What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed?

Size: px
Start display at page:

Download "What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed?"

Transcription

1

2 What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed?

3

4 x 1 x 2 x 3 y f w 1 w 2 w 3 T x y = f (wx i i T ) i y

5 x 1 x 2 x 3 = = E (y y) (y f( wx T)) 2 2 o o i i i w 1 w 2 w 3 w = w η i + 1 i E w i y y = f (wx i i i T )

6 Optimization Cost E i Ei+1 E min W i W i+1 W opt

7 Optimization Cost E i Ei+1 E min W i W i+1 W opt

8

9 Kohonen Network Model Neurons Inputs

10 Kohonen Self-organizing Feature Maps Order out of randomness

11 Human Brain 1. Organized spatially into regions according to sensory functions -performing special tasks, speech, analysis of sensory signals 2. Structure in brain -minimize the wiring between functions in close contact -separated (in location) responses to minimize crosstalk between function

12 Feature Maps What is the result of brain s selforganization? formation of feature maps in the brain that have a linear or planar topology, that is, they extend in one or two dimensions.

13 Feature Maps Retinotopic Map Somatosensory Map Tonotopic Map

14 Mapping of the visual field on the cortex

15 retinotopic map visual field is mapped in the visual cortex (occipital lobe) with higher resolution for the centre of the visual field. Feature Maps

16 Somatotopic Map The somatosensory cortex processes the information of the sensory neurons that lie below the skin. Note that both the skin and the somatosensory cortex can be seen as two-dimensional spaces Feature Map

17 Somatosensory Man Picture of the male body with the body parts scaled according to the area devoted to these parts in the somatosensory cortex

18 Feature Maps

19 tonotopic map sound frequencies are spatially mapped into regions of the cortex in an orderly progression from low to high frequencies. Feature Maps

20 Feature Maps Why are feature maps important? Sensory experience is multidimensional, e.g. sound is characterised by pitch, intensity, timbre, noise etc., The brain maps the external multidimensional representation of the world (including its spatial relations) into a similar 1 or 2 - dimensional internal representation.that is, the brain processes the external signals in a topology-preserving way.

21 Self-organization Simultaneous development of both structure and parameter in learning The evolution of a system into an organized form, under the control of the system itself

22 SOM with 2-D Topology j 2-D LATTICE OF NEURONS i w i1 w j2 x 1 x 2 INPUT VECTOR

23 Self Organizing Map Impose a topological order onto the competitive neurons (e.g., rectangular map) Let neighbors of the winner share the prize (The postcode lottery principle) After learning, neurons with similar weights tend to cluster on the map

24 SOM with 1-D Topology i w i1 j w i2 w j1 j w j2 1-D LATTICE OF NEURONS x 1 x 2 INPUT VECTOR

25 Winner Selection Let x = (x 1, x 2,..., x n ) T be the input vector in R n To each neuron i = (i 1, i 2 ) an associated weight vector w i = (w i1, w i2,..., w in ) T R n Neuron c = (c 1, c 2 ) whose weight vector w c is closest to the input (e.g. in Euclidean distance sense) is termed the winner of the competition: c = arg min { x w i } i

26 Weight Adaptation The weights of the winner and of neurons in its topological neighborhood N c (t) are adapted according to the following equation: w i (t+1) = w i (t) + (t) (i, N c (t)) [x(t) - w i (t)] i N c (t) with w i (t+1) = w i (t) i N c (t)

27 Graphical Interpretation of Adaptation Assume that i N c (t) and (i, N c (t)) = 1. In this case the weight adaptation equation becomes: w i (t+1) = w i (t) + (t) [x(t) - w i (t)] x 2 w i (t) x w i (t+1) x x(t) w j (t) x Input and Weight Space x 1

28 Example for 1-D Map x 2 x x x x INPUT x x x x x x x x x 1 Input and Weight Space

29 Self-Organization of a 1-D Map w i (0) (1) (2) ( ) x(1) x max x(2) Receptive field of neuron 5 x(0) x min neuron

30 MOST COMMON 2-D NEURON LATTICES (TOPOLOGICAL STRUCTURES) RECTANGULAR LATTICE HEXAGONAL LATTICE

31 Topological Neighborhoods N c (t) c c ROMBIC NEIGHBORHOODS SQUARE NEIGHBORHOODS

32 Well trained net should have same topology as that in the physical space, and will reflect the properties of the training set SOM-Graphics

33 2D examples

34 Self Organizing Map

35 Self Organizing Map

36

37 World Poverty Map The SOM can be used to portray complex correlations in statistical data. Here the data consisted of World Bank statistics of countries in Altogether 39 indicators describing various quality-of-life factors, such as state of health, nutrition, educational services, etc, were used. The complex joint effect of these factors can can be visualized by organizing the countries using the self-organizing map. Countries that had similar values of the indicators found a place near each other on the map. The different clusters on the map were automatically encoded with different bright colors, nevertheless so that colors change smoothly on the map display. As a result of this process, each country was in fact automatically assigned a color describing its poverty type in relation to other countries. The poverty structures of the world can then be visualized in a straightforward manner: each country on the geographic map has been colored according to its poverty type.

38 Self Organizing Map

39 Self Organizing Map

40

41 Phonetic Typewriter The phonetic typewriter is constructed by Tuevo Kohonen, see e.g. his book Self- Organizing Maps, Springer, 1995.

42 Phonotopic Map Input vectors are 15 dimensional speech samples from the Finnish language Each vector component represents the average output power over 10ms interval in a certain range of the spectrum (200 Hz 6400 Hz) Neurons are organized in a 8x12 hexagonal grid After formation of the map, the individual neurons were calibrated to represent phonemes The resulting map is called the phonetic typewriter

43 Phoneme Recognion

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without a teacher No targets for the outputs Networks which discover patterns, correlations, etc. in the input data This is a self organisation Self organising networks An

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

11/14/2010 Intelligent Systems and Soft Computing 1

11/14/2010 Intelligent Systems and Soft Computing 1 Lecture 8 Artificial neural networks: Unsupervised learning Introduction Hebbian learning Generalised Hebbian learning algorithm Competitive learning Self-organising computational map: Kohonen network

More information

5.6 Self-organizing maps (SOM) [Book, Sect. 10.3]

5.6 Self-organizing maps (SOM) [Book, Sect. 10.3] Ch.5 Classification and Clustering 5.6 Self-organizing maps (SOM) [Book, Sect. 10.3] The self-organizing map (SOM) method, introduced by Kohonen (1982, 2001), approximates a dataset in multidimensional

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 3/3/08 CAP5510 1 Gene g Probe 1 Probe 2 Probe N 3/3/08 CAP5510

More information

Function approximation using RBF network. 10 basis functions and 25 data points.

Function approximation using RBF network. 10 basis functions and 25 data points. 1 Function approximation using RBF network F (x j ) = m 1 w i ϕ( x j t i ) i=1 j = 1... N, m 1 = 10, N = 25 10 basis functions and 25 data points. Basis function centers are plotted with circles and data

More information

Artificial Neural Networks Unsupervised learning: SOM

Artificial Neural Networks Unsupervised learning: SOM Artificial Neural Networks Unsupervised learning: SOM 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001

More information

Data Mining. Kohonen Networks. Data Mining Course: Sharif University of Technology 1

Data Mining. Kohonen Networks. Data Mining Course: Sharif University of Technology 1 Data Mining Kohonen Networks Data Mining Course: Sharif University of Technology 1 Self-Organizing Maps Kohonen Networks developed in 198 by Tuevo Kohonen Initially applied to image and sound analysis

More information

Slide07 Haykin Chapter 9: Self-Organizing Maps

Slide07 Haykin Chapter 9: Self-Organizing Maps Slide07 Haykin Chapter 9: Self-Organizing Maps CPSC 636-600 Instructor: Yoonsuck Choe Spring 2012 Introduction Self-organizing maps (SOM) is based on competitive learning, where output neurons compete

More information

Toward a robust 2D spatio-temporal self-organization

Toward a robust 2D spatio-temporal self-organization Toward a robust 2D spatio-temporal self-organization Thomas Girod, Laurent Bougrain and Frédéric Alexandre LORIA-INRIA Campus Scientifique - B.P. 239 F-54506 Vandœuvre-lès-Nancy Cedex, FRANCE Abstract.

More information

CHAPTER FOUR NEURAL NETWORK SELF- ORGANIZING MAP

CHAPTER FOUR NEURAL NETWORK SELF- ORGANIZING MAP 96 CHAPTER FOUR NEURAL NETWORK SELF- ORGANIZING MAP 97 4.1 INTRODUCTION Neural networks have been successfully applied by many authors in solving pattern recognition problems. Unsupervised classification

More information

7.1 The Somatotopic Map of the Body Surface

7.1 The Somatotopic Map of the Body Surface 7. Modeling the Somatotopic Map 101 7. MODELING THE SOMATOTOPIC MAP 7.1 The Somatotopic Map of the Body Surface In this chapter we demonstrate the formation of a somatotopic map by means of a computer

More information

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS Toomas Kirt Supervisor: Leo Võhandu Tallinn Technical University Toomas.Kirt@mail.ee Abstract: Key words: For the visualisation

More information

Topographic Mapping with fmri

Topographic Mapping with fmri Topographic Mapping with fmri Retinotopy in visual cortex Tonotopy in auditory cortex signal processing + neuroimaging = beauty! Topographic Mapping with fmri Retinotopy in visual cortex Tonotopy in auditory

More information

Extract an Essential Skeleton of a Character as a Graph from a Character Image

Extract an Essential Skeleton of a Character as a Graph from a Character Image Extract an Essential Skeleton of a Character as a Graph from a Character Image Kazuhisa Fujita University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan k-z@nerve.pc.uec.ac.jp

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

Comparing Self-Organizing Maps Samuel Kaski and Krista Lagus Helsinki University of Technology Neural Networks Research Centre Rakentajanaukio 2C, FIN

Comparing Self-Organizing Maps Samuel Kaski and Krista Lagus Helsinki University of Technology Neural Networks Research Centre Rakentajanaukio 2C, FIN Kaski, S. and Lagus, K. (1996) Comparing Self-Organizing Maps. In C. von der Malsburg, W. von Seelen, J. C. Vorbruggen, and B. Sendho (Eds.) Proceedings of ICANN96, International Conference on Articial

More information

A Population Based Convergence Criterion for Self-Organizing Maps

A Population Based Convergence Criterion for Self-Organizing Maps A Population Based Convergence Criterion for Self-Organizing Maps Lutz Hamel and Benjamin Ott Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA. Email:

More information

Two-step Modified SOM for Parallel Calculation

Two-step Modified SOM for Parallel Calculation Two-step Modified SOM for Parallel Calculation Two-step Modified SOM for Parallel Calculation Petr Gajdoš and Pavel Moravec Petr Gajdoš and Pavel Moravec Department of Computer Science, FEECS, VŠB Technical

More information

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray Exploratory Data Analysis using Self-Organizing Maps Madhumanti Ray Content Introduction Data Analysis methods Self-Organizing Maps Conclusion Visualization of high-dimensional data items Exploratory data

More information

Supervised vs.unsupervised Learning

Supervised vs.unsupervised Learning Supervised vs.unsupervised Learning In supervised learning we train algorithms with predefined concepts and functions based on labeled data D = { ( x, y ) x X, y {yes,no}. In unsupervised learning we are

More information

9 Unsupervised Learning (1.Competitive Learning)

9 Unsupervised Learning (1.Competitive Learning) 9 Unsupervised Learning (1.Competitive Learning) 9.1 Introduction to Competitive Learning Like Hebbian learning, Competitive learning is an example of unsupervised learning. We have seen two ways in which

More information

Unsupervised Recursive Sequence Processing

Unsupervised Recursive Sequence Processing Unsupervised Recursive Sequence Processing Marc Strickert, Barbara Hammer Dept. of Math./Comp. Science, University of Osnabrück, Germany e-mail: {marc,hammer}@informatik.uni-osnabrueck.de Abstract. We

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

A Self Organizing Map for dissimilarity data 0

A Self Organizing Map for dissimilarity data 0 A Self Organizing Map for dissimilarity data Aïcha El Golli,2, Brieuc Conan-Guez,2, and Fabrice Rossi,2,3 Projet AXIS, INRIA-Rocquencourt Domaine De Voluceau, BP 5 Bâtiment 8 7853 Le Chesnay Cedex, France

More information

Chapter 7: Competitive learning, clustering, and self-organizing maps

Chapter 7: Competitive learning, clustering, and self-organizing maps Chapter 7: Competitive learning, clustering, and self-organizing maps António R. C. Paiva EEL 6814 Spring 2008 Outline Competitive learning Clustering Self-Organizing Maps What is competition in neural

More information

Cluster analysis of 3D seismic data for oil and gas exploration

Cluster analysis of 3D seismic data for oil and gas exploration Data Mining VII: Data, Text and Web Mining and their Business Applications 63 Cluster analysis of 3D seismic data for oil and gas exploration D. R. S. Moraes, R. P. Espíndola, A. G. Evsukoff & N. F. F.

More information

DESIGN OF KOHONEN SELF-ORGANIZING MAP WITH REDUCED STRUCTURE

DESIGN OF KOHONEN SELF-ORGANIZING MAP WITH REDUCED STRUCTURE DESIGN OF KOHONEN SELF-ORGANIZING MAP WITH REDUCED STRUCTURE S. Kajan, M. Lajtman Institute of Control and Industrial Informatics, Faculty of Electrical Engineering and Information Technology, Slovak University

More information

Self-Organizing Maps for cyclic and unbounded graphs

Self-Organizing Maps for cyclic and unbounded graphs Self-Organizing Maps for cyclic and unbounded graphs M. Hagenbuchner 1, A. Sperduti 2, A.C. Tsoi 3 1- University of Wollongong, Wollongong, Australia. 2- University of Padova, Padova, Italy. 3- Hong Kong

More information

Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks

Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks Series Prediction as a Problem of Missing Values: Application to ESTSP7 and NN3 Competition Benchmarks Antti Sorjamaa and Amaury Lendasse Abstract In this paper, time series prediction is considered as

More information

Tight Clusters and Smooth Manifolds with the Harmonic Topographic Map.

Tight Clusters and Smooth Manifolds with the Harmonic Topographic Map. Proceedings of the th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August -9, (pp8-) Tight Clusters and Smooth Manifolds with the Harmonic Topographic Map. MARIAN PEÑA AND

More information

Reducing topological defects in self-organizing maps using multiple scale neighborhood functions

Reducing topological defects in self-organizing maps using multiple scale neighborhood functions Reducing topological defects in self-organizing maps using multiple scale neighborhood functions Kazushi Murakoshi,YuichiSato Department of Knowledge-based Information Engineering, Toyohashi University

More information

SOM+EOF for Finding Missing Values

SOM+EOF for Finding Missing Values SOM+EOF for Finding Missing Values Antti Sorjamaa 1, Paul Merlin 2, Bertrand Maillet 2 and Amaury Lendasse 1 1- Helsinki University of Technology - CIS P.O. Box 5400, 02015 HUT - Finland 2- Variances and

More information

Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA

Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA Aapo Hyviirinen and Patrik Hoyer Neural Networks Research Center Helsinki University of Technology P.O. Box

More information

Centroid Neural Network based clustering technique using competetive learning

Centroid Neural Network based clustering technique using competetive learning Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 Centroid Neural Network based clustering technique using competetive learning

More information

Clustering with Reinforcement Learning

Clustering with Reinforcement Learning Clustering with Reinforcement Learning Wesam Barbakh and Colin Fyfe, The University of Paisley, Scotland. email:wesam.barbakh,colin.fyfe@paisley.ac.uk Abstract We show how a previously derived method of

More information

Mineral Exploation Using Neural Netowrks

Mineral Exploation Using Neural Netowrks ABSTRACT I S S N 2277-3061 Mineral Exploation Using Neural Netowrks Aysar A. Abdulrahman University of Sulaimani, Computer Science, Kurdistan Region of Iraq aysser.abdulrahman@univsul.edu.iq Establishing

More information

The Traveling Salesman

The Traveling Salesman Neural Network Approach To Solving The Traveling Salesman Problem The Traveling Salesman The shortest route for a salesman to visit every city, without stopping at the same city twice. 1 Random Methods

More information

Unsupervised learning

Unsupervised learning Unsupervised learning Enrique Muñoz Ballester Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy enrique.munoz@unimi.it Enrique Muñoz Ballester 2017 1 Download slides data and scripts:

More information

SOM Neural Network as a Method in Image Color Reduction

SOM Neural Network as a Method in Image Color Reduction 64 SOM Neural Network as a Method in Image Color Reduction Amir Maleki Anvar, Alireza Mohammadi, Abdolhamid Pilevar Department of computer science, BuAli-sina University, Hamedan, Iran Abstract Accurate

More information

Affine Arithmetic Self Organizing Map

Affine Arithmetic Self Organizing Map Affine Arithmetic Self Organizing Map Tony Bazzi Department of Electrical and Systems Engineering Oakland University Rochester, MI 48309, USA Email: tbazzi [AT] oakland.edu Jasser Jasser Department of

More information

A Topography-Preserving Latent Variable Model with Learning Metrics

A Topography-Preserving Latent Variable Model with Learning Metrics A Topography-Preserving Latent Variable Model with Learning Metrics Samuel Kaski and Janne Sinkkonen Helsinki University of Technology Neural Networks Research Centre P.O. Box 5400, FIN-02015 HUT, Finland

More information

SOM Neural Network as a Method in Image Color Reduction

SOM Neural Network as a Method in Image Color Reduction 64 SOM Neural Network as a Method in Image Color Reduction Amir Maleki Anvar, Alireza Mohammadi, Abdolhamid Pilevar Department of computer science, BuAli-sina University, Hamedan, Iran Summary Accurate

More information

Introduction to Neural Networks U. Minn. Psy 5038 Psy Self-organizing Adaptive Maps. Initialization. Topographic maps

Introduction to Neural Networks U. Minn. Psy 5038 Psy Self-organizing Adaptive Maps. Initialization. Topographic maps Introduction to Neural Networks U. Minn. Psy 5038 Psy 5038 Self-organizing Adaptive Maps Initialization In[4]:= Off[SetDelayed::write] Off[General::spell1] (*

More information

Line Simplification Using Self-Organizing Maps

Line Simplification Using Self-Organizing Maps Line Simplification Using Self-Organizing Maps Bin Jiang Division of Geomatics, Dept. of Technology and Built Environment, University of Gävle, Sweden. Byron Nakos School of Rural and Surveying Engineering,

More information

The Hitchhiker s Guide to TensorFlow:

The Hitchhiker s Guide to TensorFlow: The Hitchhiker s Guide to TensorFlow: Beyond Recurrent Neural Networks (sort of) Keith Davis @keithdavisiii iamthevastidledhitchhiker.github.io Topics Kohonen/Self-Organizing Maps LSTMs in TensorFlow GRU

More information

Multi-scale metrics and self-organizing maps: a computational approach to the structure of sensory maps

Multi-scale metrics and self-organizing maps: a computational approach to the structure of sensory maps arxiv:1805.03337v1 [cs.ne] 9 May 2018 Multi-scale metrics and self-organizing maps: a computational approach to the structure of sensory maps William H. Wilson School of Computer Science and Engineering

More information

Application of genetic algorithms and Kohonen networks to cluster analysis

Application of genetic algorithms and Kohonen networks to cluster analysis Application of genetic algorithms and Kohonen networks to cluster analysis Marian B. Gorza lczany and Filip Rudziński Department of Electrical and Computer Engineering Kielce University of Technology Al.

More information

A novel firing rule for training Kohonen selforganising

A novel firing rule for training Kohonen selforganising A novel firing rule for training Kohonen selforganising maps D. T. Pham & A. B. Chan Manufacturing Engineering Centre, School of Engineering, University of Wales Cardiff, P.O. Box 688, Queen's Buildings,

More information

Simulation of WSN in NetSim Clustering using Self-Organizing Map Neural Network

Simulation of WSN in NetSim Clustering using Self-Organizing Map Neural Network Simulation of WSN in NetSim Clustering using Self-Organizing Map Neural Network Software Recommended: NetSim Standard v11.0, Visual Studio 2015/2017, MATLAB 2016a Project Download Link: https://github.com/netsim-tetcos/wsn_som_optimization_v11.0/archive/master.zip

More information

Modification of the Growing Neural Gas Algorithm for Cluster Analysis

Modification of the Growing Neural Gas Algorithm for Cluster Analysis Modification of the Growing Neural Gas Algorithm for Cluster Analysis Fernando Canales and Max Chacón Universidad de Santiago de Chile; Depto. de Ingeniería Informática, Avda. Ecuador No 3659 - PoBox 10233;

More information

13. Learning Ballistic Movementsof a Robot Arm 212

13. Learning Ballistic Movementsof a Robot Arm 212 13. Learning Ballistic Movementsof a Robot Arm 212 13. LEARNING BALLISTIC MOVEMENTS OF A ROBOT ARM 13.1 Problem and Model Approach After a sufficiently long training phase, the network described in the

More information

Self-Organizing Map. presentation by Andreas Töscher. 19. May 2008

Self-Organizing Map. presentation by Andreas Töscher. 19. May 2008 19. May 2008 1 Introduction 2 3 4 5 6 (SOM) aka Kohonen Network introduced by Teuvo Kohonen implements a discrete nonlinear mapping unsupervised learning Structure of a SOM Learning Rule Introduction

More information

Data Mining. Moustafa ElBadry. A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics

Data Mining. Moustafa ElBadry. A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics Data Mining Moustafa ElBadry A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics Department of Mathematics and Computer Science Whitman College 2016

More information

Processing Missing Values with Self-Organized Maps

Processing Missing Values with Self-Organized Maps Processing Missing Values with Self-Organized Maps David Sommer, Tobias Grimm, Martin Golz University of Applied Sciences Schmalkalden Department of Computer Science D-98574 Schmalkalden, Germany Phone:

More information

A Comparative Study of Conventional and Neural Network Classification of Multispectral Data

A Comparative Study of Conventional and Neural Network Classification of Multispectral Data A Comparative Study of Conventional and Neural Network Classification of Multispectral Data B.Solaiman & M.C.Mouchot Ecole Nationale Supérieure des Télécommunications de Bretagne B.P. 832, 29285 BREST

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks If you try and take a cat apart to see how it works, the first thing you have on your hands is a non-working cat. Life is a level of complexity that almost lies outside our vision.

More information

Review: Final Exam CPSC Artificial Intelligence Michael M. Richter

Review: Final Exam CPSC Artificial Intelligence Michael M. Richter Review: Final Exam Model for a Learning Step Learner initially Environm ent Teacher Compare s pe c ia l Information Control Correct Learning criteria Feedback changed Learner after Learning Learning by

More information

Simulation of WSN in NetSim Clustering using Self-Organizing Map Neural Network

Simulation of WSN in NetSim Clustering using Self-Organizing Map Neural Network Simulation of WSN in NetSim Clustering using Self-Organizing Map Neural Network Software Recommended: NetSim Standard v11.1 (32/64bit), Visual Studio 2015/2017, MATLAB (32/64 bit) Project Download Link:

More information

Machine Learning Reliability Techniques for Composite Materials in Structural Applications.

Machine Learning Reliability Techniques for Composite Materials in Structural Applications. Machine Learning Reliability Techniques for Composite Materials in Structural Applications. Roberto d Ippolito, Keiichi Ito, Silvia Poles, Arnaud Froidmont Noesis Solutions Optimus by Noesis Solutions

More information

Dr. Qadri Hamarsheh figure, plotsomnd(net) figure, plotsomplanes(net) figure, plotsomhits(net,x) figure, plotsompos(net,x) Example 2: iris_dataset:

Dr. Qadri Hamarsheh figure, plotsomnd(net) figure, plotsomplanes(net) figure, plotsomhits(net,x) figure, plotsompos(net,x) Example 2: iris_dataset: Self-organizing map using matlab Create a Self-Organizing Map Neural Network: selforgmap Syntax: selforgmap (dimensions, coversteps, initneighbor, topologyfcn, distancefcn) takes these arguments: dimensions

More information

A Neural Classifier for Anomaly Detection in Magnetic Motion Capture

A Neural Classifier for Anomaly Detection in Magnetic Motion Capture A Neural Classifier for Anomaly Detection in Magnetic Motion Capture Iain Miller 1 and Stephen McGlinchey 2 1 University of Paisley, Paisley. PA1 2BE, UK iain.miller@paisley.ac.uk, 2 stephen.mcglinchey@paisley.ac.uk

More information

Modular network SOM : Theory, algorithm and applications

Modular network SOM : Theory, algorithm and applications Modular network SOM : Theory, algorithm and applications Kazuhiro Tokunaga and Tetsuo Furukawa Kyushu Institute of Technology, Kitakyushu 88-96, Japan {tokunaga, furukawa}@brain.kyutech.ac.jp Abstract.

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

arxiv: v1 [physics.data-an] 27 Sep 2007

arxiv: v1 [physics.data-an] 27 Sep 2007 Classification of Interest Rate Curves Using Self-Organising Maps arxiv:0709.4401v1 [physics.data-an] 27 Sep 2007 M.Kanevski a,, M.Maignan b, V.Timonin a,1, A.Pozdnoukhov a,1 a Institute of Geomatics and

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

Neuro-Fuzzy Comp. Ch. 8 May 12, 2005

Neuro-Fuzzy Comp. Ch. 8 May 12, 2005 Neuro-Fuzzy Comp. Ch. 8 May, 8 Self-Organizing Feature Maps Self-Organizing Feature Maps (SOFM or SOM) also known as Kohonen maps or topographic maps were first introduced by von der Malsburg (97) and

More information

Machine Learning : Clustering, Self-Organizing Maps

Machine Learning : Clustering, Self-Organizing Maps Machine Learning Clustering, Self-Organizing Maps 12/12/2013 Machine Learning : Clustering, Self-Organizing Maps Clustering The task: partition a set of objects into meaningful subsets (clusters). The

More information

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6 Cluster Analysis and Visualization Workshop on Statistics and Machine Learning 2004/2/6 Outlines Introduction Stages in Clustering Clustering Analysis and Visualization One/two-dimensional Data Histogram,

More information

Data Warehousing and Machine Learning

Data Warehousing and Machine Learning Data Warehousing and Machine Learning Preprocessing Thomas D. Nielsen Aalborg University Department of Computer Science Spring 2008 DWML Spring 2008 1 / 35 Preprocessing Before you can start on the actual

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Preprocessing DWML, /33

Preprocessing DWML, /33 Preprocessing DWML, 2007 1/33 Preprocessing Before you can start on the actual data mining, the data may require some preprocessing: Attributes may be redundant. Values may be missing. The data contains

More information

Advanced visualization techniques for Self-Organizing Maps with graph-based methods

Advanced visualization techniques for Self-Organizing Maps with graph-based methods Advanced visualization techniques for Self-Organizing Maps with graph-based methods Georg Pölzlbauer 1, Andreas Rauber 1, and Michael Dittenbach 2 1 Department of Software Technology Vienna University

More information

Mapping the Virtual Geography of the World-Wide Web

Mapping the Virtual Geography of the World-Wide Web Mapping the Virtual Geography of the World-Wide Web Luc Girardin It s easy to get lost in cyberspace. Indeed, navigating the World-Wide Web is much like driving cross-country without a road map: If you

More information

Evaluation of the Performance of O(log 2 M) Self-Organizing Map Algorithm without Neighborhood Learning

Evaluation of the Performance of O(log 2 M) Self-Organizing Map Algorithm without Neighborhood Learning 04 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.0, October 006 Evaluation of the Performance of O(log M) Self-Organizing Map Algorithm without Neighborhood Learning Hiroki

More information

Seismic regionalization based on an artificial neural network

Seismic regionalization based on an artificial neural network Seismic regionalization based on an artificial neural network *Jaime García-Pérez 1) and René Riaño 2) 1), 2) Instituto de Ingeniería, UNAM, CU, Coyoacán, México D.F., 014510, Mexico 1) jgap@pumas.ii.unam.mx

More information

Nonlinear dimensionality reduction of large datasets for data exploration

Nonlinear dimensionality reduction of large datasets for data exploration Data Mining VII: Data, Text and Web Mining and their Business Applications 3 Nonlinear dimensionality reduction of large datasets for data exploration V. Tomenko & V. Popov Wessex Institute of Technology,

More information

GST Networks: Learning Emergent Spatiotemporal Correlations1

GST Networks: Learning Emergent Spatiotemporal Correlations1 GST Networks: Learning Emergent Spatiotemporal Correlations1 Chaitanya Tumuluri Chilukuri K. Mohan Alok N. Choudhary tumuluriecatsyr. edu clcmohan@syr. edu choudharecat. s yr. edu 121 Link Hall 2-120 CST

More information

AN ANTICIPATORY SELF-ORGANIZED MAP FOR ROBUST RECOGNITION

AN ANTICIPATORY SELF-ORGANIZED MAP FOR ROBUST RECOGNITION AN ANTICIPATORY SELF-ORGANIZED MAP FOR ROBUST RECOGNITION Samarth Swarup and Kiran Lakkaraju and Alexandre Klementiev and Sylvian R. Ray Department of Computer Science University of Illinois at Urbana-Champaign

More information

arxiv: v1 [physics.data-an] 2 Aug 2011

arxiv: v1 [physics.data-an] 2 Aug 2011 Application of Self-Organizing Map to stellar spectral classifications arxiv:1108.0514v1 [physics.data-an] 2 Aug 2011 Bazarghan Mahdi 1 Department of Physics, Zanjan University, Zanjan 313, Iran bazargan@znu.ac.ir

More information

SOMSN: An Effective Self Organizing Map for Clustering of Social Networks

SOMSN: An Effective Self Organizing Map for Clustering of Social Networks SOMSN: An Effective Self Organizing Map for Clustering of Social Networks Fatemeh Ghaemmaghami Research Scholar, CSE and IT Dept. Shiraz University, Shiraz, Iran Reza Manouchehri Sarhadi Research Scholar,

More information

CAP 5415 Computer Vision Fall 2012

CAP 5415 Computer Vision Fall 2012 CAP 5415 Computer Vision Fall 01 Dr. Mubarak Shah Univ. of Central Florida Office 47-F HEC Lecture-5 SIFT: David Lowe, UBC SIFT - Key Point Extraction Stands for scale invariant feature transform Patented

More information

Neural networks for variable star classification

Neural networks for variable star classification Neural networks for variable star classification Vasily Belokurov, IoA, Cambridge Supervised classification Multi-Layer Perceptron (MLP) Neural Networks for Pattern Recognition by C. Bishop Unsupervised

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Effect of Grouping in Vector Recognition System Based on SOM

Effect of Grouping in Vector Recognition System Based on SOM Effect of Grouping in Vector Recognition System Based on SOM Masayoshi Ohta Graduate School of Science and Engineering Kansai University Osaka, Japan Email: k287636@kansai-u.ac.jp Yuto Kurosaki Department

More information

Relation Organization of SOM Initial Map by Improved Node Exchange

Relation Organization of SOM Initial Map by Improved Node Exchange JOURNAL OF COMPUTERS, VOL. 3, NO. 9, SEPTEMBER 2008 77 Relation Organization of SOM Initial Map by Improved Node Echange MIYOSHI Tsutomu Department of Information and Electronics, Tottori University, Tottori,

More information

NEURAL SELF-ORGANIZATION IN PROCESSING HIGH-RESOLUTION IMAGE DATA

NEURAL SELF-ORGANIZATION IN PROCESSING HIGH-RESOLUTION IMAGE DATA NEURAL SELF-ORGANIZATION IN PROCESSING HIGH-RESOLUTION IMAGE DATA A. Barsi a a Dept. of Photogrammetry and Geoinformatics, Budapest University of Technology and Economics Muegyetem rkp. 3, H-1111 Budapest,

More information

Automatic Group-Outlier Detection

Automatic Group-Outlier Detection Automatic Group-Outlier Detection Amine Chaibi and Mustapha Lebbah and Hanane Azzag LIPN-UMR 7030 Université Paris 13 - CNRS 99, av. J-B Clément - F-93430 Villetaneuse {firstname.secondname}@lipn.univ-paris13.fr

More information

CHAPTER 6 COUNTER PROPAGATION NEURAL NETWORK IN GAIT RECOGNITION

CHAPTER 6 COUNTER PROPAGATION NEURAL NETWORK IN GAIT RECOGNITION 75 CHAPTER 6 COUNTER PROPAGATION NEURAL NETWORK IN GAIT RECOGNITION 6.1 INTRODUCTION Counter propagation network (CPN) was developed by Robert Hecht-Nielsen as a means to combine an unsupervised Kohonen

More information

AMSOM: Adaptive Moving Self-organizing Map for Clustering and Visualization

AMSOM: Adaptive Moving Self-organizing Map for Clustering and Visualization ICAART 2016 61 CR AMSOM: Adaptive Moving Self-organizing Map for Clustering and Visualization Gerasimos Spanakis and Gerhard Weiss Department of Knowledge Engineering, Maastricht University, 6200MD, Maastricht,

More information

/00/$10.00 (C) 2000 IEEE

/00/$10.00 (C) 2000 IEEE A SOM based cluster visualization and its application for false coloring Johan Himberg Helsinki University of Technology Laboratory of Computer and Information Science P.O. Box 54, FIN-215 HUT, Finland

More information

Self-Organization of Place Cells and Reward-Based Navigation for a Mobile Robot

Self-Organization of Place Cells and Reward-Based Navigation for a Mobile Robot Self-Organization of Place Cells and Reward-Based Navigation for a Mobile Robot Takashi TAKAHASHI Toshio TANAKA Kenji NISHIDA Takio KURITA Postdoctoral Research Fellow of the Japan Society for the Promotion

More information

Learning algorithms and temporal structures for SOM

Learning algorithms and temporal structures for SOM Learning algorithms and temporal structures for SOM Qian Wu November 203 A report submitted for the degree of Master of Computing of Australian National University Supervisors: Prof.

More information

TEXTURE DESCRIPTOR VISUALIZATION THROUGH SELF-ORGANIZING MAPS: A CASE STUDY IN UNDERGRADUATE RESEARCH

TEXTURE DESCRIPTOR VISUALIZATION THROUGH SELF-ORGANIZING MAPS: A CASE STUDY IN UNDERGRADUATE RESEARCH TEXTURE DESCRIPTOR VISUALIZATION THROUGH SELF-ORGANIZING MAPS: A CASE STUDY IN UNDERGRADUATE RESEARCH James Wolfer 1 and Jacob Ratkiewicz 2 Abstract The relative inexperience of typical undergraduate students

More information

Multi-Clustering Centers Approach to Enhancing the Performance of SOM Clustering Ability

Multi-Clustering Centers Approach to Enhancing the Performance of SOM Clustering Ability JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1087-1102 (2009) Multi-Clustering Centers Approach to Enhancing the Performance of SOM Clustering Ability CHING-HWANG WANG AND CHIH-HAN KAO * Department

More information

The Isometric Self-Organizing Map for 3D Hand Pose Estimation

The Isometric Self-Organizing Map for 3D Hand Pose Estimation The Isometric Self-Organizing Map for 3D Hand Pose Estimation Haiying Guan, Rogerio S. Feris, and Matthew Turk Computer Science Department University of California, Santa Barbara {haiying,rferis,mturk}@cs.ucsb.edu

More information

Corn pet it ive Learning

Corn pet it ive Learning L 1 o i Self-organizing Systems : Corn pet it ive Learning 10.1 ntroduction n this chapter we continue our study of self-organizing systems by considering a special class of artificial neural networks

More information

CELL COMPETITION GENERATES. Inst. fur Theor. Physik, SFB Nichtlin. Dynamik, Univ.

CELL COMPETITION GENERATES.  Inst. fur Theor. Physik, SFB Nichtlin. Dynamik, Univ. ON-CENTER AND OFF-CENTER CELL COMPETITION GENERATES ORIENTED RECEPTIVE FIELDS FROM NON-ORIENTED STIMULI IN KOHONEN'S SELF-ORGANIZING MAP Maximilian Riesenhuber y Hans-Ulrich Bauer Theo Geisel max@ai.mit.edu,

More information

The Analysis of Traffic of IP Packets using CGH. Self Organizing Map

The Analysis of Traffic of IP Packets using CGH. Self Organizing Map 2015 International Conference on Computational Science and Computational Intelligence The Analysis of Traffic of IP Packets using CGH Self Organizing Maps Hiroshi Dozono Department of Advanced Fusion Saga

More information

Deep Data. Discovery and Visualization

Deep Data. Discovery and Visualization Deep Data Discovery and Visualization Erzsébet Merényi Department of Statistics, and Department of Electrical and Computer Engineering Rice University, Houston, Texas Joint work with Josh Taylor, Dept.

More information