Dr. Ulas Bagci

Size: px
Start display at page:

Download "Dr. Ulas Bagci"

Transcription

1 Lecture 9: Deformable Models and Segmentation CAP-Computer Vision Lecture 9-Deformable Models and Segmentation Dr. Ulas Bagci

2 Lecture 9: Deformable Models and Segmentation Motivation A limitation of active contours based on parametric curves of the form f(s) (snakes, b- snakes, ) is that it is challenging to change the topology of the curve as it evolves.

3 Lecture 9: Deformable Models and Segmentation Motivation A limitation of active contours based on parametric curves of the form f(s) (snakes, b- snakes, ) is that it is challenging to change the topology of the curve as it evolves. If the shape changes dramatically, curve reparameterization may also be required.

4 Lecture 9: Deformable Models and Segmentation Motivation A limitation of active contours based on parametric curves of the form f(s) (snakes, b- snakes, ) is that it is challenging to change the topology of the curve as it evolves. If the shape changes dramatically, curve reparameterization may also be required. An alternative representation for such closed contours is to use level sets (LS). LS evolve to fit and track objects of interest by modifying the underlying embedding function instead of curve function f(s)

5 Lecture 9: Deformable Models and Segmentation Basics of Level Sets Energy measures the consistency of the image statistics inside and outside the regions Color image Cremers, Rousson, and Deriche 7

6 Lecture 9: Deformable Models and Segmentation Image Segmentation with Level Sets Contour evolution (Sethian and Osher, 988) Level sets for closed contours Zero-crossing(s) of a characteristic function define the curve Fit and track objects of interest by modifying the underlying embedding function φ( xy, ) instead of the curve f(s) Efficient algorithm A small strip around the locations of the current zerocrossing needs to updated at each step Fast Marching Methods 6

7 Lecture 9: Deformable Models and Segmentation 7

8 Lecture 9: Deformable Models and Segmentation Moving Interfaces D Moving Curves D Moving Surfaces water air Ex: Interfaces between water and oil Propagating front of bush fire Deformable elastic solid 8

9 Lecture 9: Deformable Models and Segmentation Evolving Curves and Surfaces Tangential motion does not change the interface! Only velocity component normal to surface is important! 9

10 Lecture 9: Deformable Models and Segmentation Traditional Way (non-ls)

11 Lecture 9: Deformable Models and Segmentation The Problem

12 Lecture 9: Deformable Models and Segmentation So what is LS?

13 Lecture 9: Deformable Models and Segmentation Ex. Describe curve as Level Sets of a Function (x, y) =x + y = Isocontour is the unit circle (implicit represt.)

14 Lecture 9: Deformable Models and Segmentation Ex. Describe curve as Level Sets of a Function (x, y) =x + y = A few isocontours of two dimensional function (circle) Along with some representative normals. )

15 Lecture 9: Deformable Models and Segmentation Describe curve as Level Sets of a Function Then, unit normal (outward) is ~N =

16 Lecture 9: Deformable Models and Segmentation Describe curve as Level Sets of a Function Then, unit normal (outward) is ~N = On Cartesian grid, we need to approximate this equation (ex. Finite i+ i x 6

17 Lecture 9: Deformable Models and Segmentation Describe curve as Level Sets of a Function Then, unit normal (outward) is ~N = On Cartesian grid, we need to approximate this equation (ex. Finite i+ i x Mean curvature of the interface is defined as the divergence of the normal ~ N =(n,n ) apple = r. ~ @y = r.( r r ) 7

18 Lecture 9: Deformable Models and Segmentation Describe curve as Level Sets of a Function Then, unit normal (outward) is ~N = On Cartesian grid, we need to approximate this equation (ex. Finite i+ i x Mean curvature of the interface is defined as the divergence of the normal ~ N =(n,n ) apple = r. ~ @y = r.( r r ) 8

19 Lecture 9: Deformable Models and Segmentation Describe curve as Level Sets of a Function concave convex 9

20 Lecture 9: Deformable Models and Segmentation Variational Formulations and LS Transition from Active Contours: contour v(t) front γ(t) contour energy forces F A F C image energy speed function k I Level set: The level set c at time t of a function ψ(x,y,t) is the set of arguments { (x,y), ψ(x,y,t) = c } Idea: define a function ψ(x,y,t) so that at any time, γ(t) = { (x,y), ψ(x,y,t) = } there are many such ψ ψ has many other level sets, more or less parallel to γ only γ has a meaning for segmentation, not any other level set of ψ

21 Lecture 9: Deformable Models and Segmentation Level Set Framework Usual choice for ψ: signed distance to the front γ() - d(x,y, γ) if (x,y) inside the front ψ(x,y,) = on d(x,y, γ) outside ψ(x,y,t) ψ(x,y,t) γ(t)

22 Lecture 9: Deformable Models and Segmentation Level Set Framework ψ(x,y,t) no movement, only change of values the front may change its topology the front location may be between samples ψ(x,y,t+) = ψ(x,y,t) + ψ(x,y,t)

23 Lecture 9: Deformable Models and Segmentation Level Set Segmentation with LS: Initialise the front γ() Compute ψ(x,y,) Iterate: ψ(x,y,t+) = ψ(x,y,t) + ψ(x,y,t) until convergence Mark the front γ(t end )

24 Lecture 9: Deformable Models and Segmentation Recap: Variational Formulations and LS Transition from Active Contours: contour v(t) front γ(t) contour energy forces F A F C image energy speed function k I Level set: The level set c at time t of a function ψ(x,y,t) is the set of arguments { (x,y), ψ(x,y,t) = c } Idea: define a function ψ(x,y,t) so that at any time, γ(t) = { (x,y), ψ(x,y,t) = } there are many such ψ ψ has many other level sets, more or less parallel to γ only γ has a meaning for segmentation, not any other level set of ψ

25 Lecture 9: Deformable Models and Segmentation Front Propagation product of influences ψ(x,y,t+) - ψ(x,y,t) extension of the speed function k I (image influence) ψ t + ˆ k I F A + F G (κ) ( ) ψ = constant force (balloon pressure) smoothing force depending on the local curvature κ (contour influence) spatial derivative of ψ % κ = div ψ ( ' * & ψ ) link between spatial and temporal derivatives, but not the same type of motion as contours!

26 Lecture 9: Deformable Models and Segmentation Front Propagation Speed function: k I is meant to stop the front on the object s boundaries similar to image energy: k I (x,y) = / ( + I (x,y) ) only makes sense for the front (level set ) yet, same equation for all level sets extend k I to all level sets, defining ^k I possible extension: ^ k I (x,y) = k I (x,y ) where (x,y ) is the point in the front closest to (x,y) ^ ( such a k I (x,y) depends on the front location ) 6

27 Lecture 9: Deformable Models and Segmentation LS Algorithm ψ(x,y,t). compute the speed k I on the front extend it to all other level sets. compute ψ(x,y,t+) = ψ(x,y,t) + ψ(x,y,t). find the front location (for next iteration) modify ψ(x,y,t+) by linear interpolation

28 Lecture 9: Deformable Models and Segmentation Narrow Band Extension Weaknesses of algorithm update of all ψ(x,y,t): inefficient, only care about the front speed extension: computationally expensive Improvement: narrow band: only update a few level sets around γ other extended speed: k I (x,y) = / ( + I(x,y) )

29 Lecture 9: Deformable Models and Segmentation Narrow Band Extension Caution: extrapolate the curvature κ at the edges re-select the narrow band regularly: an empty pixel cannot get a value may restrict the evolution of the front

30 Lecture 9: Deformable Models and Segmentation Summary of LS Level sets: function ψ : [, I width ] x [, I height ] x N R ( x, y, t ) ψ(x,y,t) embed a curve γ: γ(t) = { (x,y), ψ(x,y,t) = } γ() is provided externally, ψ(x,y,) is computed ψ(x,y,t+) is computed by changing the values of ψ(x,y,t) changes using a product of influences on convergence, γ(t end ) is the border of the object Issue: computation time (improved with narrow band)

31 Lecture 9: Deformable Models and Segmentation Examples

32 Lecture 9: Deformable Models and Segmentation Summary of Boundary Based Methods Curves: object boundaries Intelligent scissors (live-wire) sketch in real time a curve that clings to object boundaries Snakes energy-minimizing, D spline curve that evolves towards image features such as strong edges Level set Evolve the curve as the zero-set of a characteristic function, Easily change topology and incorporate region-based statistics

33 Lecture 9: Deformable Models and Segmentation Applications: Contour Tracking and Rotoscoping Track facial features for performance-driven animation Track heads and people, moving vehicles Medical image segmentation (CT image) Rotoscoping Agarwala, Hertzmann, Seitz et al. ()

34 Lecture 9: Deformable Models and Segmentation

35 Lecture 9: Deformable Models and Segmentation Applications: Image Restoration SNR is approximately Original Image

36 Lecture 9: Deformable Models and Segmentation Applications: Image Restoration SNR is approximately Original Image Recovered Image!! 6

37 Lecture 9: Deformable Models and Segmentation Applications: Reconstruction of Surfaces from Unorganized Data Points Reconstruction of a rat brain from data of MRI slices 7

38 Lecture 9: Deformable Models and Segmentation ICCV : Level Set Person Segmentation and Tracking Localized appearance, top-down shape information and level set were combined to segment and track people in videos. 8

39 Lecture 9: Deformable Models and Segmentation CVPR : Level Set Segmentation (>8 citation) Ultrasound image segmentation. Chunming Li et al. LS Evolution without reinitialization: a new variational formulation. 9

40 Lecture 9: Deformable Models and Segmentation Application: Vein Segmentation

41 Lecture 9: Deformable Models and Segmentation Pedestrian Segmentation

42 Lecture 9: Deformable Models and Segmentation Motion Segmentation

43 Lecture 9: Deformable Models and Segmentation Yet another segmentation example

44 Lecture 9: Deformable Models and Segmentation Tumor Segmentation

45 Lecture 9: Deformable Models and Segmentation Slice Credits and References Osher and Paragios (), Paragios, Faugeras, Chan et al. (), Paragios and Sgallari (9) G. Strang, Lecture Notes, MIT. Malladi, Sethian, Vemuri. IEEE PAMI 99. R. Szelisky, Lecture Presentations. Sethian, JA. Fast Marching. PNAS 996. Osher and Fedkiw. Level set methods and dynamic implicit surfaces. Lim, Bagci, and Li. IEEE TBME [Willmore Flow and Level Set]

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey Extract Object Boundaries in Noisy Images using Level Set by: Quming Zhou Literature Survey Submitted to Professor Brian Evans EE381K Multidimensional Digital Signal Processing March 15, 003 Abstract Finding

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

Segmentation Using Active Contour Model and Level Set Method Applied to Medical Images

Segmentation Using Active Contour Model and Level Set Method Applied to Medical Images Segmentation Using Active Contour Model and Level Set Method Applied to Medical Images Dr. K.Bikshalu R.Srikanth Assistant Professor, Dept. of ECE, KUCE&T, KU, Warangal, Telangana, India kalagaddaashu@gmail.com

More information

Medical Image Segmentation using Level Sets

Medical Image Segmentation using Level Sets Medical Image Segmentation using Level Sets Technical Report #CS-8-1 Tenn Francis Chen Abstract Segmentation is a vital aspect of medical imaging. It aids in the visualization of medical data and diagnostics

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Level Set Evolution without Reinitilization

Level Set Evolution without Reinitilization Level Set Evolution without Reinitilization Outline Parametric active contour (snake) models. Concepts of Level set method and geometric active contours. A level set formulation without reinitialization.

More information

Point-Based Geometric Deformable Models for Medical Image Segmentation

Point-Based Geometric Deformable Models for Medical Image Segmentation Point-Based Geometric Deformable Models for Medical Image Segmentation Hon Pong Ho 1, Yunmei Chen 2, Huafeng Liu 1,3, and Pengcheng Shi 1 1 Dept. of EEE, Hong Kong University of Science & Technology, Hong

More information

Implicit Active Shape Models for 3D Segmentation in MR Imaging

Implicit Active Shape Models for 3D Segmentation in MR Imaging Implicit Active Shape Models for 3D Segmentation in MR Imaging Mikaël Rousson 1, Nikos Paragios 2, and Rachid Deriche 1 1 I.N.R.I.A. Sophia Antipolis, France E-mail: {Mikael.Rousson,Rachid.Deriche}@sophia.inria.fr

More information

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Lecture 12 Level Sets & Parametric Transforms sec. 8.5.2 & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2017 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these

More information

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Vikram Appia Anthony Yezzi Georgia Institute of Technology, Atlanta, GA, USA. Abstract We present an active

More information

Implicit Active Model using Radial Basis Function Interpolated Level Sets

Implicit Active Model using Radial Basis Function Interpolated Level Sets Implicit Active Model using Radial Basis Function Interpolated Level Sets Xianghua Xie and Majid Mirmehdi Department of Computer Science University of Bristol, Bristol BS8 1UB, England. {xie,majid}@cs.bris.ac.uk

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

3-D deformable model for abdominal aortic aneurysm segmentation from CT images

3-D deformable model for abdominal aortic aneurysm segmentation from CT images Abstract 3-D deformable model for abdominal aortic aneursm segmentation from CT images Sven Lončarić, Marko Subašić, and Erich Sorantin * Facult of Electrical Engeneering and Computing, Universit of Zagreb

More information

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Huan Xu, and Xiao-Feng Wang,,3 Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science,

More information

Converting Level Set Gradients to Shape Gradients

Converting Level Set Gradients to Shape Gradients Converting Level Set Gradients to Shape Gradients Siqi Chen 1, Guillaume Charpiat 2, and Richard J. Radke 1 1 Department of ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA chens@rpi.edu, rjradke@ecse.rpi.edu

More information

3-D quantitative analysis of brain SPECT images

3-D quantitative analysis of brain SPECT images Header for SPIE use 3-D quantitative analsis of brain SPECT images Sven Loncaric, Ivan Ceškovic, Ratimir Petrovic*, Srecko Loncaric* Facult of Electrical Engineering and Computing, Universit of Zagreb

More information

Edge Detection and Active Contours

Edge Detection and Active Contours Edge Detection and Active Contours Elsa Angelini, Florence Tupin Department TSI, Telecom ParisTech Name.surname@telecom-paristech.fr 2011 Outline Introduction Edge Detection Active Contours Introduction

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg,

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg, Dijkstra s algorithm, Fast marching & Level sets Einar Heiberg, einar@heiberg.se Looking back Medical image segmentation is (usually) selecting a suitable method from a toolbox of available approaches

More information

An Active Contour Model without Edges

An Active Contour Model without Edges An Active Contour Model without Edges Tony Chan and Luminita Vese Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095-1555 chan,lvese@math.ucla.edu

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008 645 A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution Yonggang Shi, Member, IEEE, and William Clem Karl, Senior

More information

Geometrical Modeling of the Heart

Geometrical Modeling of the Heart Geometrical Modeling of the Heart Olivier Rousseau University of Ottawa The Project Goal: Creation of a precise geometrical model of the heart Applications: Numerical calculations Dynamic of the blood

More information

Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study.

Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study. Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study. Diane Lingrand, Johan Montagnat Rainbow Team I3S Laboratory UMR 6070 University of Nice - Sophia

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 9: Medical Image Segmentation (III) (Fuzzy Connected Image Segmentation)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 9: Medical Image Segmentation (III) (Fuzzy Connected Image Segmentation) SPRING 2017 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 9: Medical Image Segmentation (III) (Fuzzy Connected Image Segmentation) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV),

More information

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Level Sets & Snakes Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Scale Space and PDE methods in image analysis and processing - Arjan

More information

Active Contours Using a Constraint-Based Implicit Representation

Active Contours Using a Constraint-Based Implicit Representation To appear in Proceedings Computer Vision and Pattern Recognition, IEEE Computer Society Press, June 2005 Active Contours Using a Constraint-Based Implicit Representation Bryan S. Morse 1, Weiming Liu 1,

More information

CHAPTER 3 Image Segmentation Using Deformable Models

CHAPTER 3 Image Segmentation Using Deformable Models CHAPTER Image Segmentation Using Deformable Models Chenyang Xu The Johns Hopkins University Dzung L. Pham National Institute of Aging Jerry L. Prince The Johns Hopkins University Contents.1 Introduction

More information

Snakes operating on Gradient Vector Flow

Snakes operating on Gradient Vector Flow Snakes operating on Gradient Vector Flow Seminar: Image Segmentation SS 2007 Hui Sheng 1 Outline Introduction Snakes Gradient Vector Flow Implementation Conclusion 2 Introduction Snakes enable us to find

More information

A FAST IMPLEMENTATION OF THE LEVEL SET METHOD WITHOUT SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Yonggang Shi, William Clem Karl

A FAST IMPLEMENTATION OF THE LEVEL SET METHOD WITHOUT SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Yonggang Shi, William Clem Karl A FAST IMPLEMENTATION OF THE LEVEL SET METHOD WITHOUT SOLVING PARTIAL DIFFERENTIAL EQUATIONS Yonggang Shi, William Clem Karl January, 2005 Boston University Department of Electrical and Computer Engineering

More information

Curvature. Corners. curvature of a straight segment is zero more bending = larger curvature

Curvature. Corners. curvature of a straight segment is zero more bending = larger curvature Curvature curvature of a straight segment is zero more bending = larger curvature Corners corner defined by large curvature value (e.g., a local maxima) borders (i.e., edges in gray-level pictures) can

More information

For Information on SNAKEs. Active Contours (SNAKES) Improve Boundary Detection. Back to boundary detection. This is non-parametric

For Information on SNAKEs. Active Contours (SNAKES) Improve Boundary Detection. Back to boundary detection. This is non-parametric Active Contours (SNAKES) Back to boundary detection This time using perceptual grouping. This is non-parametric We re not looking for a contour of a specific shape. Just a good contour. For Information

More information

Local or Global Minima: Flexible Dual-Front Active Contours

Local or Global Minima: Flexible Dual-Front Active Contours Local or Global Minima: Flexible Dual-Front Active Contours Hua Li 1,2 and Anthony Yezzi 1 1 School of ECE, Georgia Institute of Technology, Atlanta, GA, USA 2 Dept. of Elect. & Info. Eng., Huazhong Univ.

More information

Isophote-Based Interpolation

Isophote-Based Interpolation Isophote-Based Interpolation Bryan S. Morse and Duane Schwartzwald Department of Computer Science, Brigham Young University 3361 TMCB, Provo, UT 84602 {morse,duane}@cs.byu.edu Abstract Standard methods

More information

3-D image analysis of abdominal aortic aneurysm

3-D image analysis of abdominal aortic aneurysm 3-D image analsis of abdominal aortic aneursm Marko Subasic and Sven Loncaric and Erich Sorantin* Facult of Electrical Engineering and Computing, Universit of Zagreb Unska 3, 10000 Zagreb, Croatia *Dept.

More information

Spacetime-coherent Geometry Reconstruction from Multiple Video Streams

Spacetime-coherent Geometry Reconstruction from Multiple Video Streams Spacetime-coherent Geometry Reconstruction from Multiple Video Streams Marcus Magnor and Bastian Goldlücke MPI Informatik Saarbrücken, Germany magnor@mpi-sb.mpg.de Abstract By reconstructing time-varying

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Geodesic Active Contours with Combined Shape and Appearance Priors

Geodesic Active Contours with Combined Shape and Appearance Priors Geodesic Active Contours with Combined Shape and Appearance Priors Rami Ben-Ari 1 and Dror Aiger 1,2 1 Orbotech LTD, Yavneh, Israel 2 Ben Gurion University, Be er Sheva, Israel {rami-ba,dror-ai}@orbotech.com

More information

Tracking with Active Contours Using Dynamically Updated Shape Information

Tracking with Active Contours Using Dynamically Updated Shape Information Tracking with Active Contours Using Dynamically Updated Shape Information Abstract An active contour based tracking framework is described that generates and integrates dynamic shape information without

More information

Closed loop visual tracking using observer-based dynamic active contours

Closed loop visual tracking using observer-based dynamic active contours Closed loop visual tracking using observer-based dynamic active contours Patricio A. Vela Marc Niethammer Jimi Malcolm Allen Tannenbaum Georgia Insitute of Technology, Atlanta, GA, USA {pvela,marcn}@ece.gatech.edu,

More information

Segmentation with active contours: a comparative study of B-Spline and Level Set techniques

Segmentation with active contours: a comparative study of B-Spline and Level Set techniques Segmentation with active contours: a comparative study of B-Spline and Level Set techniques DEMIAN WASSERMANN 1,MARTA E. MEJAIL 1,JULIANA GAMBINI 1,MARÍA E. BUEMI 1 1 UBA Universidad de Buenos Aires, FCEyN,

More information

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method Implicit Surface econstruction from D Scattered Points Based on Variational Level Set Method Hanbo Liu Department ofshenzhen graduate school, Harbin Institute oftechnology, Shenzhen, 58055, China liu_hanbo@hit.edu.cn

More information

Magnetostatic Field for the Active Contour Model: A Study in Convergence

Magnetostatic Field for the Active Contour Model: A Study in Convergence 1 Magnetostatic Field for the Active Contour Model: A Study in Convergence Xianghua Xie and Majid Mirmehdi Department of Computer Science, University of Bristol, Bristol BS8 1UB, England {xie,majid}@cs.bris.ac.uk

More information

A Survey of Image Segmentation Based On Multi Region Level Set Method

A Survey of Image Segmentation Based On Multi Region Level Set Method A Survey of Image Segmentation Based On Multi Region Level Set Method Suraj.R 1, Sudhakar.K 2 1 P.G Student, Computer Science and Engineering, Hindusthan College Of Engineering and Technology, Tamilnadu,

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Image Segmentation II Advanced Approaches

Image Segmentation II Advanced Approaches Image Segmentation II Advanced Approaches Jorge Jara W. 1,2 1 Department of Computer Science DCC, U. of Chile 2 SCIAN-Lab, BNI Outline 1. Segmentation I Digital image processing Segmentation basics 2.

More information

Space-time Isosurface Evolution for Temporally Coherent 3D Reconstruction

Space-time Isosurface Evolution for Temporally Coherent 3D Reconstruction Space-time Isosurface Evolution for Temporally Coherent 3D Reconstruction Bastian Goldluecke Marcus Magnor Max-Planck-Institut für Informatik Graphics-Optics-Vision Saarbrücken, Germany {bg,magnor}@mpii.de

More information

Topology-Adaptive Modeling of Objects Using Surface Evolutions Based on 3D Mathematical Morphology

Topology-Adaptive Modeling of Objects Using Surface Evolutions Based on 3D Mathematical Morphology Systems and Computers in Japan, Vol. 33, No. 9, 2002 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J84-D-II, No. 5, May 2001, pp. 778 788 Topology-Adaptive Modeling of Objects Using Surface

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Outline Review of Region-based Active Contour Models Mumford

More information

Level Set Models for Computer Graphics

Level Set Models for Computer Graphics Level Set Models for Computer Graphics David E. Breen Department of Computer Science Drexel University Ross T. Whitaker School of Computing University of Utah Ken Museth Department of Science and Technology

More information

Motivation: Level Sets. Input Data Noisy. Easy Case Use Marching Cubes. Intensity Varies. Non-uniform Exposure. Roger Crawfis

Motivation: Level Sets. Input Data Noisy. Easy Case Use Marching Cubes. Intensity Varies. Non-uniform Exposure. Roger Crawfis Level Set Motivation: Roger Crawfi Slide collected from: Fan Ding, Charle Dyer, Donald Tanguay and Roger Crawfi 4/24/2003 R. Crawfi, Ohio State Univ. 109 Eay Cae Ue Marching Cube Input Data Noiy 4/24/2003

More information

Segmentation. Namrata Vaswani,

Segmentation. Namrata Vaswani, Segmentation Namrata Vaswani, namrata@iastate.edu Read Sections 5.1,5.2,5.3 of [1] Edge detection and filtering : Canny edge detection algorithm to get a contour of the object boundary Hough transform:

More information

An Elliptical Level Set Method for Automatic TRUS Prostate Image Segmentation. Nezamoddin N. Kachouie, Paul Fieguth and Shahryar Rahnamayan

An Elliptical Level Set Method for Automatic TRUS Prostate Image Segmentation. Nezamoddin N. Kachouie, Paul Fieguth and Shahryar Rahnamayan 6 IEEE International Symposium on Signal Processing and Information Technology An Elliptical Level Set Method for Automatic TRUS Prostate Image Segmentation Nezamoddin N. Kachouie, Paul Fieguth and Shahryar

More information

Object Segmentation Using Graph Cuts Based Active Contours

Object Segmentation Using Graph Cuts Based Active Contours Object Segmentation Using Graph Cuts Based Active Contours Ning Xu Beckman Institute & ECE Dept. University of Illinois Urbana, IL, USA ningxu@vision.ai.uiuc.edu Ravi Bansal Department of Psychiatry Columbia

More information

Level Set Techniques for Tracking Interfaces; Fast Algorithms, Multiple Regions, Grid Generation, and Shape/Character Recognition

Level Set Techniques for Tracking Interfaces; Fast Algorithms, Multiple Regions, Grid Generation, and Shape/Character Recognition Level Set Techniques for Tracking Interfaces; Fast Algorithms, Multiple Regions, Grid Generation, and Shape/Character Recognition J.A. Sethian Abstract. We describe new applications of the level set approach

More information

Level Sets Methods in Imaging Science

Level Sets Methods in Imaging Science Level Sets Methods in Imaging Science Dr. Corina S. Drapaca csd12@psu.edu Pennsylvania State University University Park, PA 16802, USA Level Sets Methods in Imaging Science p.1/36 Textbooks S.Osher, R.Fedkiw,

More information

Implicit Active Contours Driven by Local Binary Fitting Energy

Implicit Active Contours Driven by Local Binary Fitting Energy Implicit Active Contours Driven by Local Binary Fitting Energy Chunming Li 1, Chiu-Yen Kao 2, John C. Gore 1, and Zhaohua Ding 1 1 Institute of Imaging Science 2 Department of Mathematics Vanderbilt University

More information

A Work-Efficient GPU Algorithm for Level Set Segmentation. Mike Roberts Jeff Packer Mario Costa Sousa Joseph Ross Mitchell

A Work-Efficient GPU Algorithm for Level Set Segmentation. Mike Roberts Jeff Packer Mario Costa Sousa Joseph Ross Mitchell A Work-Efficient GPU Algorithm for Level Set Segmentation Mike Roberts Jeff Packer Mario Costa Sousa Joseph Ross Mitchell What do I mean by work-efficient? If a parallel algorithm performs asymptotically

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 19: Machine Learning in Medical Imaging (A Brief Introduction)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 19: Machine Learning in Medical Imaging (A Brief Introduction) SPRING 2016 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 19: Machine Learning in Medical Imaging (A Brief Introduction) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV), University

More information

Geodesic Active Contours

Geodesic Active Contours International Journal of Computer Vision 22(1), 61 79 (1997) c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Geodesic Active Contours VICENT CASELLES Department of Mathematics and Informatics,

More information

SELF-ORGANIZING APPROACH TO LEARN A LEVEL-SET FUNCTION FOR OBJECT SEGMENTATION IN COMPLEX BACKGROUND ENVIRONMENTS

SELF-ORGANIZING APPROACH TO LEARN A LEVEL-SET FUNCTION FOR OBJECT SEGMENTATION IN COMPLEX BACKGROUND ENVIRONMENTS SELF-ORGANIZING APPROACH TO LEARN A LEVEL-SET FUNCTION FOR OBJECT SEGMENTATION IN COMPLEX BACKGROUND ENVIRONMENTS Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial

More information

Lecture 10 Segmentation, Part II (ch 8) Active Contours (Snakes) ch. 8 of Machine Vision by Wesley E. Snyder & Hairong Qi

Lecture 10 Segmentation, Part II (ch 8) Active Contours (Snakes) ch. 8 of Machine Vision by Wesley E. Snyder & Hairong Qi Lecture 10 Segmentation, Part II (ch 8) Active Contours (Snakes) ch. 8 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of

More information

Submitted by Wesley Snyder, Ph.D. Department of Electrical and Computer Engineering. North Carolina State University. February 29 th, 2004.

Submitted by Wesley Snyder, Ph.D. Department of Electrical and Computer Engineering. North Carolina State University. February 29 th, 2004. Segmentation using Multispectral Adaptive Contours Final Report To U.S. Army Research Office On contract #DAAD-19-03-1-037 Submitted by Wesley Snyder, Ph.D. Department of Electrical and Computer Engineering

More information

Cerebral Artery Segmentation with Level Set Methods

Cerebral Artery Segmentation with Level Set Methods H. Ho, P. Bier, G. Sands, P. Hunter, Cerebral Artery Segmentation with Level Set Methods, Proceedings of Image and Vision Computing New Zealand 2007, pp. 300 304, Hamilton, New Zealand, December 2007.

More information

Segmentation of Image Using Watershed and Fast Level set methods

Segmentation of Image Using Watershed and Fast Level set methods Segmentation of Image Using Watershed and Fast Level set methods Minal M. Purani S.A.K.E.C, Mumbai +91-9323106641 minalpuranik@ gmail.com Prof, Shobha Krishnan VESIT, Mumbai shobha krishnan@hotmail.com

More information

Topologically Adaptable Snakes

Topologically Adaptable Snakes Published in the Proc. of the Fifth Int. Conf. on Computer Vision (ICCV 95), Cambridge, MA, USA, June, 1995, 840 845.840 Topologically Adaptable Snakes Tim McInerney and Demetri Terzopoulos Department

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

A hybrid level-set method in two and three dimensions for modeling detonation and combustion problems in complex geometries

A hybrid level-set method in two and three dimensions for modeling detonation and combustion problems in complex geometries and Applied Mechanics University of Illinois at Urbana-Champaign TAM Report No. 1040 UILU-ENG-2004-6001 ISSN 0073-5264 A hybrid level-set method in two and three dimensions for modeling detonation and

More information

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method Yonggang Shi, Janusz Konrad, W. Clem Karl Department of Electrical and Computer Engineering Boston University, Boston, MA 02215

More information

Fast Segmentation of Kidneys in CT Images

Fast Segmentation of Kidneys in CT Images WDS'10 Proceedings of Contributed Papers, Part I, 70 75, 2010. ISBN 978-80-7378-139-2 MATFYZPRESS Fast Segmentation of Kidneys in CT Images J. Kolomazník Charles University, Faculty of Mathematics and

More information

Optimization. Intelligent Scissors (see also Snakes)

Optimization. Intelligent Scissors (see also Snakes) Optimization We can define a cost for possible solutions Number of solutions is large (eg., exponential) Efficient search is needed Global methods: cleverly find best solution without considering all.

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

Hierarchical Segmentation of Thin Structures in Volumetric Medical Images

Hierarchical Segmentation of Thin Structures in Volumetric Medical Images Hierarchical Segmentation of Thin Structures in Volumetric Medical Images Michal Holtzman-Gazit 1, Dorith Goldsher 2, and Ron Kimmel 3 1 Electrical Engineering Department 2 Faculty of Medicine - Rambam

More information

Fast Constrained Surface Extraction by Minimal Paths

Fast Constrained Surface Extraction by Minimal Paths Fast Constrained Surface Extraction by Minimal Paths Roberto Ardon 1,2 Laurent D. Cohen 2 1 MEDISYS-Philips France 2 CEREMADE, Université Paris Dauphine 51, rue Carnot, Suresnes 92156 75775 Paris, France

More information

Maintaining the Point Correspondence in the Level Set Framework

Maintaining the Point Correspondence in the Level Set Framework Maintaining the Point Correspondence in the Level Set Framework J.-P. Pons a, G. Hermosillo b, R. Keriven a and O. Faugeras c a Odyssée Laboratory, ENPC, Marne-la-Vallée, France b Siemens Medical Solutions,

More information

Level set and Thresholding for Brain Tumor Segmentation

Level set and Thresholding for Brain Tumor Segmentation Level set and Thresholding for Brain Tumor Segmentation N. S. Zulpe, COCSIT, Latur, V. P. Pawar, and SRTMU, Nanded Abstract Internal structure of the human body obtained by different modalities such as

More information

Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence

Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence Björn Scheuermann and Bodo Rosenhahn Leibniz Universität Hannover, Germany {scheuermann,rosenhahn}@tnt.uni-hannover.de

More information

The Level Set Method applied to Structural Topology Optimization

The Level Set Method applied to Structural Topology Optimization The Level Set Method applied to Structural Topology Optimization Dr Peter Dunning 22-Jan-2013 Structural Optimization Sizing Optimization Shape Optimization Increasing: No. design variables Opportunity

More information

Multimodality Imaging for Tumor Volume Definition in Radiation Oncology

Multimodality Imaging for Tumor Volume Definition in Radiation Oncology 81 There are several commercial and academic software tools that support different segmentation algorithms. In general, commercial software packages have better implementation (with a user-friendly interface

More information

Brain Structure Segmentation from MRI by Geometric Surface Flow

Brain Structure Segmentation from MRI by Geometric Surface Flow Brain Structure Segmentation from MRI by Geometric Surface Flow Greg Heckenberg Yongjian Xi Ye Duan Jing Hua University of Missouri at Columbia Wayne State University Abstract In this paper, we present

More information

Morphological Active Contours for Image Segmentation

Morphological Active Contours for Image Segmentation Morphological Active Contours for Image Segmentation Juan Manuel Rendón Mancha 1, Vannary Meas-Yedid 2, Santiago Venegas Martínez 1, Jean-Christophe Olivo-Marin 2 and Georges Stamon 1 1 SIP Lab CRIP5 UFR

More information

Elastic Shape Registration using an Incremental Free Form Deformation Approach with the ICP Algorithm

Elastic Shape Registration using an Incremental Free Form Deformation Approach with the ICP Algorithm Elastic Shape Registration using an Incremental Free Form Deformation Approach with the ICP Algorithm Hossam Abdelmunim Computer & Systems Engineering Department, Faculty of Engineering, Ain Shams University,

More information

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION TODD F. DUPONT AND YINGJIE LIU Abstract. We propose a method that significantly

More information

Foetus Ultrasound Medical Image Segmentation via Variational Level Set Algorithm

Foetus Ultrasound Medical Image Segmentation via Variational Level Set Algorithm 2012 Third International Conference on Intelligent Systems Modelling and Simulation Foetus Ultrasound Medical Image Segmentation via Variational Level Set Algorithm M.Y. Choong M.C. Seng S.S. Yang A. Kiring

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

A Singular Example for the Averaged Mean Curvature Flow

A Singular Example for the Averaged Mean Curvature Flow To appear in Experimental Mathematics Preprint Vol. No. () pp. 3 7 February 9, A Singular Example for the Averaged Mean Curvature Flow Uwe F. Mayer Abstract An embedded curve is presented which under numerical

More information

Continuous and Discrete Optimization Methods in Computer Vision. Daniel Cremers Department of Computer Science University of Bonn

Continuous and Discrete Optimization Methods in Computer Vision. Daniel Cremers Department of Computer Science University of Bonn Continuous and Discrete Optimization Methods in Computer Vision Daniel Cremers Department of Computer Science University of Bonn Oxford, August 16 2007 Segmentation by Energy Minimization Given an image,

More information

Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths

Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths Laurent D. COHEN and Thomas DESCHAMPS CEREMADE, UMR 7534, Université Paris-Dauphine 75775 Paris cedex 16, France cohen@ceremade.dauphine.fr

More information

Registration-Based Segmentation of Medical Images

Registration-Based Segmentation of Medical Images School of Computing National University of Singapore Graduate Research Paper Registration-Based Segmentation of Medical Images by Li Hao under guidance of A/Prof. Leow Wee Kheng July, 2006 Abstract Medical

More information

A Region-aided Colour Geometric Snake

A Region-aided Colour Geometric Snake Chapter 1 A Region-aided Colour Geometric Snake 1.1 Introduction Deformable contour models or snakes are commonly used in image processing and computer vision due to their natural handling of shape variation

More information

Three-dimensional segmentation of bones from CT and MRI using fast level sets

Three-dimensional segmentation of bones from CT and MRI using fast level sets Three-dimensional segmentation of bones from CT and MRI using fast level sets Jakub Krátký and Jan Kybic Center for Machine perception, Faculty of Electrical Engineering, Czech Technical University, Prague,

More information

College of Engineering, Trivandrum.

College of Engineering, Trivandrum. Analysis of CT Liver Images Using Level Sets with Bayesian Analysis-A Hybrid Approach Sajith A.G 1, Dr. Hariharan.S 2 1 Research Scholar, 2 Professor, Department of Electrical&Electronics Engineering College

More information

Segmentation. Chapter 5

Segmentation. Chapter 5 Chapter 5 Segmentation 5.1 Active contours................................. 237 5.1.1 Snakes................................. 238 5.1.2 Dynamic snakes and CONDENSATION................ 243 5.1.3 Scissors.................................

More information