Parallel Simulation of Dendritic Growth On Unstructured Grids

Size: px
Start display at page:

Download "Parallel Simulation of Dendritic Growth On Unstructured Grids"

Transcription

1 Parallel Simulation of Dendritic Growth On Unstructured Grids, Julian Hammer, Dietmar Fey Friedrich-Alexander-Universität Erlangen-Nürnberg IA 3 Nov. 13th, 2011

2 Outline 1 What and why? 2 Specialized Parallelization 3 Stencilized Parallelization

3 Outlook 1 What and why? 2 Specialized Parallelization 3 Stencilized Parallelization

4 What and why? Specialized Parallelization Stencilized Parallelization Simulation of Dendritic Growth in Al/Cu Microscope two classes of models: 1 2 Simulation cellular automata (our approach) phase field method (Peta-scale Phase-Field Simulation for Dendritic Solidification on the TSUBAME 2.0 Supercomputer) meshfree (no regular grid)

5 Simulation Model black: solid cells green: liquid cells squares: particles on phase boundary

6 Outlook 1 What and why? 2 Specialized Parallelization 3 Stencilized Parallelization

7 1 decompose graph via ParMETIS 2 loop 1 sync ghostzones 2 update 3 (output)

8 Communication Graph cells, 10 MPI processes 74k ghost cells 2 GB/step

9 Communication Graph cells, 100 MPI processes 475k ghost cells 11 GB/step

10 Outlook 1 What and why? 2 Specialized Parallelization 3 Stencilized Parallelization

11 Stencilization superimpose grid on irregular graph place cells into container cells physically equivalent reuse existing library: LibGeoDecomp overlapping comm. & calc. hybrid parallelization

12 Stencilization superimpose grid on irregular graph place cells into container cells physically equivalent reuse existing library: LibGeoDecomp overlapping comm. & calc. hybrid parallelization

13 Evaluation: Speedup Speedup Ideal LibGeoDecomp Specialized Parallelization Cores testbed: 28 IBM LS21 blades (Opteron dual-cores) 10 Gb InfiniBand

14 Overlapping Communication and Calculation Myth #1: It s as easy as calling MPI_Isend() Myth #2: It s not possible at all 1 MPI_Isend() 2 loop 1 MPI_Test() 2 work() 3 MPI_Wait()

15 Overlapping Communication and Calculation Myth #1: It s as easy as calling MPI_Isend() Myth #2: It s not possible at all 1 MPI_Isend() 2 loop 1 MPI_Test() 2 work() 3 MPI_Wait()

16 Overlapping Communication and Calculation Myth #1: It s as easy as calling MPI_Isend() Myth #2: It s not possible at all 1 MPI_Isend() 2 loop 1 MPI_Test() 2 work() 3 MPI_Wait()

17 Overlapping Micro Benchmark , overlap, send 64, overlap, send t k 256k 1M 4M 16M 64M 256M 1G comsize Open MPI + InfiniBand

18 Conclusion communication-bound model stencilization surprisingly efficient reduces number of neighbors but model changes may be substantial use MPI+OpenMP to reduce memory traffic asynchronous communication by repeatedly poking MPI LibGeoDecomp Self-Adapting Stencil Codes for the Grid

19 Backup

20 Improving Data Locality for Communication

21 Efficient Memory Layout Original Layout Optimized Layout SimSpace Grid Cell ID neighborids SimObject position state concentration Particle IDsource IDtarget velocity ContainerCell position dimensions Particle IDsource IDtarget velocity Cell ID neighborids SimObject position state concentration

22 Simulation of Dendritic Growth in Al/Cu Microscope Simulation model courtesy of Department of Metallic Materials, FSU Jena, Germany name derived from greek δενδρoν (dendron) not supercooled

From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with LibGeoDecomp

From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with LibGeoDecomp From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with andreas.schaefer@cs.fau.de Friedrich-Alexander-Universität Erlangen-Nürnberg GPU Technology Conference 2013, San José,

More information

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla SIAM PP 2016, April 13 th 2016 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer,

More information

simulation framework for piecewise regular grids

simulation framework for piecewise regular grids WALBERLA, an ultra-scalable multiphysics simulation framework for piecewise regular grids ParCo 2015, Edinburgh September 3rd, 2015 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler

More information

Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm

Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm March 17 March 21, 2014 Florian Schornbaum, Martin Bauer, Simon Bogner Chair for System Simulation Friedrich-Alexander-Universität

More information

Massively Parallel Phase Field Simulations using HPC Framework walberla

Massively Parallel Phase Field Simulations using HPC Framework walberla Massively Parallel Phase Field Simulations using HPC Framework walberla SIAM CSE 2015, March 15 th 2015 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer, Harald Köstler and Ulrich

More information

walberla: Developing a Massively Parallel HPC Framework

walberla: Developing a Massively Parallel HPC Framework walberla: Developing a Massively Parallel HPC Framework SIAM CS&E 2013, Boston February 26, 2013 Florian Schornbaum*, Christian Godenschwager*, Martin Bauer*, Matthias Markl, Ulrich Rüde* *Chair for System

More information

Peta-Scale Simulations with the HPC Software Framework walberla:

Peta-Scale Simulations with the HPC Software Framework walberla: Peta-Scale Simulations with the HPC Software Framework walberla: Massively Parallel AMR for the Lattice Boltzmann Method SIAM PP 2016, Paris April 15, 2016 Florian Schornbaum, Christian Godenschwager,

More information

Supercomputing Engine for Mathematica. Machine Evaluation Workshop 19-2 Dec 2008 Runcorn, Daresbury, United Kingdom

Supercomputing Engine for Mathematica. Machine Evaluation Workshop 19-2 Dec 2008 Runcorn, Daresbury, United Kingdom Supercomputing Engine for Mathematica Machine Evaluation Workshop 19-2 Dec 2008 Runcorn, Daresbury, United Kingdom Supercomputing Engine for Mathematica Dean E. Dauger, Ph. D. President, Dauger Research,

More information

Supercomputing Engine for Mathematica. Supercomputing 2008 Austin, Texas

Supercomputing Engine for Mathematica. Supercomputing 2008 Austin, Texas Supercomputing Engine for Mathematica Supercomputing 2008 Austin, Texas Supercomputing Engine for Mathematica Dean E. Dauger, Ph. D. President, Dauger Research, Inc. d@daugerresearch.com The First Mac

More information

Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method

Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method G. Wellein, T. Zeiser, G. Hager HPC Services Regional Computing Center A. Nitsure, K. Iglberger, U. Rüde Chair for System

More information

Two-Phase flows on massively parallel multi-gpu clusters

Two-Phase flows on massively parallel multi-gpu clusters Two-Phase flows on massively parallel multi-gpu clusters Peter Zaspel Michael Griebel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Workshop Programming of Heterogeneous

More information

CSE 590: Special Topics Course ( Supercomputing ) Lecture 6 ( Analyzing Distributed Memory Algorithms )

CSE 590: Special Topics Course ( Supercomputing ) Lecture 6 ( Analyzing Distributed Memory Algorithms ) CSE 590: Special Topics Course ( Supercomputing ) Lecture 6 ( Analyzing Distributed Memory Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2012 2D Heat Diffusion

More information

Kommunikations- und Optimierungsaspekte paralleler Programmiermodelle auf hybriden HPC-Plattformen

Kommunikations- und Optimierungsaspekte paralleler Programmiermodelle auf hybriden HPC-Plattformen Kommunikations- und Optimierungsaspekte paralleler Programmiermodelle auf hybriden HPC-Plattformen Rolf Rabenseifner rabenseifner@hlrs.de Universität Stuttgart, Höchstleistungsrechenzentrum Stuttgart (HLRS)

More information

The Icosahedral Nonhydrostatic (ICON) Model

The Icosahedral Nonhydrostatic (ICON) Model The Icosahedral Nonhydrostatic (ICON) Model Scalability on Massively Parallel Computer Architectures Florian Prill, DWD + the ICON team 15th ECMWF Workshop on HPC in Meteorology October 2, 2012 ICON =

More information

Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures

Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures Jan Treibig, Simon Hausmann, Ulrich Ruede Zusammenfassung The Lattice Boltzmann method (LBM) is a well established algorithm

More information

Ghost Cell Pattern. Fredrik Berg Kjolstad. January 26, 2010

Ghost Cell Pattern. Fredrik Berg Kjolstad. January 26, 2010 Ghost Cell Pattern Fredrik Berg Kjolstad University of Illinois Urbana-Champaign, USA kjolsta1@illinois.edu Marc Snir University of Illinois Urbana-Champaign, USA snir@illinois.edu January 26, 2010 Problem

More information

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung Explicit and Implicit Coupling Strategies for s Outline FreSCo+ Grid Coupling Interpolation Schemes Implementation Mass Conservation Examples Lid-driven Cavity Flow Cylinder in a Channel Oscillating Cylinder

More information

A Python extension for the massively parallel framework walberla

A Python extension for the massively parallel framework walberla A Python extension for the massively parallel framework walberla PyHPC at SC 14, November 17 th 2014 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Matthias Markl, Daniela Anderl, Harald Köstler

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Supercomputing Engine for Mathematica. Supercomputing 2009 Portland, Oregon

Supercomputing Engine for Mathematica. Supercomputing 2009 Portland, Oregon Supercomputing Engine for Mathematica Supercomputing 2009 Portland, Oregon Supercomputing Engine for Mathematica Dean E. Dauger, Ph. D. President, Dauger Research, Inc. d@daugerresearch.com The First Mac

More information

Metropolitan Road Traffic Simulation on FPGAs

Metropolitan Road Traffic Simulation on FPGAs Metropolitan Road Traffic Simulation on FPGAs Justin L. Tripp, Henning S. Mortveit, Anders Å. Hansson, Maya Gokhale Los Alamos National Laboratory Los Alamos, NM 85745 Overview Background Goals Using the

More information

Scalable Software Components for Ultrascale Visualization Applications

Scalable Software Components for Ultrascale Visualization Applications Scalable Software Components for Ultrascale Visualization Applications Wes Kendall, Tom Peterka, Jian Huang SC Ultrascale Visualization Workshop 2010 11-15-2010 Primary Collaborators Jian Huang Tom Peterka

More information

Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem

Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem Guan Wang and Matthias K. Gobbert Department of Mathematics and Statistics, University of

More information

What does Heterogeneity bring?

What does Heterogeneity bring? What does Heterogeneity bring? Ken Koch Scientific Advisor, CCS-DO, LANL LACSI 2006 Conference October 18, 2006 Some Terminology Homogeneous Of the same or similar nature or kind Uniform in structure or

More information

Performance and Software-Engineering Considerations for Massively Parallel Simulations

Performance and Software-Engineering Considerations for Massively Parallel Simulations Performance and Software-Engineering Considerations for Massively Parallel Simulations Ulrich Rüde (ruede@cs.fau.de) Ben Bergen, Frank Hülsemann, Christoph Freundl Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion M. Stürmer, H. Köstler, and U. Rüde Lehrstuhl für Systemsimulation Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda Network Based Computing Lab, The Ohio State University Presentation

More information

Laplace Exercise Solution Review

Laplace Exercise Solution Review Laplace Exercise Solution Review John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2017 Finished? If you have finished, we can review a few principles that you have inevitably

More information

Week 3: MPI. Day 04 :: Domain decomposition, load balancing, hybrid particlemesh

Week 3: MPI. Day 04 :: Domain decomposition, load balancing, hybrid particlemesh Week 3: MPI Day 04 :: Domain decomposition, load balancing, hybrid particlemesh methods Domain decompositon Goals of parallel computing Solve a bigger problem Operate on more data (grid points, particles,

More information

Gerald Schubert 1, Georg Hager 2, Holger Fehske 1, Gerhard Wellein 2,3 1

Gerald Schubert 1, Georg Hager 2, Holger Fehske 1, Gerhard Wellein 2,3 1 Parallel lsparse matrix-vector ti t multiplication li as a test case for hybrid MPI+OpenMP programming Gerald Schubert 1, Georg Hager 2, Holger Fehske 1, Gerhard Wellein 2,3 1 Institute of Physics, University

More information

A Scalable Adaptive Mesh Refinement Framework For Parallel Astrophysics Applications

A Scalable Adaptive Mesh Refinement Framework For Parallel Astrophysics Applications A Scalable Adaptive Mesh Refinement Framework For Parallel Astrophysics Applications James Bordner, Michael L. Norman San Diego Supercomputer Center University of California, San Diego 15th SIAM Conference

More information

Performance of the 3D-Combustion Simulation Code RECOM-AIOLOS on IBM POWER8 Architecture. Alexander Berreth. Markus Bühler, Benedikt Anlauf

Performance of the 3D-Combustion Simulation Code RECOM-AIOLOS on IBM POWER8 Architecture. Alexander Berreth. Markus Bühler, Benedikt Anlauf PADC Anual Workshop 20 Performance of the 3D-Combustion Simulation Code RECOM-AIOLOS on IBM POWER8 Architecture Alexander Berreth RECOM Services GmbH, Stuttgart Markus Bühler, Benedikt Anlauf IBM Deutschland

More information

Forest-of-octrees AMR: algorithms and interfaces

Forest-of-octrees AMR: algorithms and interfaces Forest-of-octrees AMR: algorithms and interfaces Carsten Burstedde joint work with Omar Ghattas, Tobin Isaac, Georg Stadler, Lucas C. Wilcox Institut für Numerische Simulation (INS) Rheinische Friedrich-Wilhelms-Universität

More information

Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth

Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth Bohumir Jelinek Mohsen Eshraghi Sergio Felicelli CAVS, Mississippi State University March 3-7, 2013 San Antonio, Texas US Army Corps of

More information

Asynchronous OpenCL/MPI numerical simulations of conservation laws

Asynchronous OpenCL/MPI numerical simulations of conservation laws Asynchronous OpenCL/MPI numerical simulations of conservation laws Philippe HELLUY 1,3, Thomas STRUB 2. 1 IRMA, Université de Strasbourg, 2 AxesSim, 3 Inria Tonus, France IWOCL 2015, Stanford Conservation

More information

Overlapping Computation and Communication for Advection on Hybrid Parallel Computers

Overlapping Computation and Communication for Advection on Hybrid Parallel Computers Overlapping Computation and Communication for Advection on Hybrid Parallel Computers James B White III (Trey) trey@ucar.edu National Center for Atmospheric Research Jack Dongarra dongarra@eecs.utk.edu

More information

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks Presented By : Esthela Gallardo Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, Jonathan Perkins, Hari Subramoni,

More information

Intro to Parallel Computing

Intro to Parallel Computing Outline Intro to Parallel Computing Remi Lehe Lawrence Berkeley National Laboratory Modern parallel architectures Parallelization between nodes: MPI Parallelization within one node: OpenMP Why use parallel

More information

Implementation of the Yin-Yang grid in PENCIL

Implementation of the Yin-Yang grid in PENCIL Implementation of the Yin-Yang grid in PENCIL Matthias August 10, 2016 Motivation Models in spherical geometry with full θ φ extent θ = 0 can t be a coordinate line ghost zones for θ boundaries lie beyond

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

S7260: Microswimmers on Speed: Simulating Spheroidal Squirmers on GPUs

S7260: Microswimmers on Speed: Simulating Spheroidal Squirmers on GPUs S7260: Microswimmers on Speed: Simulating Spheroidal Squirmers on GPUs Elmar Westphal - Forschungszentrum Jülich GmbH Spheroids Spheroid: A volume formed by rotating an ellipse around one of its axes Two

More information

AcuSolve Performance Benchmark and Profiling. October 2011

AcuSolve Performance Benchmark and Profiling. October 2011 AcuSolve Performance Benchmark and Profiling October 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, Altair Compute

More information

Laplace Exercise Solution Review

Laplace Exercise Solution Review Laplace Exercise Solution Review John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2018 Finished? If you have finished, we can review a few principles that you have inevitably

More information

Non-Blocking Collectives for MPI

Non-Blocking Collectives for MPI Non-Blocking Collectives for MPI overlap at the highest level Torsten Höfler Open Systems Lab Indiana University Bloomington, IN, USA Institut für Wissenschaftliches Rechnen Technische Universität Dresden

More information

High Scalability of Lattice Boltzmann Simulations with Turbulence Models using Heterogeneous Clusters

High Scalability of Lattice Boltzmann Simulations with Turbulence Models using Heterogeneous Clusters SIAM PP 2014 High Scalability of Lattice Boltzmann Simulations with Turbulence Models using Heterogeneous Clusters C. Riesinger, A. Bakhtiari, M. Schreiber Technische Universität München February 20, 2014

More information

Fast Dynamic Load Balancing for Extreme Scale Systems

Fast Dynamic Load Balancing for Extreme Scale Systems Fast Dynamic Load Balancing for Extreme Scale Systems Cameron W. Smith, Gerrett Diamond, M.S. Shephard Computation Research Center (SCOREC) Rensselaer Polytechnic Institute Outline: n Some comments on

More information

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Windows HPC Server 2008 R2 Windows HPC Server 2008 R2 makes supercomputing

More information

The Red Storm System: Architecture, System Update and Performance Analysis

The Red Storm System: Architecture, System Update and Performance Analysis The Red Storm System: Architecture, System Update and Performance Analysis Douglas Doerfler, Jim Tomkins Sandia National Laboratories Center for Computation, Computers, Information and Mathematics LACSI

More information

Altair RADIOSS Performance Benchmark and Profiling. May 2013

Altair RADIOSS Performance Benchmark and Profiling. May 2013 Altair RADIOSS Performance Benchmark and Profiling May 2013 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Altair, AMD, Dell, Mellanox Compute

More information

Scalable Dynamic Adaptive Simulations with ParFUM

Scalable Dynamic Adaptive Simulations with ParFUM Scalable Dynamic Adaptive Simulations with ParFUM Terry L. Wilmarth Center for Simulation of Advanced Rockets and Parallel Programming Laboratory University of Illinois at Urbana-Champaign The Big Picture

More information

Generation of Multigrid-based Numerical Solvers for FPGA Accelerators

Generation of Multigrid-based Numerical Solvers for FPGA Accelerators Generation of Multigrid-based Numerical Solvers for FPGA Accelerators Christian Schmitt, Moritz Schmid, Frank Hannig, Jürgen Teich, Sebastian Kuckuk, Harald Köstler Hardware/Software Co-Design, System

More information

Center Extreme Scale CS Research

Center Extreme Scale CS Research Center Extreme Scale CS Research Center for Compressible Multiphase Turbulence University of Florida Sanjay Ranka Herman Lam Outline 10 6 10 7 10 8 10 9 cores Parallelization and UQ of Rocfun and CMT-Nek

More information

Digital Fabric Mechanics Analyzer

Digital Fabric Mechanics Analyzer Digital Fabric Mechanics Analyzer Youqi Wang Department of Mechanical &Nuclear Engineering Kansas State University Manhattan, KS 66506 Applications Textile process simulation Static Simulation (Weaving)

More information

High Performance Computing. University questions with solution

High Performance Computing. University questions with solution High Performance Computing University questions with solution Q1) Explain the basic working principle of VLIW processor. (6 marks) The following points are basic working principle of VLIW processor. The

More information

Adaptive Refinement Tree (ART) code. N-Body: Parallelization using OpenMP and MPI

Adaptive Refinement Tree (ART) code. N-Body: Parallelization using OpenMP and MPI Adaptive Refinement Tree (ART) code N-Body: Parallelization using OpenMP and MPI 1 Family of codes N-body: OpenMp N-body: MPI+OpenMP N-body+hydro+cooling+SF: OpenMP N-body+hydro+cooling+SF: MPI 2 History:

More information

Recent applications of overset mesh technology in SC/Tetra

Recent applications of overset mesh technology in SC/Tetra Recent applications of overset mesh technology in SC/Tetra NIA CFD Seminar October 6, 2014 Tomohiro Irie Software Cradle Co., Ltd. 1 Contents Introduction Software Cradle SC/Tetra Background of Demands

More information

Module 3 Mesh Generation

Module 3 Mesh Generation Module 3 Mesh Generation 1 Lecture 3.1 Introduction 2 Mesh Generation Strategy Mesh generation is an important pre-processing step in CFD of turbomachinery, quite analogous to the development of solid

More information

Basic Communication Operations (Chapter 4)

Basic Communication Operations (Chapter 4) Basic Communication Operations (Chapter 4) Vivek Sarkar Department of Computer Science Rice University vsarkar@cs.rice.edu COMP 422 Lecture 17 13 March 2008 Review of Midterm Exam Outline MPI Example Program:

More information

Intermediate Parallel Programming & Cluster Computing

Intermediate Parallel Programming & Cluster Computing High Performance Computing Modernization Program (HPCMP) Summer 2011 Puerto Rico Workshop on Intermediate Parallel Programming & Cluster Computing in conjunction with the National Computational Science

More information

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction ICON for HD(CP) 2 High Definition Clouds and Precipitation for Advancing Climate Prediction High Definition Clouds and Precipitation for Advancing Climate Prediction ICON 2 years ago Parameterize shallow

More information

Parallel Programming Patterns

Parallel Programming Patterns Parallel Programming Patterns Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Copyright 2013, 2017, 2018 Moreno Marzolla, Università

More information

VisIt Libsim. An in-situ visualisation library

VisIt Libsim. An in-situ visualisation library VisIt Libsim. An in-situ visualisation library December 2017 Jean M. Favre, CSCS Outline Motivations In-situ visualization In-situ processing strategies VisIt s libsim library Enable visualization in a

More information

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT Krishna Kandalla (1), Hari Subramoni (1), Karen Tomko (2), Dmitry Pekurovsky

More information

Challenges in Fully Generating Multigrid Solvers for the Simulation of non-newtonian Fluids

Challenges in Fully Generating Multigrid Solvers for the Simulation of non-newtonian Fluids Challenges in Fully Generating Multigrid Solvers for the Simulation of non-newtonian Fluids Sebastian Kuckuk FAU Erlangen-Nürnberg 18.01.2016 HiStencils 2016, Prague, Czech Republic Outline Outline Scope

More information

3D Finite Difference Time-Domain Modeling of Acoustic Wave Propagation based on Domain Decomposition

3D Finite Difference Time-Domain Modeling of Acoustic Wave Propagation based on Domain Decomposition 3D Finite Difference Time-Domain Modeling of Acoustic Wave Propagation based on Domain Decomposition UMR Géosciences Azur CNRS-IRD-UNSA-OCA Villefranche-sur-mer Supervised by: Dr. Stéphane Operto Jade

More information

Memory Hierarchy Management for Iterative Graph Structures

Memory Hierarchy Management for Iterative Graph Structures Memory Hierarchy Management for Iterative Graph Structures Ibraheem Al-Furaih y Syracuse University Sanjay Ranka University of Florida Abstract The increasing gap in processor and memory speeds has forced

More information

DEVELOPMENT OF APPLICATIONS ON ACP LIBRARY

DEVELOPMENT OF APPLICATIONS ON ACP LIBRARY 1 DEVELOPMENT OF APPLICATIONS ON ACP LIBRARY Hiroaki Honda (Kyushu Univ.) LENS 2015 International Workshop October 30, 2015 2 Agenda Introduction ACP library Target applications Development of applications

More information

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Automatic Generation of Algorithms and Data Structures for Geometric Multigrid Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Introduction Multigrid Goal: Solve a partial differential

More information

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C.

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C. The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy! Thomas C. Schulthess ENES HPC Workshop, Hamburg, March 17, 2014 T. Schulthess!1

More information

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI T. Hoefler 1,2, A. Lumsdaine 1 and W. Rehm 2 1 Open Systems Lab 2 Computer Architecture Group Indiana University Technical

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters G.Santhanaraman, T. Gangadharappa, S.Narravula, A.Mamidala and D.K.Panda Presented by:

More information

Optimization of a parallel 3d-FFT with non-blocking collective operations

Optimization of a parallel 3d-FFT with non-blocking collective operations Optimization of a parallel 3d-FFT with non-blocking collective operations Chair of Computer Architecture Technical University of Chemnitz Département de Physique Théorique et Appliquée Commissariat à l

More information

Automated Mapping of Regular Communication Graphs on Mesh Interconnects

Automated Mapping of Regular Communication Graphs on Mesh Interconnects Automated Mapping of Regular Communication Graphs on Mesh Interconnects Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung Motivation Running a parallel application on a linear array of processors:

More information

Accelerated Earthquake Simulations

Accelerated Earthquake Simulations Accelerated Earthquake Simulations Alex Breuer Technische Universität München Germany 1 Acknowledgements Volkswagen Stiftung Project ASCETE: Advanced Simulation of Coupled Earthquake-Tsunami Events Bavarian

More information

Parallel Particle Packing

Parallel Particle Packing UC San Diego Jacobs School of Engineering CSE260 Parallel Computation, Fall 2005 Prof. Scott B. Baden Parallel Particle Packing Project Report by Richard Lohwasser and Chris Schroeder Abstract A parallel

More information

Performance Metrics of a Parallel Three Dimensional Two-Phase DSMC Method for Particle-Laden Flows

Performance Metrics of a Parallel Three Dimensional Two-Phase DSMC Method for Particle-Laden Flows Performance Metrics of a Parallel Three Dimensional Two-Phase DSMC Method for Particle-Laden Flows Benzi John* and M. Damodaran** Division of Thermal and Fluids Engineering, School of Mechanical and Aerospace

More information

MILC Performance Benchmark and Profiling. April 2013

MILC Performance Benchmark and Profiling. April 2013 MILC Performance Benchmark and Profiling April 2013 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

Fast Methods with Sieve

Fast Methods with Sieve Fast Methods with Sieve Matthew G Knepley Mathematics and Computer Science Division Argonne National Laboratory August 12, 2008 Workshop on Scientific Computing Simula Research, Oslo, Norway M. Knepley

More information

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

CloverLeaf: Preparing Hydrodynamics Codes for Exascale

CloverLeaf: Preparing Hydrodynamics Codes for Exascale CloverLeaf: Preparing Hydrodynamics Codes for Exascale Andrew Mallinson Andy.Mallinson@awe.co.uk www.awe.co.uk British Crown Owned Copyright [2013]/AWE Agenda AWE & Uni. of Warwick introduction Problem

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

CMAQ PARALLEL PERFORMANCE WITH MPI AND OPENMP**

CMAQ PARALLEL PERFORMANCE WITH MPI AND OPENMP** CMAQ 5.2.1 PARALLEL PERFORMANCE WITH MPI AND OPENMP** George Delic* HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA 1. INTRODUCTION This presentation reports on implementation of the

More information

EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS. of São Paulo

EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS. of São Paulo Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS D. Taniguchi 1, L. M. Sato 1,

More information

Multicore-aware parallelization strategies for efficient temporal blocking (BMBF project: SKALB)

Multicore-aware parallelization strategies for efficient temporal blocking (BMBF project: SKALB) Multicore-aware parallelization strategies for efficient temporal blocking (BMBF project: SKALB) G. Wellein, G. Hager, M. Wittmann, J. Habich, J. Treibig Department für Informatik H Services, Regionales

More information

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand Abstract...1 Introduction...2 Overview of ConnectX Architecture...2 Performance Results...3 Acknowledgments...7 For

More information

PCS - Part 1: Introduction to Parallel Computing

PCS - Part 1: Introduction to Parallel Computing PCS - Part 1: Introduction to Parallel Computing Institute of Computer Engineering University of Lübeck, Germany Baltic Summer School, Tartu 2009 Part 1 - Overview Reasons for parallel computing Goals

More information

Let s say I give you a homework assignment today with 100 problems. Each problem takes 2 hours to solve. The homework is due tomorrow.

Let s say I give you a homework assignment today with 100 problems. Each problem takes 2 hours to solve. The homework is due tomorrow. Let s say I give you a homework assignment today with 100 problems. Each problem takes 2 hours to solve. The homework is due tomorrow. Big problems and Very Big problems in Science How do we live Protein

More information

Comparison of PGAS Languages on a Linked Cell Algorithm

Comparison of PGAS Languages on a Linked Cell Algorithm Comparison of PGAS Languages on a Linked Cell Algorithm Martin Bauer, Christian Kuschel, Daniel Ritter, Klaus Sembritzki Lehrstuhl für Systemsimulation Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Exploring unstructured Poisson solvers for FDS

Exploring unstructured Poisson solvers for FDS Exploring unstructured Poisson solvers for FDS Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin - Germany Agenda 1 Discretization of Poisson- Löser 2 Solvers for 3 Numerical Tests

More information

The Development of Scalable Traffic Simulation Based on Java Technology

The Development of Scalable Traffic Simulation Based on Java Technology The Development of Scalable Traffic Simulation Based on Java Technology Narinnat Suksawat, Yuen Poovarawan, Somchai Numprasertchai The Department of Computer Engineering Faculty of Engineering, Kasetsart

More information

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES Cliff Woolley, NVIDIA PREFACE This talk presents a case study of extracting parallelism in the UMT2013 benchmark for 3D unstructured-mesh

More information

Recent Advances in Heterogeneous Computing using Charm++

Recent Advances in Heterogeneous Computing using Charm++ Recent Advances in Heterogeneous Computing using Charm++ Jaemin Choi, Michael Robson Parallel Programming Laboratory University of Illinois Urbana-Champaign April 12, 2018 1 / 24 Heterogeneous Computing

More information

Outline. Single GPU Implementation. Multi-GPU Implementation. 2-pass and 1-pass approaches Performance evaluation. Scalability on clusters

Outline. Single GPU Implementation. Multi-GPU Implementation. 2-pass and 1-pass approaches Performance evaluation. Scalability on clusters Implementing 3D Finite Difference Codes on the GPU Paulius Micikevicius NVIDIA Outline Single GPU Implementation 2-pass and 1-pass approaches Performance evaluation Multi-GPU Implementation Scalability

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

The ECMWF forecast model, quo vadis?

The ECMWF forecast model, quo vadis? The forecast model, quo vadis? by Nils Wedi European Centre for Medium-Range Weather Forecasts wedi@ecmwf.int contributors: Piotr Smolarkiewicz, Mats Hamrud, George Mozdzynski, Sylvie Malardel, Christian

More information

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace James Southern, Jim Tuccillo SGI 25 October 2016 0 Motivation Trend in HPC continues to be towards more

More information

Scalable, Hybrid-Parallel Multiscale Methods using DUNE

Scalable, Hybrid-Parallel Multiscale Methods using DUNE MÜNSTER Scalable Hybrid-Parallel Multiscale Methods using DUNE R. Milk S. Kaulmann M. Ohlberger December 1st 2014 Outline MÜNSTER Scalable Hybrid-Parallel Multiscale Methods using DUNE 2 /28 Abstraction

More information