1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Chapter 13. Boundary Value Problems for Partial Differential Equations* Linz 2002/ page

Chapter 13. Boundary Value Problems for Partial Differential Equations* Linz 2002/ page Chapter 13 Boundary Value Problems for Partial Differential Equations* E lliptic equations constitute the third category of partial differential equations. As a prototype, we take the Poisson equation

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB THE MORTAR FINITE ELEMENT METHOD IN D: IMPLEMENTATION IN MATLAB J. Daněk, H. Kutáková Department of Mathematics, University of West Bohemia, Pilsen MECAS ESI s.r.o., Pilsen Abstract The paper is focused

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Microprocessor Thermal Analysis using the Finite Element Method

Microprocessor Thermal Analysis using the Finite Element Method Microprocessor Thermal Analysis using the Finite Element Method Bhavya Daya Massachusetts Institute of Technology Abstract The microelectronics industry is pursuing many options to sustain the performance

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

PROGRAMMING OF MULTIGRID METHODS

PROGRAMMING OF MULTIGRID METHODS PROGRAMMING OF MULTIGRID METHODS LONG CHEN In this note, we explain the implementation detail of multigrid methods. We will use the approach by space decomposition and subspace correction method; see Chapter:

More information

Journal of Engineering Research and Studies E-ISSN

Journal of Engineering Research and Studies E-ISSN Journal of Engineering Research and Studies E-ISS 0976-79 Research Article SPECTRAL SOLUTIO OF STEADY STATE CODUCTIO I ARBITRARY QUADRILATERAL DOMAIS Alavani Chitra R 1*, Joshi Pallavi A 1, S Pavitran

More information

A Hybrid Geometric+Algebraic Multigrid Method with Semi-Iterative Smoothers

A Hybrid Geometric+Algebraic Multigrid Method with Semi-Iterative Smoothers NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 013; 00:1 18 Published online in Wiley InterScience www.interscience.wiley.com). A Hybrid Geometric+Algebraic Multigrid Method with

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium Curve and Surface Fitting with Splines PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium CLARENDON PRESS OXFORD 1995 - Preface List of Figures List of Tables

More information

1 Exercise: 1-D heat conduction with finite elements

1 Exercise: 1-D heat conduction with finite elements 1 Exercise: 1-D heat conduction with finite elements Reading This finite element example is based on Hughes (2000, sec. 1.1-1.15. 1.1 Implementation of the 1-D heat equation example In the previous two

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECH- NOLOGY ITERATIVE LINEAR SOLVERS

THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECH- NOLOGY ITERATIVE LINEAR SOLVERS ITERATIVE LIEAR SOLVERS. Objectives The goals of the laboratory workshop are as follows: to learn basic properties of iterative methods for solving linear least squares problems, to study the properties

More information

ALF USER GUIDE. Date: September

ALF USER GUIDE. Date: September ALF USER GUIDE R. VERFÜRTH Contents 1. Introduction 1 2. User interface 2 3. Domain and initial grid 3 4. Differential equation 9 5. Discretization 12 6. Solver 12 7. Mesh refinement 14 8. Number of nodes

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

Foundations of Analytical and Numerical Field Computation

Foundations of Analytical and Numerical Field Computation Foundations of Analytical and Numerical Field Computation Stephan Russenschuck, CERN-AT-MEL Stephan Russenschuck CERN, TE-MCS, 1211 Geneva, Switzerland 1 Permanent Magnet Circuits 2 Rogowski profiles Pole

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria Image deblurring by multigrid methods Marco Donatelli Stefano Serra-Capizzano Department of Physics and Mathematics University of Insubria Outline 1 Restoration of blurred and noisy images The model problem

More information

Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya

Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya David Stonko, Samuel Khuvis, and Matthias K. Gobbert (gobbert@umbc.edu) Department of Mathematics

More information

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Oleg Bessonov (B) Institute for Problems in Mechanics of the Russian Academy of Sciences, 101, Vernadsky Avenue, 119526 Moscow, Russia

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

PROJECT REPORT. Symbol based Multigrid method. Hreinn Juliusson, Johanna Brodin, Tianhao Zhang Project in Computational Science: Report

PROJECT REPORT. Symbol based Multigrid method. Hreinn Juliusson, Johanna Brodin, Tianhao Zhang Project in Computational Science: Report Symbol based Multigrid method Hreinn Juliusson, Johanna Brodin, Tianhao Zhang Project in Computational Science: Report February 20, 2018 PROJECT REPORT Department of Information Technology Abstract Discretization

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

F. THOMSON LEIGHTON INTRODUCTION TO PARALLEL ALGORITHMS AND ARCHITECTURES: ARRAYS TREES HYPERCUBES

F. THOMSON LEIGHTON INTRODUCTION TO PARALLEL ALGORITHMS AND ARCHITECTURES: ARRAYS TREES HYPERCUBES F. THOMSON LEIGHTON INTRODUCTION TO PARALLEL ALGORITHMS AND ARCHITECTURES: ARRAYS TREES HYPERCUBES MORGAN KAUFMANN PUBLISHERS SAN MATEO, CALIFORNIA Contents Preface Organization of the Material Teaching

More information

Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D

Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D Axel Klawonn 1, Oliver Rheinbach 1, and Olof B. Widlund 2 1 Universität Duisburg-Essen, Campus Essen, Fachbereich Mathematik

More information

Generalized Additive Models

Generalized Additive Models :p Texts in Statistical Science Generalized Additive Models An Introduction with R Simon N. Wood Contents Preface XV 1 Linear Models 1 1.1 A simple linear model 2 Simple least squares estimation 3 1.1.1

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut &

More information

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI 1 Akshay N. Panajwar, 2 Prof.M.A.Shah Department of Computer Science and Engineering, Walchand College of Engineering,

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Introduction to Design Optimization

Introduction to Design Optimization Introduction to Design Optimization First Edition Krishnan Suresh i Dedicated to my family. They mean the world to me. ii Origins of this Text Preface Like many other textbooks, this text has evolved from

More information

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle ICES Student Forum The University of Texas at Austin, USA November 4, 204 Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Puffin User Manual. March 1, Johan Hoffman and Anders Logg.

Puffin User Manual. March 1, Johan Hoffman and Anders Logg. Puffin User Manual March 1, 2006 Johan Hoffman and Anders Logg www.fenics.org Visit http://www.fenics.org/ for the latest version of this manual. Send comments and suggestions to puffin-dev@fenics.org.

More information

Janne Martikainen 1. Introduction

Janne Martikainen 1. Introduction Mathematical Modelling and Numerical Analysis ESAIM: M2AN Modélisation Mathématique et Analyse Numérique M2AN, Vol. 37, N o 1, 2003, pp. 133 142 DOI: 10.1051/m2an:2003016 NUMERICAL STUDY OF TWO SPARSE

More information

GEOMETRIC LIBRARY. Maharavo Randrianarivony

GEOMETRIC LIBRARY. Maharavo Randrianarivony GEOMETRIC LIBRARY Maharavo Randrianarivony During the last four years, I have maintained a numerical geometric library. The constituting routines, which are summarized in the following list, are implemented

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

The Finite Element Method

The Finite Element Method The Finite Element Method A Practical Course G. R. Liu and S. S. Quek Chapter 1: Computational modeling An overview 1 CONTENTS INTRODUCTION PHYSICAL PROBLEMS IN ENGINEERING COMPUTATIONAL MODELLING USING

More information

Solution of Ambrosio-Tortorelli Model for Image Segmentation by Generalized Relaxation Method

Solution of Ambrosio-Tortorelli Model for Image Segmentation by Generalized Relaxation Method Solution of Ambrosio-Tortorelli Model for Image Segmentation by Generalized Relaxation Method Pasqua D Ambra, Gaetano Tartaglione Institute for High-Performance Computing and Networking (ICAR), CNR, Via

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Construction and application of hierarchical matrix preconditioners

Construction and application of hierarchical matrix preconditioners University of Iowa Iowa Research Online Theses and Dissertations 2008 Construction and application of hierarchical matrix preconditioners Fang Yang University of Iowa Copyright 2008 Fang Yang This dissertation

More information

Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes

Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes by Hassan Goldani Moghaddam A thesis submitted in conformity with

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

Ill-Posed Problems with A Priori Information

Ill-Posed Problems with A Priori Information INVERSE AND ILL-POSED PROBLEMS SERIES Ill-Posed Problems with A Priori Information V.V.Vasin andalageev HIV SPIII Utrecht, The Netherlands, 1995 CONTENTS Introduction 1 CHAPTER 1. UNSTABLE PROBLEMS 1 Base

More information

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing?

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing? CS 6210 Fall 2016 Bei Wang Review Lecture What have we learnt in Scientific Computing? Let s recall the scientific computing pipeline observed phenomenon mathematical model discretization solution algorithm

More information

Performance Evaluation of a New Parallel Preconditioner

Performance Evaluation of a New Parallel Preconditioner Performance Evaluation of a New Parallel Preconditioner Keith D. Gremban Gary L. Miller October 994 CMU-CS-94-25 Marco Zagha School of Computer Science Carnegie Mellon University Pittsburgh, PA 523 This

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

A Study of Prolongation Operators Between Non-nested Meshes

A Study of Prolongation Operators Between Non-nested Meshes A Study of Prolongation Operators Between Non-nested Meshes Thomas Dickopf 1 and Rolf Krause 2 1 Institute for Numerical Simulation, University of Bonn, 53115 Bonn, Germany, dickopf@ins.uni-bonn.de 2 Institute

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

A Parallel Implementation of the BDDC Method for Linear Elasticity

A Parallel Implementation of the BDDC Method for Linear Elasticity A Parallel Implementation of the BDDC Method for Linear Elasticity Jakub Šístek joint work with P. Burda, M. Čertíková, J. Mandel, J. Novotný, B. Sousedík Institute of Mathematics of the AS CR, Prague

More information

LINE SEARCH MULTILEVEL OPTIMIZATION AS COMPUTATIONAL METHODS FOR DENSE OPTICAL FLOW

LINE SEARCH MULTILEVEL OPTIMIZATION AS COMPUTATIONAL METHODS FOR DENSE OPTICAL FLOW LINE SEARCH MULTILEVEL OPTIMIZATION AS COMPUTATIONAL METHODS FOR DENSE OPTICAL FLOW EL MOSTAFA KALMOUN, LUIS GARRIDO, AND VICENT CASELLES Abstract. We evaluate the performance of different optimization

More information

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer George B. Dantzig Mukund N. Thapa Linear Programming 1: Introduction With 87 Illustrations Springer Contents FOREWORD PREFACE DEFINITION OF SYMBOLS xxi xxxiii xxxvii 1 THE LINEAR PROGRAMMING PROBLEM 1

More information

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005 Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models by David M. Trujillo 1 December 2005 1 Consultant, TRUCOMP, Fountain Valley, California trucomp@earthlink.net Abstract

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

On the regularizing power of multigrid-type algorithms

On the regularizing power of multigrid-type algorithms On the regularizing power of multigrid-type algorithms Marco Donatelli Dipartimento di Fisica e Matematica Università dell Insubria www.mat.unimi.it/user/donatel Outline 1 Restoration of blurred and noisy

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

2 Fundamentals of Serial Linear Algebra

2 Fundamentals of Serial Linear Algebra . Direct Solution of Linear Systems.. Gaussian Elimination.. LU Decomposition and FBS..3 Cholesky Decomposition..4 Multifrontal Methods. Iterative Solution of Linear Systems.. Jacobi Method Fundamentals

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

A Finite Element Method for Deformable Models

A Finite Element Method for Deformable Models A Finite Element Method for Deformable Models Persephoni Karaolani, G.D. Sullivan, K.D. Baker & M.J. Baines Intelligent Systems Group, Department of Computer Science University of Reading, RG6 2AX, UK,

More information

Multigrid Methods for Markov Chains

Multigrid Methods for Markov Chains Multigrid Methods for Markov Chains Hans De Sterck Department of Applied Mathematics, University of Waterloo collaborators Killian Miller Department of Applied Mathematics, University of Waterloo, Canada

More information

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems Smoothers Partial Differential Equations Disappointing convergence rates observed for stationary iterative methods are asymptotic Much better progress may be made initially before eventually settling into

More information

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions 1 n Efficient, Geometric Multigrid Solver for the nisotropic Diffusion Equation in Two and Three Dimensions Tolga Tasdizen, Ross Whitaker UUSCI-2004-002 Scientific Computing and Imaging Institute University

More information

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH 2002 Eitan Grinspun Caltech Petr Krysl UCSD Peter Schröder Caltech Presented by Jose Guerra 1 Outline Background Motivation (Element vs. Basis

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Variational Geometric Modeling with Wavelets

Variational Geometric Modeling with Wavelets Variational Geometric Modeling with Wavelets Steven J. Gortler and Michael F. Cohen Microsoft Research Redmond, WA (excerpted from Hierarchical and Variational Geometric Modeling with Wavelets, by Steven

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Per-Olof Persson University of California, Berkeley, Berkeley, CA 9472-384, U.S.A. Jaime Peraire Massachusetts Institute of Technology,

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

June 5, Institute of Structural Analysis Graz University of Technology Lessingstr. 25/II, 8010 Graz, Austria

June 5, Institute of Structural Analysis Graz University of Technology Lessingstr. 25/II, 8010 Graz, Austria Higher-order meshing of implicit geometries part I: Integration and interpolation in cut elements arxiv:706.00578v [cs.na] 2 Jun 207 T.P. Fries, S. Omerović, D. Schöllhammer, J. Steidl June 5, 207 Institute

More information

Barycentric Finite Element Methods

Barycentric Finite Element Methods University of California, Davis Barycentric Finite Element Methods N. Sukumar UC Davis Workshop on Generalized Barycentric Coordinates, Columbia University July 26, 2012 Collaborators and Acknowledgements

More information

Data mining with sparse grids using simplicial basis functions

Data mining with sparse grids using simplicial basis functions Data mining with sparse grids using simplicial basis functions Jochen Garcke and Michael Griebel Institut für Angewandte Mathematik Universität Bonn Part of the work was supported within the project 03GRM6BN

More information

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 11 Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 2.3.1 Choice of Displacement Function Displacement function is the beginning point for the structural

More information

Memory Efficient Adaptive Mesh Generation and Implementation of Multigrid Algorithms Using Sierpinski Curves

Memory Efficient Adaptive Mesh Generation and Implementation of Multigrid Algorithms Using Sierpinski Curves Memory Efficient Adaptive Mesh Generation and Implementation of Multigrid Algorithms Using Sierpinski Curves Michael Bader TU München Stefanie Schraufstetter TU München Jörn Behrens AWI Bremerhaven Abstract

More information

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems AMSC 6 /CMSC 76 Advanced Linear Numerical Analysis Fall 7 Direct Solution of Sparse Linear Systems and Eigenproblems Dianne P. O Leary c 7 Solving Sparse Linear Systems Assumed background: Gauss elimination

More information

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD)

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD) NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD) NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD) Author: Tamás

More information

Finite Element Implementation

Finite Element Implementation Chapter 8 Finite Element Implementation 8.1 Elements Elements andconditions are the main extension points of Kratos. New formulations can be introduced into Kratos by implementing a new Element and its

More information

Scientific Computing: Interpolation

Scientific Computing: Interpolation Scientific Computing: Interpolation Aleksandar Donev Courant Institute, NYU donev@courant.nyu.edu Course MATH-GA.243 or CSCI-GA.22, Fall 25 October 22nd, 25 A. Donev (Courant Institute) Lecture VIII /22/25

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Noemi Petra and Matthias K. Gobbert Department of Mathematics and Statistics, University of Maryland, Baltimore

More information