Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara

Size: px
Start display at page:

Download "Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara"

Transcription

1 Monte Carlo Simula/on and Copula Func/on by Gerardo Ferrara

2 Introduc)on A Monte Carlo method is a computational algorithm that relies on repeated random sampling to compute its results. In a nutshell, instead of performing long complex calculations, we perform a large number of experiments using a quasi random number generation and see what happens. Monte Carlo methods tend to be used when it is infeasible or impossible to compute an exact result with a deterministic algorithm.

3 Background/History Monte Carlo from the gambling town of the same name (no surprise). First applied in 1947 to model diffusion of neutrons through fissile materials. Limited use because time consuming. Much more common since late 80.

4 The steps in Monte Carlo simulation corresponding to the uncertainty propagation are relatively simple: Step 1: Create a parametric model, y = f(x1, x2,..., xq). Step 2: Generate a set of random inputs, xi1, xi2,..., xiq. Step 3: Evaluate the model and store the results as yi. Step 4: Repeat steps 2 and 3 for i = 1 to n. Step 5: Analyze the results using histograms, summary statistics, confidence intervals, etc.

5 EXAMPLE Area of a figure Cover the figure by a grid, calculate the number of grid cells which are inside and this gives you the area. Shoot at random at the figure. Count the bullets that hit it. The area of then figure is S=(Nhit/Ntotal)*S(rectangle)

6 Monte Carlo Methods A Monte Carlo simulation creates samples from a known distribution. For example, if you know that a coin is weighted so that heads will occur 90% of the time, then you might assign the following values: X 0 1 f X (x)

7 Monte Carlo Methods (cont.) If you tossed the coin, the expected value would be 0.9 However, a sample simulation might yield the results 1, 1, 1, 0, 1, 1, 0, 1, 0, 1. The average of the sample is 0.7 (close, but not the same as the expected average).

8 Value at Risk (VaR) We are X percent certain that we will not lose more than V dollars in time T. Function of confidence level X and time T.

9 Pseudo Random Number Generators Monte Carlo simulations are based on computer generation of pseudo random numbers. Starting point is generation of sequence of independent, identically distributed uniform (U(0,1)) random variables: U(0,1) random numbers of direct interest in some applications; More commonly, U(0,1) numbers transformed to random numbers having other distributions. 9

10 Example Use of Simulation: Monte Carlo Integration Common problem is estimation of ( x ) dx where f is a Ω function, x is vector and Ω is domain of integration Monte Carlo integration popular for complex f and/or Ω. b Special case: Estimate f ( x ) dx for scalar x, and limits of a integration a, b. One approach: f Let p(u) denote uniform density function over [a, b] Let U i denote i th uniform random variable generated by Monte Carlo according to the density p(u) Then, for large n: b a b a f ( x) dx f ( U ) n n i= 1 i 10

11 Numerical Example of Monte Carlo Integration b Suppose interested in sin( xdx ) 0 Simple problem with known solution. Considerable variability in quality of solution for varying b Accuracy of numerical integration sensitive to integrand and domain of integration. Integral estimates for varying n n = 20 n = 200 n = 2000 b = π (ans.=2) b = 2π (ans.=0)

12 Homework Exercise 1 This problem uses the Monte Carlo integration technique to estimate for varying a, b, and n. Specifically: b a 2x 2 + 3x 1dx (a) To at least 3 post-decimal digits of accuracy, what is the true integral value when a = 0, b = 1? And for a = 0, b = 4? (b) Using n = 20, 200, and 2000, estimate (via Monte Carlo) the integral for the two combinations of a and b in part (a). (c) Comment on the relative accuracy of the two settings. 12

13 Copulas Suppose you want to generate samples from some distribution with probability density f(x). All you need is a source of uniform random variables, because you can transform these random variables to have the distribution that you want (Sklar s Theorem).

14 General algorithm Generate (w1,w2) from a Multivariate Normal. Get u = F(w1), v = F(w2) where F(x) is normal cumulative distribution function (CDF). Generate x = G -1 (u), y = G -1 (v) where G -1 is empirical CDF from data. The distribution multivariate normal distribution is important; this is what controls dependence at the uniform density stage.

15 What is an empirical CDF? Given a vector S t of observations (then you can use the ecdf function in R). The methodology assigns a 1/n probability to each observation, orders the data from smallest to largest in value, and calculates the sum of the assigned probabilities up to and including each observation. The result is a step function that increases by at each datum. p = G(z) = fraction(s t z) G -1 (p) = quantile(s t, p)

SIMULATION AND MONTE CARLO

SIMULATION AND MONTE CARLO JHU course no. 550.790, Modeling, Simulation, and Monte Carlo SIMULATION AND MONTE CARLO Some General Principles James C. Spall Johns Hopkins University Applied Physics Laboratory September 2004 Overview

More information

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

APPENDIX K MONTE CARLO SIMULATION

APPENDIX K MONTE CARLO SIMULATION APPENDIX K MONTE CARLO SIMULATION K-1. Introduction. Monte Carlo simulation is a method of reliability analysis that should be used only when the system to be analyzed becomes too complex for use of simpler

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 13 Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright

More information

Random Numbers and Monte Carlo Methods

Random Numbers and Monte Carlo Methods Random Numbers and Monte Carlo Methods Methods which make use of random numbers are often called Monte Carlo Methods after the Monte Carlo Casino in Monaco which has long been famous for games of chance.

More information

Computational Methods for Finding Probabilities of Intervals

Computational Methods for Finding Probabilities of Intervals Computational Methods for Finding Probabilities of Intervals Often the standard normal density function is denoted ϕ(z) = (2π) 1/2 exp( z 2 /2) and its CDF by Φ(z). Because Φ cannot be expressed in closed

More information

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c Stat Solutions for Homework Set Page 9 Exercise : Suppose that the joint p.d.f. of two random variables X and Y is as follows: { cx fx, y + y for y x, < x < otherwise. Determine a the value of the constant

More information

Lecture 8: Jointly distributed random variables

Lecture 8: Jointly distributed random variables Lecture : Jointly distributed random variables Random Vectors and Joint Probability Distributions Definition: Random Vector. An n-dimensional random vector, denoted as Z = (Z, Z,, Z n ), is a function

More information

Today s outline: pp

Today s outline: pp Chapter 3 sections We will SKIP a number of sections Random variables and discrete distributions Continuous distributions The cumulative distribution function Bivariate distributions Marginal distributions

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

Integration. Volume Estimation

Integration. Volume Estimation Monte Carlo Integration Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes

More information

Lecture 7: Monte Carlo Rendering. MC Advantages

Lecture 7: Monte Carlo Rendering. MC Advantages Lecture 7: Monte Carlo Rendering CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC Advantages Convergence rate of O( ) Simple Sampling Point evaluation Can use black boxes General

More information

Monte Carlo Methods; Combinatorial Search

Monte Carlo Methods; Combinatorial Search Monte Carlo Methods; Combinatorial Search Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 22, 2012 CPD (DEI / IST) Parallel and

More information

PHYSICS 115/242 Homework 5, Solutions X = and the mean and variance of X are N times the mean and variance of 12/N y, so

PHYSICS 115/242 Homework 5, Solutions X = and the mean and variance of X are N times the mean and variance of 12/N y, so PHYSICS 5/242 Homework 5, Solutions. Central limit theorem. (a) Let y i = x i /2. The distribution of y i is equal to for /2 y /2 and zero otherwise. Hence We consider µ y y i = /2 /2 σ 2 y y 2 i y i 2

More information

Monte Carlo methods for risk analysis

Monte Carlo methods for risk analysis Monte Carlo methods for risk analysis Eric Marsden Context Some problems cannot be expressed in analytical form Some problems are difficult to define in a deterministic

More information

Simulation: Solving Dynamic Models ABE 5646 Week 12, Spring 2009

Simulation: Solving Dynamic Models ABE 5646 Week 12, Spring 2009 Simulation: Solving Dynamic Models ABE 5646 Week 12, Spring 2009 Week Description Reading Material 12 Mar 23- Mar 27 Uncertainty and Sensitivity Analysis Two forms of crop models Random sampling for stochastic

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: April 11, 2011. Lecture 1: Introduction and Basic Terms Welcome to the course, time table, assessment, etc..

More information

STAT 725 Notes Monte Carlo Integration

STAT 725 Notes Monte Carlo Integration STAT 725 Notes Monte Carlo Integration Two major classes of numerical problems arise in statistical inference: optimization and integration. We have already spent some time discussing different optimization

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

A Random Number Based Method for Monte Carlo Integration

A Random Number Based Method for Monte Carlo Integration A Random Number Based Method for Monte Carlo Integration J Wang and G Harrell Department Math and CS, Valdosta State University, Valdosta, Georgia, USA Abstract - A new method is proposed for Monte Carlo

More information

Combinatorial Search; Monte Carlo Methods

Combinatorial Search; Monte Carlo Methods Combinatorial Search; Monte Carlo Methods Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May 02, 2016 CPD (DEI / IST) Parallel and Distributed

More information

CVEN Computer Applications in Engineering and Construction. Programming Assignment #2 Random Number Generation and Particle Diffusion

CVEN Computer Applications in Engineering and Construction. Programming Assignment #2 Random Number Generation and Particle Diffusion CVE 0-50 Computer Applications in Engineering and Construction Programming Assignment # Random umber Generation and Particle Diffusion Date distributed: 0/06/09 Date due: 0//09 by :59 pm (submit an electronic

More information

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation Unit 5 SIMULATION THEORY Lesson 39 Learning objective: To learn random number generation. Methods of simulation. Monte Carlo method of simulation You ve already read basics of simulation now I will be

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

Professor Stephen Sekula

Professor Stephen Sekula Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHYS 4321/7305 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain numerical

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis Soren Asmussen Peter W. Glynn Stochastic Simulation: Algorithms and Analysis et Springer Contents Preface Notation v xii I What This Book Is About 1 1 An Illustrative Example: The Single-Server Queue 1

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 2008 1 What is a Monte-Carlo

More information

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD Introduction to Computer Programming with MATLAB Calculation and Programming Errors Selis Önel, PhD Today you will learn Numbers, Significant figures Error analysis Absolute error Relative error Chopping

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

METROPOLIS MONTE CARLO SIMULATION

METROPOLIS MONTE CARLO SIMULATION POLYTECHNIC UNIVERSITY Department of Computer and Information Science METROPOLIS MONTE CARLO SIMULATION K. Ming Leung Abstract: The Metropolis method is another method of generating random deviates that

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014 Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHY 431/7305 Sep. 3, 014 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain

More information

Function f. Function f -1

Function f. Function f -1 Page 1 REVIEW (1.7) What is an inverse function? Do all functions have inverses? An inverse function, f -1, is a kind of undoing function. If the initial function, f, takes the element a to the element

More information

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea Bayesian Statistics Group 8th March 2000 Slice samplers (A very brief introduction) The basic idea lacements To sample from a distribution, simply sample uniformly from the region under the density function

More information

Monte Carlo Methods and Statistical Computing: My Personal E

Monte Carlo Methods and Statistical Computing: My Personal E Monte Carlo Methods and Statistical Computing: My Personal Experience Department of Mathematics & Statistics Indian Institute of Technology Kanpur November 29, 2014 Outline Preface 1 Preface 2 3 4 5 6

More information

Numerical Integration

Numerical Integration Lecture 12: Numerical Integration (with a focus on Monte Carlo integration) Computer Graphics CMU 15-462/15-662, Fall 2015 Review: fundamental theorem of calculus Z b f(x)dx = F (b) F (a) a f(x) = d dx

More information

Random Numbers Random Walk

Random Numbers Random Walk Random Numbers Random Walk Computational Physics Random Numbers Random Walk Outline Random Systems Random Numbers Monte Carlo Integration Example Random Walk Exercise 7 Introduction Random Systems Deterministic

More information

CS 563 Advanced Topics in Computer Graphics Monte Carlo Integration: Basic Concepts. by Emmanuel Agu

CS 563 Advanced Topics in Computer Graphics Monte Carlo Integration: Basic Concepts. by Emmanuel Agu CS 563 Advanced Topics in Computer Graphics Monte Carlo Integration: Basic Concepts by Emmanuel Agu Introduction The integral equations generally don t have analytic solutions, so we must turn to numerical

More information

Testing Random- Number Generators

Testing Random- Number Generators Testing Random- Number Generators Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 27-1 Overview

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

Monte Carlo integration

Monte Carlo integration Monte Carlo integration Introduction Monte Carlo integration is a quadrature (cubature) where the nodes are chosen randomly. Typically no assumptions are made about the smoothness of the integrand, not

More information

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16.

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16. Scientific Computing with Case Studies SIAM Press, 29 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 28 What is a Monte-Carlo method?

More information

Chapter 2 Random Number Generators

Chapter 2 Random Number Generators Chapter 2 Random Number Generators Introduction For many past years, numerous applications of randomness have led to a wide variety of methods for generating random data of various type, like rolling dice,

More information

Lab 5 Monte Carlo integration

Lab 5 Monte Carlo integration Lab 5 Monte Carlo integration Edvin Listo Zec 9065-976 edvinli@student.chalmers.se October 0, 014 Co-worker: Jessica Fredby Introduction In this computer assignment we will discuss a technique for solving

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Statistical Methods - Karsten Heeger heeger@wisc.edu Course Schedule and Reading course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

Probability Models.S4 Simulating Random Variables

Probability Models.S4 Simulating Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Probability Models.S4 Simulating Random Variables In the fashion of the last several sections, we will often create probability

More information

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07 ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.7 In this activity, you will explore techniques to estimate the "area" etween a continuous function

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD. Julius Goodman. Bechtel Power Corporation E. Imperial Hwy. Norwalk, CA 90650, U.S.A.

ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD. Julius Goodman. Bechtel Power Corporation E. Imperial Hwy. Norwalk, CA 90650, U.S.A. - 430 - ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD Julius Goodman Bechtel Power Corporation 12400 E. Imperial Hwy. Norwalk, CA 90650, U.S.A. ABSTRACT The accuracy of Monte Carlo method of simulating

More information

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung POLYTECHNIC UNIVERSITY Department of Computer and Information Science VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung Abstract: Techniques for reducing the variance in Monte Carlo

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

What is the Monte Carlo Method?

What is the Monte Carlo Method? Program What is the Monte Carlo Method? A bit of history Applications The core of Monte Carlo: Random realizations 1st example: Initial conditions for N-body simulations 2nd example: Simulating a proper

More information

Chapter 6: Simulation Using Spread-Sheets (Excel)

Chapter 6: Simulation Using Spread-Sheets (Excel) Chapter 6: Simulation Using Spread-Sheets (Excel) Refer to Reading Assignments 1 Simulation Using Spread-Sheets (Excel) OBJECTIVES To be able to Generate random numbers within a spreadsheet environment.

More information

Design of Experiments

Design of Experiments Seite 1 von 1 Design of Experiments Module Overview In this module, you learn how to create design matrices, screen factors, and perform regression analysis and Monte Carlo simulation using Mathcad. Objectives

More information

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple 1 In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple times) until they are absorbed. On their way, they

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

More information

Use of Extreme Value Statistics in Modeling Biometric Systems

Use of Extreme Value Statistics in Modeling Biometric Systems Use of Extreme Value Statistics in Modeling Biometric Systems Similarity Scores Two types of matching: Genuine sample Imposter sample Matching scores Enrolled sample 0.95 0.32 Probability Density Decision

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D In two dimensions we have previously used Riemann sums to approximate ( ) following steps: with the 1. Divide the region

More information

Intensity Transformations and Spatial Filtering

Intensity Transformations and Spatial Filtering 77 Chapter 3 Intensity Transformations and Spatial Filtering Spatial domain refers to the image plane itself, and image processing methods in this category are based on direct manipulation of pixels in

More information

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals.

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. In this Computer Class we are going to use Statgraphics

More information

Monte Carlo Methods. Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco.

Monte Carlo Methods. Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco. Monte Carlo Methods Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco. Used in numerous applications. Any method that uses random numbers to solve a problem

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

The Maximum Area of a Cyclic (n+2)-gon Theorem

The Maximum Area of a Cyclic (n+2)-gon Theorem The Maximum Area of a Cyclic (n+)-gon Theorem David Balmin San Diego, California, U.S.A. Abstract This paper offers the proof of the theorem about the maximum area of a cyclic polygon with one fixed side

More information

Laplace Transform of a Lognormal Random Variable

Laplace Transform of a Lognormal Random Variable Approximations of the Laplace Transform of a Lognormal Random Variable Joint work with Søren Asmussen & Jens Ledet Jensen The University of Queensland School of Mathematics and Physics August 1, 2011 Conference

More information

Computational modeling

Computational modeling Computational modeling Lecture 8 : Monte Carlo Instructor : Cedric Weber Course : 4CCP1000 Integrals, how to calculate areas? 2 Integrals, calculate areas There are different ways to calculate areas Integration

More information

Simulation. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Simulation. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Simulation Chapter 14 14-1 Chapter Topics The Monte Carlo Process Computer Simulation with Excel Spreadsheets Simulation of a Queuing System Continuous Probability Distributions Statistical Analysis of

More information

Exercises C-Programming

Exercises C-Programming Exercises C-Programming Claude Fuhrer (claude.fuhrer@bfh.ch) 0 November 016 Contents 1 Serie 1 1 Min function.................................. Triangle surface 1............................... 3 Triangle

More information

ISyE 6416: Computational Statistics Spring Lecture 13: Monte Carlo Methods

ISyE 6416: Computational Statistics Spring Lecture 13: Monte Carlo Methods ISyE 6416: Computational Statistics Spring 2017 Lecture 13: Monte Carlo Methods Prof. Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Determine area

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016 Variance Reduction Computer Graphics CMU 15-462/15-662, Fall 2016 Last time: Rendering Equation Recursive description of incident illumination Difficult to integrate; tour de force of numerical integration

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations DESCRIPTION AND APPLICATION Outline Introduction Description of Method Cost Estimating Example Other Considerations Introduction Most interesting things are probabilistic (opinion)

More information

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s.

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Using Monte Carlo to Estimate π using Buffon s Needle Problem An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Here s the problem (in a simplified form). Suppose

More information

Decision Support Risk handout. Simulating Spreadsheet models

Decision Support Risk handout. Simulating Spreadsheet models Decision Support Models @ Risk handout Simulating Spreadsheet models using @RISK 1. Step 1 1.1. Open Excel and @RISK enabling any macros if prompted 1.2. There are four on line help options available.

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Randomized algorithms have several advantages over deterministic ones. We discuss them here:

Randomized algorithms have several advantages over deterministic ones. We discuss them here: CS787: Advanced Algorithms Lecture 6: Randomized Algorithms In this lecture we introduce randomized algorithms. We will begin by motivating the use of randomized algorithms through a few examples. Then

More information

Methods of Technical Risk Assessment in a Regional Context

Methods of Technical Risk Assessment in a Regional Context Methods of Technical Risk Assessment in a Regional Context Wolfgang Kröger, Professor and Head of former Laboratory for Safety Analysis (www.lsa.ethz.ch) Founding Rector of International Risk Governance

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Table 3: Midpoint estimate

Table 3: Midpoint estimate The function y gx.x x 1 is shown in Figure 1. Six midpoint rectangles have been drawn between the function and the x-axis over,1 ; the areas of these six rectangles are shown in Table 1. Figure 1 Let s

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

Lecture 4. Digital Image Enhancement. 1. Principle of image enhancement 2. Spatial domain transformation. Histogram processing

Lecture 4. Digital Image Enhancement. 1. Principle of image enhancement 2. Spatial domain transformation. Histogram processing Lecture 4 Digital Image Enhancement 1. Principle of image enhancement 2. Spatial domain transformation Basic intensity it tranfomation ti Histogram processing Principle Objective of Enhancement Image enhancement

More information

HSC Mathematics - Extension 1. Workshop E2

HSC Mathematics - Extension 1. Workshop E2 HSC Mathematics - Extension Workshop E Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong Moss

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Last time Interpolatory Quadrature Review formulation; error analysis Newton-Cotes Quadrature Midpoint, Trapezoid, Simpson s Rule Error analysis for trapezoid, midpoint

More information

CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP

CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP =..;'r"-.:e=sain=::...:.:h=us""se,=in"--- ----'-'78~..:..:.Mo=n=te::...:::::Ca=r=10::...o..::.Par.ticle Transport with MCNP CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP t is important to keep in mind that

More information

CS 112: Computer System Modeling Fundamentals. Prof. Jenn Wortman Vaughan April 21, 2011 Lecture 8

CS 112: Computer System Modeling Fundamentals. Prof. Jenn Wortman Vaughan April 21, 2011 Lecture 8 CS 112: Computer System Modeling Fundamentals Prof. Jenn Wortman Vaughan April 21, 2011 Lecture 8 Quiz #2 Reminders & Announcements Homework 2 is due in class on Tuesday be sure to check the posted homework

More information

Uncertainty analysis in spatial environmental modelling. Kasia Sawicka Athens, 29 Mar 2017

Uncertainty analysis in spatial environmental modelling. Kasia Sawicka Athens, 29 Mar 2017 Uncertainty analysis in spatial environmental modelling Kasia Sawicka Athens, 29 Mar 2017 Uncertainty propagation overview Input ± U Model (± U) Output ± U Input data Model parameters Model structure Solution

More information

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal

More information

Measures of Central Tendency

Measures of Central Tendency Page of 6 Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean The sum of all data values divided by the number of

More information

Monte Carlo Method for Definite Integration

Monte Carlo Method for Definite Integration Monte Carlo Method for Definite Integration http://www.mathcs.emory.edu/ccs/ccs215/monte/node13.htm Numerical integration techniques, such as the Trapezoidal rule and Simpson's rule, are commonly utilized

More information

A study of simulated normal probability functions using Microsoft Excel

A study of simulated normal probability functions using Microsoft Excel Accred Qual Assur (2016) 21:271 276 DOI 10.1007/s00769-016-1200-5 GENERAL PAPER A study of simulated normal probability functions using Microsoft Excel Anders Kallner 1 Received: 6 October 2015 / Accepted:

More information

Package simed. November 27, 2017

Package simed. November 27, 2017 Version 1.0.3 Title Simulation Education Author Barry Lawson, Larry Leemis Package simed November 27, 2017 Maintainer Barry Lawson Imports graphics, grdevices, methods, stats, utils

More information

Process Capability Calculations with Extremely Non-Normal Data

Process Capability Calculations with Extremely Non-Normal Data Process Capability Calculations with Extremely Non-Normal Data copyright 2015 (all rights reserved), by: John N. Zorich Jr., MS, CQE Statistical Consultant & Trainer home office: Houston TX 408-203-8811

More information

CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3

CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3 CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3 What I have in mind for our last programming project is to do something with either graphical models or random sampling. A few ideas

More information