Automated Precision Tuning using Semidefinite Programming

Size: px
Start display at page:

Download "Automated Precision Tuning using Semidefinite Programming"

Transcription

1 Automated Precision Tuning using Semidefinite Programming Victor Magron, RA Imperial College joint work with G. Constantinides and A. Donaldson British-French-German Conference on Optimization 15 June 2015 Victor Magron Automated Precision Tuning using Semidefinite Programming 1 / 27

2 Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? Victor Magron Automated Precision Tuning using Semidefinite Programming 2 / 27

3 Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, ; 130 pages of errors! (Euler, Fermat, Sylvester,... ) Victor Magron Automated Precision Tuning using Semidefinite Programming 2 / 27

4 Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, ; 130 pages of errors! (Euler, Fermat, Sylvester,... ) Ariane 5 launch failure, Pentium FDIV bug Victor Magron Automated Precision Tuning using Semidefinite Programming 2 / 27

5 Errors and Proofs GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic formal Victor Magron Automated Precision Tuning using Semidefinite Programming 3 / 27

6 Errors and Proofs GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic formal VERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis,... Victor Magron Automated Precision Tuning using Semidefinite Programming 3 / 27

7 Errors and Proofs GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic formal VERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis,... Efficient Verification of Nonlinear Systems Automated precision tuning of systems/programs analysis/synthesis Efficiency sparsity correlation patterns Certified approximation algorithms Victor Magron Automated Precision Tuning using Semidefinite Programming 3 / 27

8 Rounding Error Bounds Real : p(x) := x 1 x 2 + x 3 Floating-point : ˆp(x, e) := [x 1 x 2 (1 + e 1 ) + x 3 ](1 + e 2 ) Input variable uncertainties x S Finite precision bounds over e e i 2 m m = 24 (single) or 53 (double) Guarantees on absolute round-off error ˆp p? Victor Magron Automated Precision Tuning using Semidefinite Programming 4 / 27

9 Nonlinear Programs Polynomials programs : +,, x 2 x 5 + x 3 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Victor Magron Automated Precision Tuning using Semidefinite Programming 5 / 27

10 Nonlinear Programs Polynomials programs : +,, x 2 x 5 + x 3 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Semialgebraic programs:,, /, sup, inf 4x 1 + x 1.11 Victor Magron Automated Precision Tuning using Semidefinite Programming 5 / 27

11 Nonlinear Programs Polynomials programs : +,, x 2 x 5 + x 3 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Semialgebraic programs:,, /, sup, inf 4x 1 + x 1.11 Transcendental programs: arctan, exp, log,... log(1 + exp(x)) Victor Magron Automated Precision Tuning using Semidefinite Programming 5 / 27

12 Existing Frameworks Classical methods: Abstract domains [Goubault-Putot 11] FLUCTUAT: intervals, octagons, zonotopes Interval arithmetic [Daumas-Melquiond 10] GAPPA: interface with COQ proof assistant Victor Magron Automated Precision Tuning using Semidefinite Programming 6 / 27

13 Existing Frameworks Recent progress: Affine arithmetic + SMT [Darulova 14] rosa: sound compiler for reals (in SCALA) Symbolic Taylor expansions [Solovyev 15] FPTaylor: certified optimization (in OCAML and HOL-LIGHT) Victor Magron Automated Precision Tuning using Semidefinite Programming 6 / 27

14 Contributions Maximal Rounding error of the program implementation of f : r := max ˆf (x, e) f (x) Decomposition: linear term l w.r.t. e + nonlinear term h r max l(x, e) + max h(x, e) Sparse SDP bounds for l Coarse bound of h with interval arithmetic Victor Magron Automated Precision Tuning using Semidefinite Programming 7 / 27

15 Contributions 1 Comparison with SMT and linear/affine arithmetic: More Efficient optimization + Tighter upper bounds 2 Extensions to transcendental/conditional programs 3 Formal verification of SDP bounds 4 Open source tool Real2Float (in OCAML and COQ) Victor Magron Automated Precision Tuning using Semidefinite Programming 7 / 27

16 Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

17 What is Semidefinite Programming? Linear Programming (LP): min z c z s.t. A z d. Linear cost c Linear inequalities i A ij z j d i Polyhedron Victor Magron Automated Precision Tuning using Semidefinite Programming 8 / 27

18 What is Semidefinite Programming? Semidefinite Programming (SDP): min z s.t. c z F i z i F 0. i Linear cost c Symmetric matrices F 0, F i Linear matrix inequalities F 0 (F has nonnegative eigenvalues) Spectrahedron Victor Magron Automated Precision Tuning using Semidefinite Programming 9 / 27

19 What is Semidefinite Programming? Semidefinite Programming (SDP): min z s.t. c z F i z i F 0, A z = d. i Linear cost c Symmetric matrices F 0, F i Linear matrix inequalities F 0 (F has nonnegative eigenvalues) Spectrahedron Victor Magron Automated Precision Tuning using Semidefinite Programming 10 / 27

20 Applications of SDP Combinatorial optimization Control theory Matrix completion Unique Games Conjecture (Khot 02) : A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. (Barak and Steurer survey at ICM 14) Solving polynomial optimization (Lasserre 01) Victor Magron Automated Precision Tuning using Semidefinite Programming 11 / 27

21 SDP for Polynomial Optimization Prove polynomial inequalities with SDP: Find z s.t. p(a, b) = p(a, b) := a 2 2ab + b 2 0. ( a ) ( ) z 1 z 2 b z 2 z 3 }{{} 0 ( ) a b Find z s.t. a 2 2ab + b 2 = z 1 a 2 + 2z 2 ab + z 3 b 2 (A z = d) ( ) ( ) ( ) ( ) ( ) z1 z = z z 2 z z z }{{}}{{}}{{}}{{} F 1 F 2 F 3 F 0. Victor Magron Automated Precision Tuning using Semidefinite Programming 12 / 27

22 SDP for Polynomial Optimization Choose a cost c e.g. (1, 0, 1) and solve: min z s.t. ( ) z1 z Solution 2 = z 2 z 3 c z F i z i F 0, A z = d. i ( ) (eigenvalues 0 and 1) 1 1 a 2 2ab + b 2 = ( a b ) ( ) ( ) 1 1 a = (a b) b }{{} 0 Solving SDP = Finding SUMS OF SQUARES certificates Victor Magron Automated Precision Tuning using Semidefinite Programming 13 / 27

23 SDP for Polynomial Optimization General case: Semialgebraic set S := {x R n : g 1 (x) 0,..., g m (x) 0} p := min x S p(x): NP hard Sums of squares (SOS) Σ[x] (e.g. (x 1 x 2 ) 2 ) Q(S) := { } σ 0 (x) + m j=1 σ j(x)g j (x), with σ j Σ[x] Fix the degree 2k of sums of squares Q k (S) := Q(S) R 2k [x] Victor Magron Automated Precision Tuning using Semidefinite Programming 14 / 27

24 SDP for Polynomial Optimization Hierarchy { of SDP relaxations: } λ k := sup λ : p λ Q k (S) λ Convergence guarantees λ k p [Lasserre 01] Can be computed with SDP solvers (CSDP, SDPA) No Free Lunch Rule: ( n+2k ) SDP variables n Extension to semialgebraic functions r(x) = p(x)/ q(x) [Lasserre-Putinar 10] Victor Magron Automated Precision Tuning using Semidefinite Programming 15 / 27

25 Sparse SDP Optimization [Waki, Lasserre 06] Correlative sparsity pattern (csp) of variables x 2 x 5 + x 3 x 6 x 2 x 3 x 5 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Maximal cliques C 1,..., C l 2 Average size κ ( κ+2k κ ) variables C 1 := {1, 4} C 2 := {1, 2, 3, 5} C 3 := {1, 3, 5, 6} Dense SDP: 210 variables Sparse SDP: 115 variables Victor Magron Automated Precision Tuning using Semidefinite Programming 16 / 27

26 Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

27 Polynomial Programs Input: exact f (x), floating-point ˆf (x, e), x S, e i 2 m Output: Bound for f ˆf 1: Error r(x, e) := f (x) ˆf (x, e) = r α (e)x α α 2: Decompose r(x, e) = l(x, e) + h(x, e), l linear in e 3: l(x, e) = n i=0 s i(x)e i 4: Maximal cliques correspond to {x, e 1 },..., {x, e n } 5: Bound l(x, e) with sparse SDP relaxations (and h with IA) Dense relaxation: ( n+n +2k n+n ) SDP variables Sparse relaxation: n ( n+1+2k n+1 ) SDP variables Victor Magron Automated Precision Tuning using Semidefinite Programming 17 / 27

28 Preliminary Comparisons f (x) := x 2 x 5 + x 3 x 6 x 2 x 3 x 5 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) x [4.00, 6.36] 6, e [ ɛ, ɛ] 15, ɛ = 2 24 Dense SDP: ( ) = variables Out of memory Sparse SDP Real2Float tool: 15( ) = ɛ Interval arithmetic: 2023ɛ (17 less CPU) Symbolic Taylor FPTaylor tool: 936ɛ (16.3 more CPU) SMT-based rosa tool: 789ɛ (4.6 more CPU) Victor Magron Automated Precision Tuning using Semidefinite Programming 18 / 27

29 Preliminary Comparisons 1, ɛ ɛ 789ɛ Error Bound (ɛ) Real2Float rosa CPU Time FPTaylor Victor Magron Automated Precision Tuning using Semidefinite Programming 18 / 27

30 Extensions: Transcendental Programs Given K a compact set and f a transcendental function, bound f = inf x K f (x) and prove f 0 f is under-approximated by a semialgebraic function f sa Reduce the problem f sa := inf x K f sa (x) to a polynomial optimization problem (POP) Victor Magron Automated Precision Tuning using Semidefinite Programming 19 / 27

31 Extensions: Transcendental Programs Approximation theory: Chebyshev/Taylor models mandatory for non-polynomial problems hard to combine with Sum-of-Squares techniques (degree of approximation) Victor Magron Automated Precision Tuning using Semidefinite Programming 19 / 27

32 Extensions: Transcendental Programs Initially introduced to solve Optimal Control Problems [Fleming-McEneaney 00] Curse of dimensionality reduction [McEaneney Kluberg, Gaubert-McEneaney-Qu 11, Qu 13]. Allowed to solve instances of dim up to 15 (inaccessible by grid methods) In our context: approximate transcendental functions Victor Magron Automated Precision Tuning using Semidefinite Programming 20 / 27

33 Extensions: Transcendental Programs Definition Let γ 0. A function φ : R n R is said to be γ-semiconvex if the function x φ(x) + γ 2 x 2 2 is convex. y par + a 1 par + a 2 arctan par a 2 m a 1 a 2 M a par a 1 Victor Magron Automated Precision Tuning using Semidefinite Programming 20 / 27

34 Extensions: Transcendental Programs Exact parsimonious maxplus representations y a Victor Magron Automated Precision Tuning using Semidefinite Programming 21 / 27

35 Extensions: Transcendental Programs Exact parsimonious maxplus representations y a Victor Magron Automated Precision Tuning using Semidefinite Programming 21 / 27

36 Extensions: Programs with Conditionals if (p(x) 0) f (x); else g(x); DIVERGENCE PATH ERROR: r := max{ } max ˆf (x, e) g(x) p(x) 0,p(x,e) 0 max ĝ(x, e) f (x) p(x) 0,p(x,e) 0 max ˆf (x, e) f (x) p(x) 0,p(x,e) 0 max ĝ(x, e) g(x) p(x) 0,p(x,e) 0 Victor Magron Automated Precision Tuning using Semidefinite Programming 22 / 27

37 Benchmarks Doppler 5,000 4,477ɛ u [ 100, 100] v [20, 20000] T [ 30, 50] Error Bound (ɛ) 4,000 3,000 2,000 1,415ɛ 2,567ɛ let t 1 = T in t 1 v (t 1 + u) 2 1,000 0 FPTaylor Real2Float rosa CPU Time Victor Magron Automated Precision Tuning using Semidefinite Programming 23 / 27

38 Benchmarks Kepler ,509ɛ x [4, 6.36] 6 x 1 x 4 ( x 1 + x 2 + x 3 x 4 +x 5 + x 6 ) + x 2 x 5 (x 1 x 2 +x 3 + x 4 x 5 + x 6 ) +x 3 x 6 (x 1 + x 2 x 3 +x 4 + x 5 x 6 ) x 2 x 3 x 4 x 1 x 3 x 5 x 1 x 2 x 6 x 4 x 5 x 6 Error Bound (ɛ) ,114ɛ Real2Float FPTaylor CPU Time 19,456ɛ rosa Victor Magron Automated Precision Tuning using Semidefinite Programming 24 / 27

39 Benchmarks verhulst ɛ x [0.1, 0.3] 4x 1 + x 1.11 Error Bound (ɛ) ɛ 3.16ɛ 0 Real2Float FPTaylor rosa CPU Time Victor Magron Automated Precision Tuning using Semidefinite Programming 25 / 27

40 Benchmarks 20 logexp x [ 8, 8] log(1 + exp(x)) Error Bound (ɛ) ɛ 15.4ɛ 0 Real2Float FPTaylor CPU Time Victor Magron Automated Precision Tuning using Semidefinite Programming 26 / 27

41 Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

42 Conclusion Sparse SDP relaxations analyze NONLINEAR PROGRAMS: Polynomial and transcendental programs Handles conditionals, input uncertainties,... Certified Formal rounding error bounds Real2Float open source tool: Victor Magron Automated Precision Tuning using Semidefinite Programming 27 / 27

43 Conclusion Further research: Improve formal polynomial checker Alternative polynomial bounds using geometric programming (T. de Wolff, S. Iliman) Mixed linear/sdp certificates (trade-off CPU/precision) More program verification: while loops Automatic FPGA code generation Victor Magron Automated Precision Tuning using Semidefinite Programming 27 / 27

44 End Thank you for your attention! cas.ee.ic.ac.uk/people/vmagron

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods Victor Magron, CNRS VERIMAG Jointly Certified Upper Bounds with G. Constantinides and A. Donaldson Jointly Certified Lower

More information

Enclosures of Roundoff Errors using SDP

Enclosures of Roundoff Errors using SDP Enclosures of Roundoff Errors using SDP Victor Magron, CNRS Jointly Certified Upper Bounds with G. Constantinides and A. Donaldson Metalibm workshop: Elementary functions, digital filters and beyond 12-13

More information

A semidefinite hierarchy for containment of spectrahedra

A semidefinite hierarchy for containment of spectrahedra A semidefinite hierarchy for containment of spectrahedra Thorsten Theobald (joint work with Kai Kellner and Christian Trabandt, arxiv: 1308.5076) Spectrahedra Given a linear pencil A(x) = A 0 + n i=1 x

More information

Rigorous Estimation of Floating- point Round- off Errors with Symbolic Taylor Expansions

Rigorous Estimation of Floating- point Round- off Errors with Symbolic Taylor Expansions Rigorous Estimation of Floating- point Round- off Errors with Symbolic Taylor Expansions Alexey Solovyev, Charles Jacobsen Zvonimir Rakamaric, and Ganesh Gopalakrishnan School of Computing, University

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

ANALYSIS AND SYNTHESIS OF FLOATING-POINT ROUTINES. Zvonimir Rakamarić

ANALYSIS AND SYNTHESIS OF FLOATING-POINT ROUTINES. Zvonimir Rakamarić ANALYSIS AND SYNTHESIS OF FLOATING-POINT ROUTINES Zvonimir Rakamarić ROADMAP 1. Introduction 2. Floating-point Research at Utah 3. Floating-points in SMACK Verifier 4. Floating-point Error Analysis 5.

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

Convex Algebraic Geometry

Convex Algebraic Geometry , North Carolina State University What is convex algebraic geometry? Convex algebraic geometry is the study of convex semialgebraic objects, especially those arising in optimization and statistics. What

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Formal Certification of Arithmetic Filters for Geometric Predicates

Formal Certification of Arithmetic Filters for Geometric Predicates Introduction Formalization Implementation Conclusion Formal Certification of Arithmetic Filters for Geometric Predicates Guillaume Melquiond Sylvain Pion Arénaire, LIP ENS Lyon Geometrica, INRIA Sophia-Antipolis

More information

arxiv: v3 [math.oc] 3 Nov 2016

arxiv: v3 [math.oc] 3 Nov 2016 BILEVEL POLYNOMIAL PROGRAMS AND SEMIDEFINITE RELAXATION METHODS arxiv:1508.06985v3 [math.oc] 3 Nov 2016 JIAWANG NIE, LI WANG, AND JANE J. YE Abstract. A bilevel program is an optimization problem whose

More information

Local Constraints in Combinatorial Optimization

Local Constraints in Combinatorial Optimization Local Constraints in Combinatorial Optimization Madhur Tulsiani Institute for Advanced Study Local Constraints in Approximation Algorithms Linear Programming (LP) or Semidefinite Programming (SDP) based

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Combining Tools for Optimization and Analysis of Floating-Point Computations

Combining Tools for Optimization and Analysis of Floating-Point Computations Combining Tools for Optimization and Analysis of Floating-Point Computations Heiko Becker 1, Pavel Panchekha 2, Eva Darulova 1, and Zachary Tatlock 2 1 MPI-SWS {hbecker,eva}@mpi-sws.org 2 University of

More information

Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting

Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting Mario Souto, Joaquim D. Garcia and Álvaro Veiga June 26, 2018 Outline Introduction Algorithm Exploiting low-rank

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization. Sunyoung Kim, Masakazu Kojima, and Hayato Waki January 2008

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization. Sunyoung Kim, Masakazu Kojima, and Hayato Waki January 2008 Exploiting Sparsity in SDP Relaxation for Sensor Network Localization Sunyoung Kim, Masakazu Kojima, and Hayato Waki January 28 Abstract. A sensor network localization problem can be formulated as a quadratic

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Generating formally certified bounds on values and round-off errors

Generating formally certified bounds on values and round-off errors Generating formally certified bounds on values and round-off errors Marc DAUMAS and Guillaume MELQUIOND LIP Computer Science Laboratory UMR 5668 CNRS ENS Lyon INRIA UCBL Lyon, France Generating formally

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix.

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix. CSE525: Randomized Algorithms and Probabilistic Analysis Lecture 9 Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Keith Jia 1 Introduction to semidefinite programming Semidefinite programming is linear

More information

CODE ANALYSES FOR NUMERICAL ACCURACY WITH AFFINE FORMS: FROM DIAGNOSIS TO THE ORIGIN OF THE NUMERICAL ERRORS. Teratec 2017 Forum Védrine Franck

CODE ANALYSES FOR NUMERICAL ACCURACY WITH AFFINE FORMS: FROM DIAGNOSIS TO THE ORIGIN OF THE NUMERICAL ERRORS. Teratec 2017 Forum Védrine Franck CODE ANALYSES FOR NUMERICAL ACCURACY WITH AFFINE FORMS: FROM DIAGNOSIS TO THE ORIGIN OF THE NUMERICAL ERRORS NUMERICAL CODE ACCURACY WITH FLUCTUAT Compare floating point with ideal computation Use interval

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Chapter 4 Convex Optimization Problems

Chapter 4 Convex Optimization Problems Chapter 4 Convex Optimization Problems Shupeng Gui Computer Science, UR October 16, 2015 hupeng Gui (Computer Science, UR) Convex Optimization Problems October 16, 2015 1 / 58 Outline 1 Optimization problems

More information

Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions

Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions 0 Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions Alexey Solovyev, Marek S. Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir Rakamarić, Ganesh Gopalakrishnan, School

More information

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs 1 / 34 Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs Erick Delage CRC in decision making under uncertainty Department of Decision Sciences HEC Montreal (joint work with

More information

Towards an industrial use of FLUCTUAT on safety-critical avionics software

Towards an industrial use of FLUCTUAT on safety-critical avionics software Towards an industrial use of FLUCTUAT on safety-critical avionics software David Delmas 1, Eric Goubault 2, Sylvie Putot 2, Jean Souyris 1, Karim Tekkal 3 and Franck Védrine 2 1. Airbus Operations S.A.S.,

More information

EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR NETWORK LOCALIZATION

EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR NETWORK LOCALIZATION EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR NETWORK LOCALIZATION SUNYOUNG KIM, MASAKAZU KOJIMA, AND HAYATO WAKI Abstract. A sensor network localization problem can be formulated as a quadratic optimization

More information

Lecture 1: Introduction and Overview

Lecture 1: Introduction and Overview CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017 Lecture 1: Introduction and Overview Professor Moses Charikar Scribes: Paris Syminelakis Overview We provide a short introduction

More information

Introduction to Convex Optimization. Prof. Daniel P. Palomar

Introduction to Convex Optimization. Prof. Daniel P. Palomar Introduction to Convex Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19,

More information

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships Liqian Chen 1,2 Antoine Miné 3,2 Ji Wang 1 Patrick Cousot 2,4 1 National Lab. for Parallel and Distributed Processing, Changsha,

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 1 Luca Trevisan January 4, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 1 Luca Trevisan January 4, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about. 1 Overview This class is about the following

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Weakly Relational Domains for Floating-Point Computation Analysis

Weakly Relational Domains for Floating-Point Computation Analysis Weakly Relational Domains for Floating-Point Computation Analysis Eric Goubault, Sylvie Putot CEA Saclay, F91191 Gif-sur-Yvette Cedex, France {eric.goubault,sylvie.putot}@cea.fr 1 Introduction We present

More information

Verasco: a Formally Verified C Static Analyzer

Verasco: a Formally Verified C Static Analyzer Verasco: a Formally Verified C Static Analyzer Jacques-Henri Jourdan Joint work with: Vincent Laporte, Sandrine Blazy, Xavier Leroy, David Pichardie,... June 13, 2017, Montpellier GdR GPL thesis prize

More information

Specification, Verification, and Interactive Proof

Specification, Verification, and Interactive Proof Specification, Verification, and Interactive Proof SRI International May 23, 2016 PVS PVS - Prototype Verification System PVS is a verification system combining language expressiveness with automated tools.

More information

8 Towards a Compiler for Reals 1

8 Towards a Compiler for Reals 1 8 Towards a Compiler for Reals 1 EVA DARULOVA 2, Max Planck Institute for Software Systems VIKTOR KUNCAK 3, Ecole Polytechnique Federale de Lausanne Numerical software, common in scientific computing or

More information

13. Cones and semidefinite constraints

13. Cones and semidefinite constraints CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 13. Cones and semidefinite constraints ˆ Geometry of cones ˆ Second order cone programs ˆ Example: robust linear program ˆ Semidefinite constraints

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Numerical Computations and Formal Methods

Numerical Computations and Formal Methods Program verification Formal arithmetic Decision procedures Proval, Laboratoire de Recherche en Informatique INRIA Saclay IdF, Université Paris Sud, CNRS October 28, 2009 Program verification Formal arithmetic

More information

Floating-point Precision vs Performance Trade-offs

Floating-point Precision vs Performance Trade-offs Floating-point Precision vs Performance Trade-offs Wei-Fan Chiang School of Computing, University of Utah 1/31 Problem Statement Accelerating computations using graphical processing units has made significant

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

Capabilities and limits of CP in Global Optimization

Capabilities and limits of CP in Global Optimization Capabilities and limits of CP in RUEHER Université de Nice Sophia-Antipolis / CNRS - I3S, France CPAIOR Workshop on Hybrid Methods for NLP 15/06/10 A 1 Outline A A 2 The Problem We consider the continuous

More information

Abstract Interpretation of Floating-Point. Computations. Interaction, CEA-LIST/X/CNRS. February 20, Presentation at the University of Verona

Abstract Interpretation of Floating-Point. Computations. Interaction, CEA-LIST/X/CNRS. February 20, Presentation at the University of Verona 1 Laboratory for ModElling and Analysis of Systems in Interaction, Laboratory for ModElling and Analysis of Systems in Interaction, Presentation at the University of Verona February 20, 2007 2 Outline

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Algorithmic Semi-algebraic Geometry and its applications Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Introduction: Three problems 1. Plan the motion of

More information

Mathematical Modeling to Formally Prove Correctness

Mathematical Modeling to Formally Prove Correctness 0 Mathematical Modeling to Formally Prove Correctness John Harrison Intel Corporation Gelato Meeting April 24, 2006 1 The human cost of bugs Computers are often used in safety-critical systems where a

More information

Abstract Interpretation of Floating-Point Computations

Abstract Interpretation of Floating-Point Computations Abstract Interpretation of Floating-Point Computations Sylvie Putot Laboratory for ModElling and Analysis of Systems in Interaction, CEA-LIST/X/CNRS Session: Static Analysis for Safety and Performance

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors

Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors ESOP 2004 Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors Antoine Miné École Normale Supérieure Paris FRANCE This work was partially supported by the ASTRÉE RNTL project

More information

A Towards a Compiler for Reals 1

A Towards a Compiler for Reals 1 A Towards a Compiler for Reals 1 EVA DARULOVA 2, Max Planck Institute for Software Systems VIKTOR KUNCAK 3, Ecole Polytechnique Federale de Lausanne Numerical software, common in scientific computing or

More information

Code Generation for Embedded Convex Optimization

Code Generation for Embedded Convex Optimization Code Generation for Embedded Convex Optimization Jacob Mattingley Stanford University October 2010 Convex optimization Problems solvable reliably and efficiently Widely used in scheduling, finance, engineering

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation CSC411 - Linear Programming and Combinatorial Optimization Lecture 1: Semidefinite Programming(SDP) Relaxation Notes taken by Xinwei Gui May 1, 007 Summary: This lecture introduces the semidefinite programming(sdp)

More information

LaGO - A solver for mixed integer nonlinear programming

LaGO - A solver for mixed integer nonlinear programming LaGO - A solver for mixed integer nonlinear programming Ivo Nowak June 1 2005 Problem formulation MINLP: min f(x, y) s.t. g(x, y) 0 h(x, y) = 0 x [x, x] y [y, y] integer MINLP: - n

More information

Iteratively Re-weighted Least Squares for Sums of Convex Functions

Iteratively Re-weighted Least Squares for Sums of Convex Functions Iteratively Re-weighted Least Squares for Sums of Convex Functions James Burke University of Washington Jiashan Wang LinkedIn Frank Curtis Lehigh University Hao Wang Shanghai Tech University Daiwei He

More information

Introduction to optimization

Introduction to optimization Introduction to optimization G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Industrial Automation Ferrari Trecate (DIS) Optimization Industrial

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex Affine function suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) ={f(x) x S} convex the inverse image f 1 (C) of a convex

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Adam Harley Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Kernels and representation

Kernels and representation Kernels and representation Corso di AA, anno 2017/18, Padova Fabio Aiolli 20 Dicembre 2017 Fabio Aiolli Kernels and representation 20 Dicembre 2017 1 / 19 (Hierarchical) Representation Learning Hierarchical

More information

Outline Introduction Problem Formulation Proposed Solution Applications Conclusion. Compressed Sensing. David L Donoho Presented by: Nitesh Shroff

Outline Introduction Problem Formulation Proposed Solution Applications Conclusion. Compressed Sensing. David L Donoho Presented by: Nitesh Shroff Compressed Sensing David L Donoho Presented by: Nitesh Shroff University of Maryland Outline 1 Introduction Compressed Sensing 2 Problem Formulation Sparse Signal Problem Statement 3 Proposed Solution

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

control polytope. These points are manipulated by a descent method to compute a candidate global minimizer. The second method is described in Section

control polytope. These points are manipulated by a descent method to compute a candidate global minimizer. The second method is described in Section Some Heuristics and Test Problems for Nonconvex Quadratic Programming over a Simplex Ivo Nowak September 3, 1998 Keywords:global optimization, nonconvex quadratic programming, heuristics, Bezier methods,

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Lecture 14: Linear Programming II

Lecture 14: Linear Programming II A Theorist s Toolkit (CMU 18-859T, Fall 013) Lecture 14: Linear Programming II October 3, 013 Lecturer: Ryan O Donnell Scribe: Stylianos Despotakis 1 Introduction At a big conference in Wisconsin in 1948

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Lecture 2: August 31

Lecture 2: August 31 10-725/36-725: Convex Optimization Fall 2016 Lecture 2: August 31 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Lidan Mu, Simon Du, Binxuan Huang 2.1 Review A convex optimization problem is of

More information

Open problems in convex optimisation

Open problems in convex optimisation Open problems in convex optimisation 26 30 June 2017 AMSI Optimise Vera Roshchina RMIT University and Federation University Australia Perceptron algorithm and its complexity Find an x R n such that a T

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 6, 2011 ABOUT THIS

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

The Ordered Covering Problem

The Ordered Covering Problem The Ordered Covering Problem Uriel Feige Yael Hitron November 8, 2016 Abstract We introduce the Ordered Covering (OC) problem. The input is a finite set of n elements X, a color function c : X {0, 1} and

More information

Phase Transitions in Semidefinite Relaxations

Phase Transitions in Semidefinite Relaxations Phase Transitions in Semidefinite Relaxations Andrea Montanari [with Adel Javanmard, Federico Ricci-Tersenghi, Subhabrata Sen] Stanford University April 5, 2016 Andrea Montanari (Stanford) SDP Phase Transitions

More information

A primal-dual Dikin affine scaling method for symmetric conic optimization

A primal-dual Dikin affine scaling method for symmetric conic optimization A primal-dual Dikin affine scaling method for symmetric conic optimization Ali Mohammad-Nezhad Tamás Terlaky Department of Industrial and Systems Engineering Lehigh University July 15, 2015 A primal-dual

More information

Hybrid CSP & Global Optimization. Michel RUEHER

Hybrid CSP & Global Optimization. Michel RUEHER Hybrid Michel RUEHER University of Nice Sophia-Antipolis / I3S CNRS, France Courtesy to Alexandre Goldsztejn, Yahia Lebbah, Claude Michel June, 2011 ACP Summer School Hybrid Methods for Constraint Programming

More information

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates CSE 51: Design and Analysis of Algorithms I Spring 016 Lecture 11: Clustering and the Spectral Partitioning Algorithm Lecturer: Shayan Oveis Gharan May nd Scribe: Yueqi Sheng Disclaimer: These notes have

More information

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov An Extension of the Multicut L-Shaped Method INEN 698 - Large-Scale Stochastic Optimization Semester project Svyatoslav Trukhanov December 13, 2005 1 Contents 1 Introduction and Literature Review 3 2 Formal

More information

Lecture VIII. Global Approximation Methods: I

Lecture VIII. Global Approximation Methods: I Lecture VIII Global Approximation Methods: I Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Global Methods p. 1 /29 Global function approximation Global methods: function

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems

LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems Xiangrui Meng Joint with Michael A. Saunders and Michael W. Mahoney Stanford University June 19, 2012 Meng, Saunders, Mahoney

More information

Introduction to Stochastic Combinatorial Optimization

Introduction to Stochastic Combinatorial Optimization Introduction to Stochastic Combinatorial Optimization Stefanie Kosuch PostDok at TCSLab www.kosuch.eu/stefanie/ Guest Lecture at the CUGS PhD course Heuristic Algorithms for Combinatorial Optimization

More information

Alternating Projections

Alternating Projections Alternating Projections Stephen Boyd and Jon Dattorro EE392o, Stanford University Autumn, 2003 1 Alternating projection algorithm Alternating projections is a very simple algorithm for computing a point

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

Lecture 4: Convexity

Lecture 4: Convexity 10-725: Convex Optimization Fall 2013 Lecture 4: Convexity Lecturer: Barnabás Póczos Scribes: Jessica Chemali, David Fouhey, Yuxiong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Forward inner-approximated reachability of non-linear continuous systems

Forward inner-approximated reachability of non-linear continuous systems Forward inner-approximated reachability of non-linear continuous systems Eric Goubault 1 Sylvie Putot 1 1 LIX, Ecole Polytechnique - CNRS, Université Paris-Saclay HSCC, Pittsburgh, April 18, 2017 ric Goubault,

More information

The Pre-Image Problem in Kernel Methods

The Pre-Image Problem in Kernel Methods The Pre-Image Problem in Kernel Methods James Kwok Ivor Tsang Department of Computer Science Hong Kong University of Science and Technology Hong Kong The Pre-Image Problem in Kernel Methods ICML-2003 1

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

Lifts of convex sets and cone factorizations

Lifts of convex sets and cone factorizations Lifts of convex sets and cone factorizations João Gouveia Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington) Lifts of

More information

Simplicial Global Optimization

Simplicial Global Optimization Simplicial Global Optimization Julius Žilinskas Vilnius University, Lithuania September, 7 http://web.vu.lt/mii/j.zilinskas Global optimization Find f = min x A f (x) and x A, f (x ) = f, where A R n.

More information

Open problems in convex geometry

Open problems in convex geometry Open problems in convex geometry 10 March 2017, Monash University Seminar talk Vera Roshchina, RMIT University Based on joint work with Tian Sang (RMIT University), Levent Tunçel (University of Waterloo)

More information