CVEN Computer Applications in Engineering and Construction. Programming Assignment #2 Random Number Generation and Particle Diffusion

Size: px
Start display at page:

Download "CVEN Computer Applications in Engineering and Construction. Programming Assignment #2 Random Number Generation and Particle Diffusion"

Transcription

1 CVE 0-50 Computer Applications in Engineering and Construction Programming Assignment # Random umber Generation and Particle Diffusion Date distributed: 0/06/09 Date due: 0//09 by :59 pm (submit an electronic copy via turnitin.com) Submit your solution on turnitin.com by the due date and time shown above. Please show all your work and follow the rules outlined in the course syllabus. MATLAB has two built-in random number generators, rand and randn, which are frequently used in numerical simulations. rand generates uniformly distributed numbers (between 0 and ) while randn generates normally distributed numbers (mean = 0, standard deviation = ). We are going to test random number generator rand and apply it to solve a diffusion problem.. Random umber Generation and Diffusion Random number generation is an important task in many simulations which require input of random numbers. One of the most important methods relying on the use of random numbers in engineering and physics is called Monte-Carlo method. For certain studies when an exact result is infeasible or impossible to obtain, Monte-Carlo simulations may be performed with a large numbers of repeated computations to obtain statistical properties. It is frequently used in problems with significant uncertainty in inputs. One good example is random walk of molecules in a stagnant environment, also called molecular diffusion. It is useful in simulating the spreading of scalar substances (such as pollutant) in a zero-mean-current environment.. Assignment Use Uniformly Distributed Random umbers You will first need to use the MATLAB function rand to generate 0,000 random points in the (x, y), (x, y),, (x0000, y0000) format between x = [ ] and y = [ ]. Use rand to generate numbers between 0 and, and then rescale them to be between and. Use help rand to get information about this function and its implementation. After you successfully generated those 0,000 random points, plot them in a subplot (,,) in Figure () using red dots but no lines. The second step is to evenly divide the range of [ ] in x into 5 intervals so each interval is Use IF loops and FOR loops to count how many points you get in each interval. Plot the numbers of points versus their corresponding x locations (at the center of each interval) in a second subplot (,,) in Figure () using the bar command. The second subplot should plot 5 data points with values like this:

2 where i indicates the number of particles in the ith interval (If done correctly, i should be close to 400). Plot these 5 data points using the bar command. Use help bar for information about this command. Give appropriate labels and title to each subplot. The third step is to use the hist command to generate a histogram with 5 evenly spaced containers, and plot the result in a third subplot (,,) in Figure (). Use help hist for information about this command. Compare the distribution with what you got in step. Discuss whether the randomly generated numbers are evenly distributed and judge whether the random number generator rand generates randomly but uniformly distributed numbers. You may increase the total number of points (from example, from 0,000 to 00,000) before you make your conclusions. Organize your results using the memorandum template from the Assignments page of the course website. In the body of the memorandum, you should briefly describe the methods used to classify each point and include a copy of the final figure produced by your working computer code. You may also discuss any problems with your code and ideas you may have to fix them. Include a listing of your MATLAB program in an Appendix. Be sure to include descriptive text with the computer code or codes in the appendix. To help you get started, the following provides a skeleton for your completed program: PROGRAM random_walk.m This program generate random numbers and examine their distributions using MATLAB function rand. It then simulates random walk using the Monte-Carlo method. Define Variables: random_number -- generated random numbers x, y -- coordinates of random points ni -- number of intervals in x-direction xi -- x-coordinate of each interval threshold -- upper threshold of each interval ncount -- number of points in the interval corresponding to xi nstep -- total number of time steps in random walk step -- displacement for each step of random walk Your ame CVE 0-50, Spring 09

3 clear all; close all; n = 0000; (A) Use rand to generate uniformly distributed points: random_number = rand(n, ); x = random_number(:,)*-; y = random_number(:,)*-; Your results should look like Figure below: Figure. Random points generated using rand and their distribution

4 . Assignment - Random Walk and Particle Diffusion Based on the 0,000 points you generated using the rand function in Section, you may simulate the spread of oil spill based on the theory of random walk. You can consider each point as an oil particle. Assuming at each time step (e.g., with a unit of minutes) each particle can move a distance of 0. (with a unit of meters) in the positive or negative x direction randomly (but not in the y direction to make the problem easier), compute 00 time steps (i.e., 5 hours) and plot their locations and distributions in Figure () using red dots but no lines and discuss your observation. Use rand to generate a random number for each particle at each time step. Since the motion is random, each particle should be given an equal chance to move left or right. For example, you may move a particle to the right if the given random number is greater than 0.5 and vice versa. Make sure you cover enough range of such as [-8 8] in x in your plot since the points are diffusing over time. Similar to what you did in step in Section, evenly divide the range of [-8 8] in x into 40 intervals so each interval is 0.4. Use IF loops and FOR loops to count how many points you get in each interval. Plot numbers of points versus their corresponding x locations (at the center of each interval) in a second subplot in Figure (). Figure () therefore has two subplots - the first subplot should plot the 0,000 red dots, and the second subplot should plot 40 data points with values like this: where i indicates the number of particles in the ith interval. Plot these 40 data points using the bar command. Give appropriate labels and title to each subplot. MATLAB is a powerful tool for displaying results as both images and movies. After getting your program working successfully, you can plot the particle locations at every time step and use pause to pause a desired duration, such as 0.05 second, in between adjacent plots so you can see the particles in motion. The process discussed here is called diffusion. You may also assemble all image files together to produce a movie (avi) file and observe how particles spread during the 5-hour simulation period. Observe the distribution of the particles based on your Figure (). Is it related to the central limit theorem? Calculate and record the mean ( x ) and standard deviation (σ ) of x for the 0,000 particles at each time step (you may use MATLAB functions mean and std). Is x close to zero at all time? To answer the question, you may plot t versus x but do not include the plot in your memo. 4

5 d Diffusion theory states that the diffusion coefficient (E) can be expressed as ( E = dt σ ). Plot t versus σ as your Figure () and check if E is approximately constant (i.e., if the t versus σ line is straight?). If it is, estimate the value of E using second and centimeter as the units of t and σ, respectively. Make sure you include the units when reporting the E value. 5

Lecture VII : Random systems and random walk

Lecture VII : Random systems and random walk Lecture VII : Random systems and random walk I. RANDOM PROCESSES In nature, no processes are truly deterministic. However, while dealing with many physical processes such as calculating trajectories of

More information

Bootstrapping Methods

Bootstrapping Methods Bootstrapping Methods example of a Monte Carlo method these are one Monte Carlo statistical method some Bayesian statistical methods are Monte Carlo we can also simulate models using Monte Carlo methods

More information

% Close all figure windows % Start figure window

% Close all figure windows % Start figure window CS1112 Fall 2016 Project 3 Part A Due Monday 10/3 at 11pm You must work either on your own or with one partner. If you work with a partner, you must first register as a group in CMS and then submit your

More information

GenStat for Schools. Disappearing Rock Wren in Fiordland

GenStat for Schools. Disappearing Rock Wren in Fiordland GenStat for Schools Disappearing Rock Wren in Fiordland A possible decrease in number of Rock Wren in the Fiordland area of New Zealand between 1985 and 2005 was investigated. Numbers were recorded in

More information

Random Numbers Random Walk

Random Numbers Random Walk Random Numbers Random Walk Computational Physics Random Numbers Random Walk Outline Random Systems Random Numbers Monte Carlo Integration Example Random Walk Exercise 7 Introduction Random Systems Deterministic

More information

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara Monte Carlo Simula/on and Copula Func/on by Gerardo Ferrara Introduc)on A Monte Carlo method is a computational algorithm that relies on repeated random sampling to compute its results. In a nutshell,

More information

Figure 1. Figure 2. The BOOTSTRAP

Figure 1. Figure 2. The BOOTSTRAP The BOOTSTRAP Normal Errors The definition of error of a fitted variable from the variance-covariance method relies on one assumption- that the source of the error is such that the noise measured has a

More information

Here is the probability distribution of the errors (i.e. the magnitude of the errorbars):

Here is the probability distribution of the errors (i.e. the magnitude of the errorbars): The BOOTSTRAP Normal Errors The definition of error of a fitted variable from the variance-covariance method relies on one assumption- that the source of the error is such that the noise measured has a

More information

MATLAB Modul 4. Introduction

MATLAB Modul 4. Introduction MATLAB Modul 4 Introduction to Computational Science: Modeling and Simulation for the Sciences, 2 nd Edition Angela B. Shiflet and George W. Shiflet Wofford College 2014 by Princeton University Press Introduction

More information

Post Processing, Visualization, and Sample Output

Post Processing, Visualization, and Sample Output Chapter 7 Post Processing, Visualization, and Sample Output Upon successful execution of an ADCIRC run, a number of output files will be created. Specifically which files are created depends upon how the

More information

From Motion diagrams to Position and Velocity Graphs

From Motion diagrams to Position and Velocity Graphs From Motion diagrams to Position and Velocity Graphs Name: Group Members: Date: TA s Name: Apparatus: Aluminum track and a support, cart, plastic ruler, tape timer, and pencil Objectives: 1) To be familiar

More information

10.1 Probability Distributions

10.1 Probability Distributions >> Lectures >> Matlab 10 Navigator 10.1 Probability Distributions This section discusses two basic probability density functions and probability distributions: uniform and normal, Gaussian mixture models,

More information

Visual Physics Camera Parallax Lab 1

Visual Physics Camera Parallax Lab 1 In this experiment you will be learning how to locate the camera properly in order to identify and minimize the sources of error that are introduced by parallax and perspective. These sources of error

More information

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014 Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHY 431/7305 Sep. 3, 014 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain

More information

CDA6530: Performance Models of Computers and Networks. Chapter 8: Statistical Simulation --- Discrete-Time Simulation

CDA6530: Performance Models of Computers and Networks. Chapter 8: Statistical Simulation --- Discrete-Time Simulation CDA6530: Performance Models of Computers and Networks Chapter 8: Statistical Simulation --- Discrete-Time Simulation Simulation Studies Models with analytical formulas Calculate the numerical solutions

More information

Introduction to R Programming

Introduction to R Programming Course Overview Over the past few years, R has been steadily gaining popularity with business analysts, statisticians and data scientists as a tool of choice for conducting statistical analysis of data

More information

Exercise: Graphing and Least Squares Fitting in Quattro Pro

Exercise: Graphing and Least Squares Fitting in Quattro Pro Chapter 5 Exercise: Graphing and Least Squares Fitting in Quattro Pro 5.1 Purpose The purpose of this experiment is to become familiar with using Quattro Pro to produce graphs and analyze graphical data.

More information

Computational Study of Protein Diffusion in a Membrane. By Kate Schneider Advisor Dr. Ken Ritchie

Computational Study of Protein Diffusion in a Membrane. By Kate Schneider Advisor Dr. Ken Ritchie Computational Study of Protein Diffusion in a Membrane By Kate Schneider Advisor Dr. Ken Ritchie 1 Cell RBC Membrane Red blood cell membrane. Embedded Proteins Membrane protects the cell. Lipids have two

More information

CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking

CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking DUE Tues, November 25-11:55pm Here you are going to experiment with a particle filter tracker such as was described in class. Recall that

More information

Chapter 5snow year.notebook March 15, 2018

Chapter 5snow year.notebook March 15, 2018 Chapter 5: Statistical Reasoning Section 5.1 Exploring Data Measures of central tendency (Mean, Median and Mode) attempt to describe a set of data by identifying the central position within a set of data

More information

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order.

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order. Chapter 2 2.1 Descriptive Statistics A stem-and-leaf graph, also called a stemplot, allows for a nice overview of quantitative data without losing information on individual observations. It can be a good

More information

E7 University of California, Berkeley Fall Midterm Exam 11/09/2016. Version:

E7 University of California, Berkeley Fall Midterm Exam 11/09/2016. Version: Name: Student ID: Midterm Exam /09/206 Version: 777722 UC Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. On my honor, I have neither

More information

ENGR Fall Exam 1

ENGR Fall Exam 1 ENGR 1300 Fall 01 Exam 1 INSTRUCTIONS: Duration: 60 minutes Keep your eyes on your own work! Keep your work covered at all times! 1. Each student is responsible for following directions. Read carefully..

More information

Introduction to Digital Image Processing

Introduction to Digital Image Processing Introduction to Digital Image Processing Ranga Rodrigo June 9, 29 Outline Contents Introduction 2 Point Operations 2 Histogram Processing 5 Introduction We can process images either in spatial domain or

More information

Modeling with Uncertainty Interval Computations Using Fuzzy Sets

Modeling with Uncertainty Interval Computations Using Fuzzy Sets Modeling with Uncertainty Interval Computations Using Fuzzy Sets J. Honda, R. Tankelevich Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO, U.S.A. Abstract A new method

More information

Integration. Volume Estimation

Integration. Volume Estimation Monte Carlo Integration Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes

More information

9.8 Rockin the Residuals

9.8 Rockin the Residuals 42 SECONDARY MATH 1 // MODULE 9 9.8 Rockin the Residuals A Solidify Understanding Task The correlation coefficient is not the only tool that statisticians use to analyze whether or not a line is a good

More information

Python Based Kinetic Monte Carlo Simulation Tool Zaiwei Zhang, R. Edwin García

Python Based Kinetic Monte Carlo Simulation Tool Zaiwei Zhang, R. Edwin García Python Based Kinetic Monte Carlo Simulation Tool Zaiwei Zhang, R. Edwin García Nowadays, scholars are working on nanoscale more and more frequently. At that scale, descriptions could be hard to made since

More information

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable.

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable. 5-number summary 68-95-99.7 Rule Area principle Bar chart Bimodal Boxplot Case Categorical data Categorical variable Center Changing center and spread Conditional distribution Context Contingency table

More information

Lecture 1: Exploratory data analysis

Lecture 1: Exploratory data analysis Lecture 1: Exploratory data analysis Statistics 101 Mine Çetinkaya-Rundel January 17, 2012 Announcements Announcements Any questions about the syllabus? If you sent me your gmail address your RStudio account

More information

EQUIPOTENTIALS Objective Equipment Procedure Two Point Charges Record the position and shape of the probe on a second graph paper

EQUIPOTENTIALS Objective Equipment Procedure Two Point Charges Record the position and shape of the probe on a second graph paper EQUIPOTENTIALS Objective Equipotential contours for three geometries will be investigated to explore the relationship between potentials and electrical field lines. Equipment 4 graph papers (included in

More information

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

I211: Information infrastructure II

I211: Information infrastructure II Data Mining: Classifier Evaluation I211: Information infrastructure II 3-nearest neighbor labeled data find class labels for the 4 data points 1 0 0 6 0 0 0 5 17 1.7 1 1 4 1 7.1 1 1 1 0.4 1 2 1 3.0 0 0.1

More information

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal

More information

This module aims to introduce Precalculus high school students to the basic capabilities of Matlab by using functions. Matlab will be used in

This module aims to introduce Precalculus high school students to the basic capabilities of Matlab by using functions. Matlab will be used in This module aims to introduce Precalculus high school students to the basic capabilities of Matlab by using functions. Matlab will be used in subsequent modules to help to teach research related concepts

More information

PA Core Standards For Mathematics Curriculum Framework Grade Level 2

PA Core Standards For Mathematics Curriculum Framework Grade Level 2 OCT 016 PA Core Standards For Mathematics Grade Level How is mathematics used to quantify, Place Value Understand that the three digits CC..1..B.1 among numbers can be compare, represent, and model of

More information

Getting started with MATLAB

Getting started with MATLAB Getting started with MATLAB You can work through this tutorial in the computer classes over the first 2 weeks, or in your own time. The Farber and Goldfarb computer classrooms have working Matlab, but

More information

A validation of the biexponential model in diffusion MRI signal attenuation using diffusion Monte Carlo simulator

A validation of the biexponential model in diffusion MRI signal attenuation using diffusion Monte Carlo simulator A validation of the biexponential model in diffusion MRI signal attenuation using diffusion Monte Carlo simulator Poster No.: C-0331 Congress: ECR 2014 Type: Scientific Exhibit Authors: D. Nishigake, S.

More information

Data Mining: Classifier Evaluation. CSCI-B490 Seminar in Computer Science (Data Mining)

Data Mining: Classifier Evaluation. CSCI-B490 Seminar in Computer Science (Data Mining) Data Mining: Classifier Evaluation CSCI-B490 Seminar in Computer Science (Data Mining) Predictor Evaluation 1. Question: how good is our algorithm? how will we estimate its performance? 2. Question: what

More information

MIPE: Model Informing Probability of Eradication of non-indigenous aquatic species. User Manual. Version 2.4

MIPE: Model Informing Probability of Eradication of non-indigenous aquatic species. User Manual. Version 2.4 MIPE: Model Informing Probability of Eradication of non-indigenous aquatic species User Manual Version 2.4 March 2014 1 Table of content Introduction 3 Installation 3 Using MIPE 3 Case study data 3 Input

More information

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions Extensions of Semidefinite Coordinate Direction Algorithm for Detecting Necessary Constraints to Unbounded Regions Susan Perrone Department of Mathematics and Statistics Northern Arizona University, Flagstaff,

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( )

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( ) Using LoggerPro Nothing is more terrible than to see ignorance in action. J. W. Goethe (1749-1832) LoggerPro is a general-purpose program for acquiring, graphing and analyzing data. It can accept input

More information

Probabilistic Analysis Tutorial

Probabilistic Analysis Tutorial Probabilistic Analysis Tutorial 2-1 Probabilistic Analysis Tutorial This tutorial will familiarize the user with the Probabilistic Analysis features of Swedge. In a Probabilistic Analysis, you can define

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 2 December 8, 2014 Outline 1 Random Number Generation 2 Uniform Random Variables 3 Normal Random Variables 4 Correlated Random Variables Random Number Generation Monte Carlo

More information

appstats6.notebook September 27, 2016

appstats6.notebook September 27, 2016 Chapter 6 The Standard Deviation as a Ruler and the Normal Model Objectives: 1.Students will calculate and interpret z scores. 2.Students will compare/contrast values from different distributions using

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Statistical Methods - Karsten Heeger heeger@wisc.edu Course Schedule and Reading course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

One category of visual tracking. Computer Science SURJ. Michael Fischer

One category of visual tracking. Computer Science SURJ. Michael Fischer Computer Science Visual tracking is used in a wide range of applications such as robotics, industrial auto-control systems, traffic monitoring, and manufacturing. This paper describes a new algorithm for

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

Introduction to Matlab

Introduction to Matlab NDSU Introduction to Matlab pg 1 Becoming familiar with MATLAB The console The editor The graphics windows The help menu Saving your data (diary) Solving N equations with N unknowns Least Squares Curve

More information

Modeling RNA/DNA with Matlab - Chemistry Summer 2007

Modeling RNA/DNA with Matlab - Chemistry Summer 2007 Modeling RNA/DNA with Matlab - Chemistry 694 - Summer 2007 If you haven t already, download MatlabPrograms.zip from the course Blackboard site and extract all the files into a folder on your disk. Be careful

More information

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals.

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. In this Computer Class we are going to use Statgraphics

More information

STAT 391 Handout 1 Making Plots with Matlab Mar 26, 2006

STAT 391 Handout 1 Making Plots with Matlab Mar 26, 2006 STAT 39 Handout Making Plots with Matlab Mar 26, 26 c Marina Meilă & Lei Xu mmp@cs.washington.edu This is intended to help you mainly with the graphics in the homework. Matlab is a matrix oriented mathematics

More information

Computational modeling

Computational modeling Computational modeling Lecture 5 : Monte Carlo Integration Physics: Integration The Monte Carlo method Programming: Subroutine Differences Subroutine/Function The Fortran random number subroutine Monte

More information

HOW TO PROVE AND ASSESS CONFORMITY OF GUM-SUPPORTING SOFTWARE PRODUCTS

HOW TO PROVE AND ASSESS CONFORMITY OF GUM-SUPPORTING SOFTWARE PRODUCTS XX IMEKO World Congress Metrology for Green Growth September 9-14, 2012, Busan, Republic of Korea HOW TO PROVE AND ASSESS CONFORMITY OF GUM-SUPPORTING SOFTWARE PRODUCTS N. Greif, H. Schrepf Physikalisch-Technische

More information

CHAPTER 6. The Normal Probability Distribution

CHAPTER 6. The Normal Probability Distribution The Normal Probability Distribution CHAPTER 6 The normal probability distribution is the most widely used distribution in statistics as many statistical procedures are built around it. The central limit

More information

Estimating the distribution of RCS using sparse measured samples

Estimating the distribution of RCS using sparse measured samples Estimating the distribution of RCS using sparse measured samples Minna Väilä, Juha Jylhä, Marja Ruotsalainen, and Henna Perälä Laboratory of Signal Processing Tampere University of Technology Tampere,

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Nature Methods: doi: /nmeth Supplementary Figure 1

Nature Methods: doi: /nmeth Supplementary Figure 1 Supplementary Figure 1 autopack packs arbitrary shapes into arbitrarily shaped volumes with no overlaps by default. (a) A recipe consisting of three sizes of the Stanford Bunny geometry (a canonical 3D

More information

Monte-Carlo modeling used to simulate propagation of photons in a medium

Monte-Carlo modeling used to simulate propagation of photons in a medium Monte-Carlo modeling used to simulate propagation of photons in a medium Nils Haëntjens Ocean Optics Class 2017 based on lectures from Emmanuel Boss and Edouard Leymarie What is Monte Carlo Modeling? Monte

More information

Ms Nurazrin Jupri. Frequency Distributions

Ms Nurazrin Jupri. Frequency Distributions Frequency Distributions Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data so that it is possible to get a general overview of the results.

More information

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc.

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C is one of many capability metrics that are available. When capability metrics are used, organizations typically provide

More information

RSM Split-Plot Designs & Diagnostics Solve Real-World Problems

RSM Split-Plot Designs & Diagnostics Solve Real-World Problems RSM Split-Plot Designs & Diagnostics Solve Real-World Problems Shari Kraber Pat Whitcomb Martin Bezener Stat-Ease, Inc. Stat-Ease, Inc. Stat-Ease, Inc. 221 E. Hennepin Ave. 221 E. Hennepin Ave. 221 E.

More information

IPhone App for. Numerical Prediction of Oil Slick Movement in Arabian Gulf and Kuwait Waters For IPhone Mobile. KOil Apps

IPhone App for. Numerical Prediction of Oil Slick Movement in Arabian Gulf and Kuwait Waters For IPhone Mobile. KOil Apps IPhone App for Numerical Prediction of Oil Slick Movement in Arabian Gulf and Kuwait Waters For IPhone Mobile KOil Apps Developed By Khaled AL-Salem 2011 www.hceatkuwait.net Kuwait, Tell:+965 99016700,

More information

Stochastic Simulations. Outline. Homework III. Six degrees of Kevin Bacon. Announcements:

Stochastic Simulations. Outline. Homework III. Six degrees of Kevin Bacon. Announcements: Stochastic Simulations Six degrees of Kevin Bacon Announcements: Outline Homework II: due Today. by 5, by e-mail Discuss on Friday. Homework III: on web Cookie Challenge Monte Carlo Simulations Random

More information

Quick Start Guide: Visit Templates

Quick Start Guide: Visit Templates Quick Start Guide: Visit Templates In this guide, you will learn how to successfully build outpatient and inpatient visit templates in the HCCRC Scheduler application by walking through the following content:

More information

v Prerequisite Tutorials Required Components Time

v Prerequisite Tutorials Required Components Time v. 10.0 GMS 10.0 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

Review Sheet Chapter 3

Review Sheet Chapter 3 Review Sheet Chapter 3 1. Find the value of the derivative (if it exists) of the function at the extremum point (0,0). A) 0 B) 1 C) -1 D) E) 2. Find the value of the derivative (if it exists) of the function

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

Introduction to Motion II

Introduction to Motion II Objectives Introduction to Motion II In this lab you will learn how to Equipment find the slope at any point along your position graph and to understand its physical meaning. fit your velocity data to

More information

5. Key ingredients for programming a random walk

5. Key ingredients for programming a random walk 1. Random Walk = Brownian Motion = Markov Chain (with caveat that each of these is a class of different models, not all of which are exactly equal) 2. A random walk is a specific kind of time series process

More information

Calibration of Nonlinear Viscoelastic Materials in Abaqus Using the Adaptive Quasi-Linear Viscoelastic Model

Calibration of Nonlinear Viscoelastic Materials in Abaqus Using the Adaptive Quasi-Linear Viscoelastic Model Calibration of Nonlinear Viscoelastic Materials in Abaqus Using the Adaptive Quasi-Linear Viscoelastic Model David B. Smith *, Uday Komaragiri **, and Romil Tanov ** ** * Ethicon Endo-Surgery, Inc., Cincinnati,

More information

13. Polyhedral Convex Cones

13. Polyhedral Convex Cones 13. Polyhedral Convex Cones Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 13. Mechanics of Manipulation p.1 Lecture 13. Cones. Chapter

More information

ENSC 805. Spring Assignment 1 Solution.

ENSC 805. Spring Assignment 1 Solution. ENSC 805 Spring 2016 Assignment 1 Solution Question 1. Go to the link below to install Matlab on your personal computer. https://www.sfu.ca/itservices/technical/software/matlab/nameduserlicense.html Question

More information

Automatic Partiicle Tracking Software USE ER MANUAL Update: May 2015

Automatic Partiicle Tracking Software USE ER MANUAL Update: May 2015 Automatic Particle Tracking Software USER MANUAL Update: May 2015 File Menu The micrograph below shows the panel displayed when a movie is opened, including a playback menu where most of the parameters

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

10.2 Diffusion and Cellular Automata

10.2 Diffusion and Cellular Automata 10.2 Diffusion and Cellular Automata Simulating Motion: Cellular Automata If all we have to work with is a grid of cells (spreadsheet), how can we simulate a random walk? Moving a value from one cell to

More information

Math INTRODUCTION TO MATLAB L. J. Gross - August 1995

Math INTRODUCTION TO MATLAB L. J. Gross - August 1995 Math 151-2 INTRODUCTION TO MATLAB L. J. Gross - August 1995 This is a very basic introduction to the elements of MATLAB that will be used in the early part of this course. A much more complete description

More information

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea Bayesian Statistics Group 8th March 2000 Slice samplers (A very brief introduction) The basic idea lacements To sample from a distribution, simply sample uniformly from the region under the density function

More information

Assignment 6: Matlab Practice and Plots

Assignment 6: Matlab Practice and Plots CEE 3804: Computer Applications in Civil Engineering Spring 2012 Solution Set Problem 1 Assignment 6: Matlab Practice and Plots Instructor: Trani A civil engineer sends you a comma separated data file

More information

Decision Support Risk handout. Simulating Spreadsheet models

Decision Support Risk handout. Simulating Spreadsheet models Decision Support Models @ Risk handout Simulating Spreadsheet models using @RISK 1. Step 1 1.1. Open Excel and @RISK enabling any macros if prompted 1.2. There are four on line help options available.

More information

Dr Richard Greenaway

Dr Richard Greenaway SCHOOL OF PHYSICS, ASTRONOMY & MATHEMATICS 4PAM1008 MATLAB 4 Visualising Data Dr Richard Greenaway 4 Visualising Data 4.1 Simple Data Plotting You should now be familiar with the plot function which is

More information

Physics 1020 Experiment 3. Acceleration of Falling Objects

Physics 1020 Experiment 3. Acceleration of Falling Objects 1 2 Part I: Introduction In this experiment you will study the motion of a falling ball which experiences constant acceleration. You will use a Motion Detector to measure the position of the ball as a

More information

No more questions will be added

No more questions will be added CSC 2545, Spring 2017 Kernel Methods and Support Vector Machines Assignment 2 Due at the start of class, at 2:10pm, Thurs March 23. No late assignments will be accepted. The material you hand in should

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

Introduction to Matlab

Introduction to Matlab What is Matlab? Introduction to Matlab Matlab is software written by a company called The Mathworks (mathworks.com), and was first created in 1984 to be a nice front end to the numerical routines created

More information

Robotics. Chapter 25-b. Chapter 25-b 1

Robotics. Chapter 25-b. Chapter 25-b 1 Robotics Chapter 25-b Chapter 25-b 1 Particle Filtering Particle filtering uses a population of particles (each particle is a state estimate) to localize a robot s position. This is called Monte Carlo

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd.

A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd. A Method for Estimating Criticality Lower Limit Multiplication Factor Yoshitaka NAITO NAIS Co., Ltd. Progress Grade up of computer performance Sub-criticality becomes to be decided using computed results

More information

Introduction to Motion

Introduction to Motion Date Partners Objectives: Introduction to Motion To investigate how motion appears on a position versus time graph To investigate how motion appears on a velocity versus time graph and the relationship

More information

Logger Pro Resource Sheet

Logger Pro Resource Sheet Logger Pro Resource Sheet Entering and Editing Data Data Collection How to Begin How to Store Multiple Runs Data Analysis How to Scale a Graph How to Determine the X- and Y- Data Points on a Graph How

More information

Advanced Programming in Engineering Saurabh Srivastava, Thomas Weinhart Martin Robinson, and Stefan Luding MSM, CTW, UTwente, NL

Advanced Programming in Engineering Saurabh Srivastava, Thomas Weinhart Martin Robinson, and Stefan Luding MSM, CTW, UTwente, NL Advanced Programming in Engineering 2011-19115850 Saurabh Srivastava, Thomas Weinhart Martin Robinson, and Stefan Luding MSM, CTW, UTwente, NL Contents Why is this class important for me? What will I learn

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

MatLab Programming Lesson 4: Mini-projects

MatLab Programming Lesson 4: Mini-projects MatLab Programming Lesson 4: Mini-projects ) Log into your computer and open MatLab 2) If you don t have the previous M-scripts saved, you can find them at http://www.physics.arizona.edu/~physreu/dox/matlab_lesson_.pdf,

More information

Random Walks. Dieter W. Heermann. Monte Carlo Methods. Dieter W. Heermann (Monte Carlo Methods) Random Walks / 22

Random Walks. Dieter W. Heermann. Monte Carlo Methods. Dieter W. Heermann (Monte Carlo Methods) Random Walks / 22 Random Walks Dieter W. Heermann Monte Carlo Methods 2009 Dieter W. Heermann (Monte Carlo Methods) Random Walks 2009 1 / 22 Outline 1 Introduction 2 Random Walk 3 Self-Avoiding Random Walks Simple Sampling

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

EE368/CS232 Digital Image Processing Winter

EE368/CS232 Digital Image Processing Winter EE368/CS232 Digital Image Processing Winter 207-208 Lecture Review and Quizzes (Due: Wednesday, February 28, :30pm) Please review what you have learned in class and then complete the online quiz questions

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Part 1: Planar Analysis A Deterministic Analysis This exercise will demonstrate the basics of a deterministic limit equilibrium planar analysis

More information

A study of simulated normal probability functions using Microsoft Excel

A study of simulated normal probability functions using Microsoft Excel Accred Qual Assur (2016) 21:271 276 DOI 10.1007/s00769-016-1200-5 GENERAL PAPER A study of simulated normal probability functions using Microsoft Excel Anders Kallner 1 Received: 6 October 2015 / Accepted:

More information