Detecting Elliptic Objects Using Inverse. Hough{Transform. Joachim Hornegger, Dietrich W. R. Paulus. The following paper will appear in the

Size: px
Start display at page:

Download "Detecting Elliptic Objects Using Inverse. Hough{Transform. Joachim Hornegger, Dietrich W. R. Paulus. The following paper will appear in the"

Transcription

1 0 Detecting Elliptic Objects Using Inverse Hough{Transform Joachim Hornegger, Dietrich W R Paulus The following paper will appear in the Proceedings of the International Conference on Image Processing: Theory and Applications

2 Proc of IPTA Conf on Image Processing, Sanremo, June, Detecting Elliptic Objects Using Inverse Hough{Transform Joachim Hornegger and Dietrich W R Paulus Lehrstuhl fur Informatik 5, (Mustererkennung), Martensstrae 3, Universitat Erlangen{ Nurnberg, Germany Abstract We describe a fast method for detecting one circular or elliptical object in an image Based on the well known Hough{Transform for lines a new method with low complexity is developed to compute the centre of gravity and the focal points of an ellipse without knowing the exact contour The experiments yield satisfactory results both with synthetical images and real scenes like an image of a gastric ulcer We will also study the robustness of our method with regard to noise The algorithms are integrated in an object{oriented programming environment for image analysis 1 Introduction Objects of circular or elliptical shape will yield an approximately elliptical object when projected on the two dimensional image plane The estimation of the parameters of the ellipse can be a valuable feature for the recognition and localization of these objects Examples are medical images of tumors [1] or the problem of nding cylinders in range images Classical approaches to this problem use the Hough{technique with a ve{ dimensional parameter [1]; others t a general second{order curve with a subset of the given data and determine whether or not the result is an ellipse or choose ve given points and calculate a conic section tting to these points [2] These methods have their own advantages and disadvantages and they are fairly time consuming Our new approach has the property that the positional parameters of one object with fuzzy contours and roughly elliptical shape can be estimated using only edge elements by applying ideas of the Hough{Transform for lines The experimental results show that this approach to the given problem oers an ecient and robust solution 2 Hough{Transform for Lines from Edges The following methods for detecting elliptic objects are based on edge{images For each pixel in the graylevel{image the discrete values for orientation and absolute values of the gradients can be computed using an edge operator, eg the Sobel{operator The orientation computed from edge masks (eg the operator of Nevatia and Babu) is perpendicular to the gradient Both methods result in a uniform edge image object in the object{oriented programming environment [4], with edge orientation aligned parallel to

3 Proc of IPTA Conf on Image Processing, Sanremo, June, the edge A straight line in a (x; y){coordinate system, non{parallel to the y{axis, can be represented using the formula: y = a x + b; where the parameter a is called the slope and b the translation of the given line Obviously, we can associate with each line in the (x; y){plane one point in the (a; b){parameter space The detection of lines based on a gradient image is done in the following manner: For each pixel p i we compute the slope a i and the translation b i of the line using the given information of the edge image In the (a; b){array, the accumulator, we increment the entry (a i ; b i ) which is initialized with zero After all pixels of the image are visited, we utilize the values of the entries in the accumulator and conclude which lines occur in the given image Using the strength of the edges and some given thresholds for the entry in the accumulator, the strength and the length of the lines we get lines corresponding to edges We do not treat lines of innite slope here (see for instance [1] on this topic) 3 Inverse Hough{Transform for Circles The new idea of the Inverse Hough{Transform is to use the classical Hough{Transform the other way round With a given line in the parameter space b =?x a + y we can associate a point in the (x; y){plane in a unique manner, ie the point (x; y) Lemma 1 For all straight lines g i : y = a i x+b i (1 i N) which intersect in one point M = (x M ; y M ), we can associate the points (a i ; b i ) (1 i N) in the parameter space All points (a i ; b i ) (1 i N) are element of a straight line s in the (a; b){parameter space satisfying the following equation: s : b =?x M a + y M : (1) Proof: Let M = (x M ; y M ): All straight lines g i (1 i N) intersecting in M full the following equations g i : y = a i (x? x M )+y M : Therefore we associate the point (a i ;?a i x M + y M ) in the parameter space with each line g i Obviously, all such points in the parameter space are elements of the line s : b =?x M a + y M 2 The lemma can be used to compute the centre of an image containing one circle The image is segmented into a edge{image for this purpose Using the edge information and the coordinates of each point we calculate the slope and the translation of the straight line, which is perpendicular to the tangent line Ideal conditions assure that all points in the parameter space associated with the slopes and translations of the line bundle satisify one linear equation of the form: b =?x M a + y M ; where M = (x M ; y M ) is the centre of the circle Suppose that a noisy image of a circle is given Analogously, we can compute the gradient image and nally the lines perpendicular to tangent lines Certainly the majority of these lines will intersect close to the centre of the circle Consequently the associated points in the parameter space will not t with exactly one straight line Using linear regression analysis we t a line b =?x R a + y R through these points (a i ; b i ) with minimal quadratic error, where P P x R = n i a i b i? i a i Pj b j? P P P and y n i a 2 R = i? i a i j a j Pi a i 2 Pi b i? P i a i P j a j b j n P i a i 2? ( P i a i ) 2 : (2)

4 Proc of IPTA Conf on Image Processing, Sanremo, June, The associated point R = (x R ; y R ) in the image plane will be an approximation of the centre (x M ; y M ) (see Figure 1) The average distance between the centre and the edge{ points determines the radius of b y the circle We may remark, that one normal line intersects the circular arc twice Both points ym have identical normals Consequently half of the circle yields a+y R b =?xr the same set of normals as the complete circle The described method is therefore very robust a xm x with respect to partial occlusion Figure 1: (Inverse) Hough{Transform The equation 2 can be computed during the analysis of the image with a computational eort depending linearly on the number of edge points In contrast to the classical Hough{ Transform, neither storage space for an accumulator array nor computationally expensive search for local maxima are required 4 Elliptical Shapes The lemma 1 can also be used for computing the features of ellipses in general In the ideal case, where one principal axis is parallel to the x{axis, the method follows immediately from the twofold application of the lemma: Let the point (x 0 ; y 0 ) be the centre of gravity of a given ellipse with the mentioned restriction Then, the ellipse can be specied by four parameters using the equation (x? x 0 ) 2 a 2 + (y? y 0) 2 b 2 = 1: (3) All normals of the elliptic line intersect close to the centre of gravity (x 0 ; y 0 ) If the equations of the normals are known, and indeed they are, the centre will be calculated using linear regression and the lemma 1 Consequently, the squares (x?x 0 ) 2 and (y?y 0 ) 2 can be determined for each contour point The equation for the ellipse can be written in the following manner: 1 a = (y 2?? y 0) 2 1 (x? x 0 ) 2 b (x? x 0 ) : (4) 2 This term can be interpreted as an ane function in the variables := 1 and := 1 a 2 b 2 with the slope? (y?y 0) 2 1 (x?x 0 and the translation ) 2 (x?x 0 : Obviously, the above equation is ) 2 statised for each point of the elliptic line If and are unknown parameters, we will associate with each contour point (x; y) one straight line (4) and nally one point in the paramter space assigned to slope and translation All these lines should intersect in one point ( 1 ; 1 ) determined by the length of principal axis In noisy images these lines will a 2 b 2 just intersect close to this point Using linear regression we can approximately compute this point in the parameter space; the principal axis, focal points and the radius of the ellipses follow directly

5 Proc of IPTA Conf on Image Processing, Sanremo, June, Our issue is to detect a gastric ulcer in medical images Due to experts in medicine those tumors have approximately elliptical shape The above ideas can be useful to nd an ellipse enclosing the tumor Indeed the ellipse will not have principal axis parallel to the axis of the underlying coordinate system First of all, the centre of gravity can be calculated with linear regression A shift of the origin of the coordinate system into the centre of gravity splits the image into four areas For each region, the lemma can be used to compute a point The centres of gravity in the second and the third quadrant are weighted with the number of edge points used for their calculation The average weighted sum over the x{ and y{coordinates results in one focal point The second focal follows by reection at the origin of the new coordinate system 5 Experimental Results Focal Points (calc) Centre of Gravity (calc) Radius (calc) (50; 100), (150; 100) (50; 100), (149; 99) (100; 100) (99; 99) (50; 130), (100; 180) (57; 149), (92; 149) (75; 155) (75; 155) Table 1: Parameters for synthetic ellipses and calculated values The results of the algorithm on synthetic images are shown in Table 1 The rst values are used for the generation of the images, the second values are calculated These methods for the calculation of features of elliptical objects can be used for applications in medical imaging Figure 2 shows the computed elliptic line overlayed to the red channel of a colour endoscopic image In a further processing step, the edges close to the elliptic line are used to compute the fractal dimension of the border line to Figure 2: decide, whether the ulcer is malicious or not ([3]) Endoscopic Image of Gastric Ulcer References [1] DH Ballard and CM Brown Computer Vision Prentice-Hall, Englewood Clis, NJ, 1982 [2] Illingworth J and J Kittler The adaptive Hough transform IEEE Trans on Pattern Analysis and Machine Intelligence, 9(5):690{698, 1987 [3] Christian Lenz Fraktale dimension der kontur endoskopisch ermittelter farbbilder von geschwuren Technical report, Diplomarbeit, Lehrstuhl fur Mustererkennung (Informatik 5), Universitat Erlangen{Nurnberg, Erlangen, 1992 [4] D W R Paulus Objektorientierte und wissensbasierte Bildverarbeitung Vieweg, Braunschweig, 1992

Chapter 11 Arc Extraction and Segmentation

Chapter 11 Arc Extraction and Segmentation Chapter 11 Arc Extraction and Segmentation 11.1 Introduction edge detection: labels each pixel as edge or no edge additional properties of edge: direction, gradient magnitude, contrast edge grouping: edge

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection Why Edge Detection? How can an algorithm extract relevant information from an image that is enables the algorithm to recognize objects? The most important information for the interpretation of an image

More information

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou an edge image, nd line or curve segments present Given the image. in Line and Curves Detection 1 Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They

More information

Lecture 15: Segmentation (Edge Based, Hough Transform)

Lecture 15: Segmentation (Edge Based, Hough Transform) Lecture 15: Segmentation (Edge Based, Hough Transform) c Bryan S. Morse, Brigham Young University, 1998 000 Last modified on February 3, 000 at :00 PM Contents 15.1 Introduction..............................................

More information

A Two Stage Real{Time Object Tracking System. Universitat Erlangen{Nurnberg. Martensstr. 3, D{91058 Erlangen, Germany

A Two Stage Real{Time Object Tracking System. Universitat Erlangen{Nurnberg. Martensstr. 3, D{91058 Erlangen, Germany 0 A Two Stage Real{Time Object Tracking System J. Denzler, H. Niemann Lehrstuhl fur Mustererkennung (Informatik 5) Universitat Erlangen{Nurnberg Martensstr. 3, D{91058 Erlangen, Germany email: fdenzler,niemanng@informatik.uni-erlangen.de

More information

Properties of a Circle Diagram Source:

Properties of a Circle Diagram Source: Properties of a Circle Diagram Source: http://www.ricksmath.com/circles.html Definitions: Circumference (c): The perimeter of a circle is called its circumference Diameter (d): Any straight line drawn

More information

Coarse-to-Fine Search Technique to Detect Circles in Images

Coarse-to-Fine Search Technique to Detect Circles in Images Int J Adv Manuf Technol (1999) 15:96 102 1999 Springer-Verlag London Limited Coarse-to-Fine Search Technique to Detect Circles in Images M. Atiquzzaman Department of Electrical and Computer Engineering,

More information

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW Thorsten Thormählen, Hellward Broszio, Ingolf Wassermann thormae@tnt.uni-hannover.de University of Hannover, Information Technology Laboratory,

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

HOUGH TRANSFORM. Plan for today. Introduction to HT. An image with linear structures. INF 4300 Digital Image Analysis

HOUGH TRANSFORM. Plan for today. Introduction to HT. An image with linear structures. INF 4300 Digital Image Analysis INF 4300 Digital Image Analysis HOUGH TRANSFORM Fritz Albregtsen 14.09.2011 Plan for today This lecture goes more in detail than G&W 10.2! Introduction to Hough transform Using gradient information to

More information

Elaborations Example Exam 1 Wiskunde B 2018

Elaborations Example Exam 1 Wiskunde B 2018 Elaborations Example Exam 1 Wiskunde B 2018 Question 1a 4 points yields ; yields so in point A we have ;, so and This yields Question 1b 4 points ( ) ( ) ( ) Question 1c 4 points ( ). This is the normal

More information

Ellipse fitting using orthogonal hyperbolae and Stirling s oval

Ellipse fitting using orthogonal hyperbolae and Stirling s oval Ellipse fitting using orthogonal hyperbolae and Stirling s oval Paul L. Rosin Abstract Two methods for approximating the normal distance to an ellipse using a) its orthogonal hyperbolae, and b) Stirling

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Elaborazione delle Immagini Informazione Multimediale. Raffaella Lanzarotti

Elaborazione delle Immagini Informazione Multimediale. Raffaella Lanzarotti Elaborazione delle Immagini Informazione Multimediale Raffaella Lanzarotti HOUGH TRANSFORM Paragraph 4.3.2 of the book at link: szeliski.org/book/drafts/szeliskibook_20100903_draft.pdf Thanks to Kristen

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Active Motion Detection and Object Tracking. Joachim Denzler and Dietrich W.R.Paulus.

Active Motion Detection and Object Tracking. Joachim Denzler and Dietrich W.R.Paulus. 0 Active Motion Detection and Object Tracking Joachim Denzler and Dietrich W.R.Paulus denzler,paulus@informatik.uni-erlangen.de The following paper was published in the Proceedings on the 1 st International

More information

Visual Computing Midterm Winter Pledge: I neither received nor gave any help from or to anyone in this exam.

Visual Computing Midterm Winter Pledge: I neither received nor gave any help from or to anyone in this exam. Visual Computing Midterm Winter 2018 Total Points: 80 points Name: Number: Pledge: I neither received nor gave any help from or to anyone in this exam. Signature: Useful Tips 1. All questions are multiple

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Comparison of Position Estimation Techniques. Bernt Schiele and James L. Crowley LIFIA-INPG. 46 Avenue Felix Viallet Grenoble Cedex FRANCE

Comparison of Position Estimation Techniques. Bernt Schiele and James L. Crowley LIFIA-INPG. 46 Avenue Felix Viallet Grenoble Cedex FRANCE Comparison of Position Estimation Techniques Using Occupancy Grids Bernt Schiele and James L. Crowley LIFIA-INPG 46 Avenue Felix Viallet 38031 Grenoble Cedex FRANCE schiele@imag.fr jlc@imag.fr Phone :

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS

CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS Setiawan Hadi Mathematics Department, Universitas Padjadjaran e-mail : shadi@unpad.ac.id Abstract Geometric patterns generated by superimposing

More information

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius. NAME DATE PER. REVIEW #18: SPHERES, COMPOSITE FIGURES, & CHANGING DIMENSIONS PART 1: SURFACE AREA & VOLUME OF SPHERES Find the measure(s) indicated. Answers to even numbered problems should be rounded

More information

Experiments with Edge Detection using One-dimensional Surface Fitting

Experiments with Edge Detection using One-dimensional Surface Fitting Experiments with Edge Detection using One-dimensional Surface Fitting Gabor Terei, Jorge Luis Nunes e Silva Brito The Ohio State University, Department of Geodetic Science and Surveying 1958 Neil Avenue,

More information

CHAPTER 3 RETINAL OPTIC DISC SEGMENTATION

CHAPTER 3 RETINAL OPTIC DISC SEGMENTATION 60 CHAPTER 3 RETINAL OPTIC DISC SEGMENTATION 3.1 IMPORTANCE OF OPTIC DISC Ocular fundus images provide information about ophthalmic, retinal and even systemic diseases such as hypertension, diabetes, macular

More information

OBJECT detection in general has many applications

OBJECT detection in general has many applications 1 Implementing Rectangle Detection using Windowed Hough Transform Akhil Singh, Music Engineering, University of Miami Abstract This paper implements Jung and Schramm s method to use Hough Transform for

More information

Straight Lines and Hough

Straight Lines and Hough 09/30/11 Straight Lines and Hough Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li Project 1 A few project highlights

More information

Massachusetts Institute of Technology. Department of Computer Science and Electrical Engineering /6.866 Machine Vision Quiz I

Massachusetts Institute of Technology. Department of Computer Science and Electrical Engineering /6.866 Machine Vision Quiz I Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision Quiz I Handed out: 2004 Oct. 21st Due on: 2003 Oct. 28th Problem 1: Uniform reflecting

More information

Lecture 9: Hough Transform and Thresholding base Segmentation

Lecture 9: Hough Transform and Thresholding base Segmentation #1 Lecture 9: Hough Transform and Thresholding base Segmentation Saad Bedros sbedros@umn.edu Hough Transform Robust method to find a shape in an image Shape can be described in parametric form A voting

More information

Unit 3 Higher topic list

Unit 3 Higher topic list This is a comprehensive list of the topics to be studied for the Edexcel unit 3 modular exam. Beside the topics listed are the relevant tasks on www.mymaths.co.uk that students can use to practice. Logon

More information

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin,

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin, Conics onic sections are the curves which result from the intersection of a plane with a cone. These curves were studied and revered by the ancient Greeks, and were written about extensively by both Euclid

More information

IRIS SEGMENTATION OF NON-IDEAL IMAGES

IRIS SEGMENTATION OF NON-IDEAL IMAGES IRIS SEGMENTATION OF NON-IDEAL IMAGES William S. Weld St. Lawrence University Computer Science Department Canton, NY 13617 Xiaojun Qi, Ph.D Utah State University Computer Science Department Logan, UT 84322

More information

Preview Notes. Systems of Equations. Linear Functions. Let y = y. Solve for x then solve for y

Preview Notes. Systems of Equations. Linear Functions. Let y = y. Solve for x then solve for y Preview Notes Linear Functions A linear function is a straight line that has a slope (m) and a y-intercept (b). Systems of Equations 1. Comparison Method Let y = y x1 y1 x2 y2 Solve for x then solve for

More information

(Refer Slide Time: 0:32)

(Refer Slide Time: 0:32) Digital Image Processing. Professor P. K. Biswas. Department of Electronics and Electrical Communication Engineering. Indian Institute of Technology, Kharagpur. Lecture-57. Image Segmentation: Global Processing

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Copyright. Anna Marie Bouboulis

Copyright. Anna Marie Bouboulis Copyright by Anna Marie Bouboulis 2013 The Report committee for Anna Marie Bouboulis Certifies that this is the approved version of the following report: Poincaré Disc Models in Hyperbolic Geometry APPROVED

More information

Syllabus Form 3. Objectives Students will be able to: Mathematics Department. Revision of numbers. Form 3 Syllabus Page 1 of 7

Syllabus Form 3. Objectives Students will be able to: Mathematics Department. Revision of numbers. Form 3 Syllabus Page 1 of 7 Syllabus Form 3 Topic Revision of numbers Content 1. Rounding 2. Estimation 3. Directed numbers 4. Working with decimals 5. Changing fractions to 6. decimals and vice versa 7. 7.1. The reciprocal of a

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test Boise State Math 275 (Ultman) Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test From the Toolbox (what you need from previous classes) Algebra: Solving systems of two equations

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Announcements. Edges. Last Lecture. Gradients: Numerical Derivatives f(x) Edge Detection, Lines. Intro Computer Vision. CSE 152 Lecture 10

Announcements. Edges. Last Lecture. Gradients: Numerical Derivatives f(x) Edge Detection, Lines. Intro Computer Vision. CSE 152 Lecture 10 Announcements Assignment 2 due Tuesday, May 4. Edge Detection, Lines Midterm: Thursday, May 6. Introduction to Computer Vision CSE 152 Lecture 10 Edges Last Lecture 1. Object boundaries 2. Surface normal

More information

Fitting: The Hough transform

Fitting: The Hough transform Fitting: The Hough transform Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not vote consistently for any single model Missing data

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

SHAPE, SPACE & MEASURE

SHAPE, SPACE & MEASURE STAGE 1 Know the place value headings up to millions Recall primes to 19 Know the first 12 square numbers Know the Roman numerals I, V, X, L, C, D, M Know the % symbol Know percentage and decimal equivalents

More information

Factorization with Missing and Noisy Data

Factorization with Missing and Noisy Data Factorization with Missing and Noisy Data Carme Julià, Angel Sappa, Felipe Lumbreras, Joan Serrat, and Antonio López Computer Vision Center and Computer Science Department, Universitat Autònoma de Barcelona,

More information

Practice Exam Sample Solutions

Practice Exam Sample Solutions CS 675 Computer Vision Instructor: Marc Pomplun Practice Exam Sample Solutions Note that in the actual exam, no calculators, no books, and no notes allowed. Question 1: out of points Question 2: out of

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Tilings of the Euclidean plane

Tilings of the Euclidean plane Tilings of the Euclidean plane Yan Der, Robin, Cécile January 9, 2017 Abstract This document gives a quick overview of a eld of mathematics which lies in the intersection of geometry and algebra : tilings.

More information

Solved Examples. Parabola with vertex as origin and symmetrical about x-axis. We will find the area above the x-axis and double the area.

Solved Examples. Parabola with vertex as origin and symmetrical about x-axis. We will find the area above the x-axis and double the area. Solved Examples Example 1: Find the area common to the curves x 2 + y 2 = 4x and y 2 = x. x 2 + y 2 = 4x (i) (x 2) 2 + y 2 = 4 This is a circle with centre at (2, 0) and radius 2. y = (4x-x 2 ) y 2 = x

More information

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS Yun-Ting Su James Bethel Geomatics Engineering School of Civil Engineering Purdue University 550 Stadium Mall Drive, West Lafayette,

More information

Edges and Lines Readings: Chapter 10: better edge detectors line finding circle finding

Edges and Lines Readings: Chapter 10: better edge detectors line finding circle finding Edges and Lines Readings: Chapter 10: 10.2.3-10.3 better edge detectors line finding circle finding 1 Lines and Arcs Segmentation In some image sets, lines, curves, and circular arcs are more useful than

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Robust Ring Detection In Phase Correlation Surfaces

Robust Ring Detection In Phase Correlation Surfaces Griffith Research Online https://research-repository.griffith.edu.au Robust Ring Detection In Phase Correlation Surfaces Author Gonzalez, Ruben Published 2013 Conference Title 2013 International Conference

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Fitting: The Hough transform

Fitting: The Hough transform Fitting: The Hough transform Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not vote consistently for any single model Missing data

More information

Int 2 Checklist (Unit 1) Int 2 Checklist (Unit 1) Percentages

Int 2 Checklist (Unit 1) Int 2 Checklist (Unit 1) Percentages Percentages Know that appreciation means an increase in value and depreciation means a decrease in value Calculate simple interest over 1 year Calculate simple interest over a certain number of months

More information

CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves

CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines Perceptual Grouping and Segmentation

More information

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by a two dimensional (plane) curve C in three dimensional space a line L in a plane not parallel to the one in

More information

Conics. By: Maya, Dietrich, and Jesse

Conics. By: Maya, Dietrich, and Jesse Conics By: Maya, Dietrich, and Jesse Exploring Conics (This is basically the summary too) A conic section curve formed by intersection of a plane and double cone: by changing plane, one can create parabola,

More information

CAP 5415 Computer Vision Fall 2012

CAP 5415 Computer Vision Fall 2012 CAP 5415 Computer Vision Fall 2012 Hough Transform Lecture-18 Sections 4.2, 4.3 Fundamentals of Computer Vision Image Feature Extraction Edges (edge pixels) Sobel, Roberts, Prewit Laplacian of Gaussian

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Recovering Partial 3D Wire Frames Descriptions from Stereo Data

Recovering Partial 3D Wire Frames Descriptions from Stereo Data Recovering Partial 3D Wire Frames Descriptions from Stereo Data Stephen B Pollard, John Porrill and John E W Mayhew AIVRU University of Sheffield We describe the design of modules in the current version

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

PITSCO Math Individualized Prescriptive Lessons (IPLs)

PITSCO Math Individualized Prescriptive Lessons (IPLs) Orientation Integers 10-10 Orientation I 20-10 Speaking Math Define common math vocabulary. Explore the four basic operations and their solutions. Form equations and expressions. 20-20 Place Value Define

More information

Geometry: Conic Sections

Geometry: Conic Sections Conic Sections Introduction When a right circular cone is intersected by a plane, as in figure 1 below, a family of four types of curves results. Because of their relationship to the cone, they are called

More information

Fl(P) -> Left contribution. P Fr(P) -> Right contribution P-1 P-2 P+2 P+1. F(P) = [ Fl(P) + Fr(P) ]

Fl(P) -> Left contribution. P Fr(P) -> Right contribution P-1 P-2 P+2 P+1. F(P) = [ Fl(P) + Fr(P) ] Perceptual Organization of thin networks with active contour functions applied to medical and aerial images. Philippe Montesinos, Laurent Alquier LGIP - Parc scientique G. BESSE NIMES, F-30000 E-mail:

More information

Fitting: The Hough transform

Fitting: The Hough transform Fitting: The Hough transform Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not vote consistently for any single model Missing data

More information

Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences

Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences Jian Wang 1,2, Anja Borsdorf 2, Joachim Hornegger 1,3 1 Pattern Recognition Lab, Friedrich-Alexander-Universität

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

Buds Public School, Dubai

Buds Public School, Dubai Buds Public School, Dubai Subject: Maths Grade: 11 AB Topic: Statistics, Probability, Trigonometry, 3D, Conic Section, Straight lines and Limits and Derivatives Statistics and Probability: 1. Find the

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Computer Vision. Image Segmentation. 10. Segmentation. Computer Engineering, Sejong University. Dongil Han

Computer Vision. Image Segmentation. 10. Segmentation. Computer Engineering, Sejong University. Dongil Han Computer Vision 10. Segmentation Computer Engineering, Sejong University Dongil Han Image Segmentation Image segmentation Subdivides an image into its constituent regions or objects - After an image has

More information

Circular Hough Transform

Circular Hough Transform Circular Hough Transform Simon Just Kjeldgaard Pedersen Aalborg University, Vision, Graphics, and Interactive Systems, November 2007 1 Introduction A commonly faced problem in computer vision is to determine

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Multi-Scale Free-Form Surface Description

Multi-Scale Free-Form Surface Description Multi-Scale Free-Form Surface Description Farzin Mokhtarian, Nasser Khalili and Peter Yuen Centre for Vision Speech and Signal Processing Dept. of Electronic and Electrical Engineering University of Surrey,

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

GCSE Higher Revision List

GCSE Higher Revision List GCSE Higher Revision List Level 8/9 Topics I can work with exponential growth and decay on the calculator. I can convert a recurring decimal to a fraction. I can simplify expressions involving powers or

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Unit Activity Correlations to Common Core State Standards. Geometry. Table of Contents. Geometry 1 Statistics and Probability 8

Unit Activity Correlations to Common Core State Standards. Geometry. Table of Contents. Geometry 1 Statistics and Probability 8 Unit Activity Correlations to Common Core State Standards Geometry Table of Contents Geometry 1 Statistics and Probability 8 Geometry Experiment with transformations in the plane 1. Know precise definitions

More information

Introduction to Geometric Algebra Lecture VI

Introduction to Geometric Algebra Lecture VI Introduction to Geometric Algebra Lecture VI Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br Visgraf - Summer School in Computer Graphics - 2010 CG UFRGS Lecture

More information

Mathematics High School Geometry

Mathematics High School Geometry Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Adaptive Boundary Detection Using Live-Wire Two-Dimensional Dynamic Programming

Adaptive Boundary Detection Using Live-Wire Two-Dimensional Dynamic Programming Brigham Young University BYU ScholarsArchive All Faculty Publications 1992-10-01 Adaptive Boundary Detection Using Live-Wire Two-Dimensional Dynamic Programming William A. Barrett william_barrett@byu.edu

More information

E0005E - Industrial Image Analysis

E0005E - Industrial Image Analysis E0005E - Industrial Image Analysis The Hough Transform Matthew Thurley slides by Johan Carlson 1 This Lecture The Hough transform Detection of lines Detection of other shapes (the generalized Hough transform)

More information

Band-Pass Filter Design by Segmentation in Frequency Domain for Detection of Epithelial Cells in Endomicroscope Images

Band-Pass Filter Design by Segmentation in Frequency Domain for Detection of Epithelial Cells in Endomicroscope Images Band-Pass Filter Design by Segmentation in Frequency Domain for Detection of Epithelial Cells in Endomicroscope Images Bastian Bier 1, Firas Mualla 1, Stefan Steidl 1, Christopher Bohr 2, Helmut Neumann

More information

Silhouette-based Multiple-View Camera Calibration

Silhouette-based Multiple-View Camera Calibration Silhouette-based Multiple-View Camera Calibration Prashant Ramanathan, Eckehard Steinbach, and Bernd Girod Information Systems Laboratory, Electrical Engineering Department, Stanford University Stanford,

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information

Standard Equation of a Circle

Standard Equation of a Circle Math 335 Trigonometry Conics We will study all 4 types of conic sections, which are curves that result from the intersection of a right circular cone and a plane that does not contain the vertex. (If the

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Detecting Ellipses via Bounding Boxes

Detecting Ellipses via Bounding Boxes Detecting Ellipses via Bounding Boxes CHUN-MING CHANG * Department of Information and Design, Asia University, Taiwan ABSTRACT A novel algorithm for ellipse detection based on bounding boxes is proposed

More information

A Statistical Consistency Check for the Space Carving Algorithm.

A Statistical Consistency Check for the Space Carving Algorithm. A Statistical Consistency Check for the Space Carving Algorithm. A. Broadhurst and R. Cipolla Dept. of Engineering, Univ. of Cambridge, Cambridge, CB2 1PZ aeb29 cipolla @eng.cam.ac.uk Abstract This paper

More information

Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one

Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one quadratic Using equation of a circle and finding points

More information