GAN and Feature Representation. Hung-yi Lee

Size: px
Start display at page:

Download "GAN and Feature Representation. Hung-yi Lee"

Transcription

1 GAN and Feature Representation Hung-yi Lee

2 Outline Generator (Decoder) Discrimi nator + Encoder GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar Encoder z (Decoder) nator BiGAN z x Decoder Encoder x z x z Discrimi nator scalar

3 GAN + Autoencoder

4 Photo Editing

5 Photo Editing z Generator (Decoder) x We can tune z to edit image x How to modify a specific attribute?

6 GAN+Autoencoder We have a generator (input z, output x) However, given x, how can we find z? Learn an encoder (input x, output z) as close as possible x different structures? Generator Encoder z x (Decoder) init fixed Discriminator Autoencoder

7 as close as possible x Generator Encoder z x (Decoder)

8 Attribute Representation CelebA z male = 1 N 1 x male En x 1 N 2 x male En x Female image x En x + z male = z Gen z male image

9 Find the Attributes z z male z male = 0.76

10 Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros. "Generative Visual Manipulation on the Natural Image Manifold", ECCV, 2016.

11 Basic Idea space of z

12 Back to z Method 1 z = arg min L G z, x T z Gradient Descent Method 2 z as close as possible x T Difference between G(z) and x T Pixel-wise By another network Method 3 x Generator Encoder z x (Decoder) Using the results from method 2 as the initialization of method 1

13 Back to z - Results

14 Editing Photos z 0 is the code of the input image image Using discriminator to check the image is realistic or not z = arg min z U G z + λ 1 z z 0 2 λ 2 D G z Not too far away from the original image Does it fulfill the constraint of editing?

15 Editing Photos - Results

16 Final System

17 Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston, Neural Photo Editing with Introspective Adversarial Networks, arxiv preprint, 2017

18 VAE-GAN Anders Boesen, Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther, Autoencoding beyond pixels using a learned similarity metric, ICML Minimize reconstruction error z close to normal Minimize reconstruction error Cheat discriminator Discriminate real, generated and reconstructed images x Encoder z Generator Discrimi (Decoder) x nator scalar as close as possible VAE Discriminator provides the similarity measure GAN

19 ǁ Algorithm Initialize En, De, Dis In each iteration: Sample M images x 1, x 2,, x M from database Generate M codes zǁ 1, zǁ 2,, zǁ M from encoder zǁ i = En x i Generate M images x 1, x 2,, x M from decoder x i = En z i Sample M codes z 1, z 2,, z M from prior P(z) Another kind of Generate M images x 1, x 2,, x M from decoder discriminator: x i = En z i real gen recon Update En to decrease x i x i, decrease KL(P( zǁ i x i ) P(z)) Discriminator Update De to decrease x i x i, increase Dis x i and Dis x i x Update Dis to increase Dis x i, decrease Dis x i and Dis x i

20 VAE+GAN - Sample blurry sharp sharp

21 VAE+GAN - Reconstruction GAN cannot do reconstruction

22 InfoGAN

23 What is InfoGAN? z = z c Generator (Decoder) x Discrimi nator scalar Auto-encoder Predict the code c that generates x Encoder c Parameter sharing (only the last layer is different)

24 Motivation Regular GAN z c Generator (Decoder) x Encoder c c must have clear influence on x, so the encoder can recover c from x c will be easy to interpret A specific dimension c i cannot cooperate with other feature dimensions to have influence.

25

26

27

28

29 BiGAN Jeff Donahue, Philipp Krähenbühl, Trevor Darrell, Adversarial Feature Learning, ICLR, 2017 Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, Aaron Courville, Adversarially Learned Inference, ICLR, 2017

30 BiGAN code z (from prior distribution) code z from encoder or decoder? Encoder Decoder Discriminator Image x (real) Image x (generated) Image x code z

31 Algorithm Initialize encoder En, decoder De, discriminator Dis In each iteration: Sample M images x 1, x 2,, x M from database Generate M codes zǁ 1, zǁ 2,, zǁ M from encoder zǁ i = En x i Sample M codes z 1, z 2,, z M from prior P(z) Generate M codes x 1, x 2,, x M from decoder x i = De z i Update Dis to increase Dis x i, zǁ i, decrease Dis x i, z i Update En and De to decrease Dis x i, ǁ z i, increase Dis x i, z i

32 code z (from prior distribution) code z from encoder or decoder? Encoder Decoder Discriminator Image x Image x (real) (generated) P x, z Q x, z To make P and Q the same Image x code z Evaluate the difference between P and Q Optimal encoder and decoder: En(x ) = z De(z ) = x De(z ) = x En(x ) = z For all x For all z

33 BiGAN Optimal encoder and decoder: En(x ) = z De(z ) = x De(z ) = x En(x ) = z For all x For all z How about? x zǁ Decoder z Encoder x En, De Encoder x Decoder z En, De

34

35

36 Concluding Remarks GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar Encoder z (Decoder) nator BiGAN z x Decoder Encoder x z x z Discrimi nator scalar

37 Next Time: Energy-based GAN

38 Original Idea Discriminator Data (target) distribution Generated distribution Discriminator leads the generator D x D x D x D x

39 Original Idea When the data distribution and generated distribution is the same. The output of discriminator will be flat everywhere. However, discriminator is often used in pre-training. It contains useful information. We always use the discriminator obtained in the last iteration as the initialization of the next step.

40 Energy-based Model We want to find an evaluation function F(x) Input: object x (e.g. images), output: scalar (how good x is) Real x has high F(x) F(x) can be a network We can find good x by F(x): Generate x with large F(x) x Evaluation Function scalar How to find F(x)? F(x) real data

41 Energybased GAN We want to find an evaluation function F(x) How to find F(x)? F x F x In the end F x F x

42 Energy-based Model Preview: Framework of structured learning (Energy-based Model) ML Lecture 21: Structured Learning - Introduction ML Lecture 22: Structured Learning - Linear Model ML Lecture 23: Structured Learning - Structured SVM ML Lecture 24: Structured Learning - Sequence Labeling Graphical model & Gibbs sampling _2/Lecture/MRF%20(v2).ecm.mp4/index.html

Adversarially Learned Inference

Adversarially Learned Inference Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro,

More information

Autoencoding Beyond Pixels Using a Learned Similarity Metric

Autoencoding Beyond Pixels Using a Learned Similarity Metric Autoencoding Beyond Pixels Using a Learned Similarity Metric International Conference on Machine Learning, 2016 Anders Boesen Lindbo Larsen, Hugo Larochelle, Søren Kaae Sønderby, Ole Winther Technical

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

Toward better reconstruction of style images with GANs

Toward better reconstruction of style images with GANs Toward better reconstruction of style images with GANs Alexander Lorbert, Nir Ben-Zvi, Arridhana Ciptadi, Eduard Oks, Ambrish Tyagi Amazon Lab126 [lorbert,nirbenz,ciptadia,oksed,ambrisht]@amazon.com ABSTRACT

More information

Introduction of Generative Adversarial Network (GAN) 李宏毅 Hung-yi Lee

Introduction of Generative Adversarial Network (GAN) 李宏毅 Hung-yi Lee Introduction of Generative Adversarial Network (GAN) 李宏毅 Hung-yi Lee Yann LeCun s comment https://www.quora.com/what-are-some-recent-andpotentially-upcoming-breakthroughs-in-unsupervised-learning Yann

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

arxiv: v1 [cs.lg] 22 Sep 2016

arxiv: v1 [cs.lg] 22 Sep 2016 NEURAL PHOTO EDITING WITH INTROSPECTIVE AD- VERSARIAL NETWORKS Andrew Brock, Theodore Lim,& J.M. Ritchie School of Engineering and Physical Sciences Heriot-Watt University Edinburgh, UK {ajb5, t.lim, j.m.ritchie}@hw.ac.uk

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

arxiv: v2 [cs.lg] 17 Dec 2018

arxiv: v2 [cs.lg] 17 Dec 2018 Lu Mi 1 * Macheng Shen 2 * Jingzhao Zhang 2 * 1 MIT CSAIL, 2 MIT LIDS {lumi, macshen, jzhzhang}@mit.edu The authors equally contributed to this work. This report was a part of the class project for 6.867

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

arxiv: v3 [cs.ne] 6 Dec 2016

arxiv: v3 [cs.ne] 6 Dec 2016 Sampling Generative Networks arxiv:1609.04468v3 [cs.ne] 6 Dec 2016 Tom White School of Design Victoria University of Wellington Wellington, New Zealand tom.white@vuw.ac.nz Abstract We introduce several

More information

Amortised MAP Inference for Image Super-resolution. Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017

Amortised MAP Inference for Image Super-resolution. Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017 Amortised MAP Inference for Image Super-resolution Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017 Super Resolution Inverse problem: Given low resolution representation

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

Dist-GAN: An Improved GAN using Distance Constraints

Dist-GAN: An Improved GAN using Distance Constraints Dist-GAN: An Improved GAN using Distance Constraints Ngoc-Trung Tran [0000 0002 1308 9142], Tuan-Anh Bui [0000 0003 4123 262], and Ngai-Man Cheung [0000 0003 0135 3791] ST Electronics - SUTD Cyber Security

More information

IVE-GAN: INVARIANT ENCODING GENERATIVE AD-

IVE-GAN: INVARIANT ENCODING GENERATIVE AD- IVE-GAN: INVARIANT ENCODING GENERATIVE AD- VERSARIAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT Generative adversarial networks (GANs) are a powerful framework for generative tasks.

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Deep Feature Interpolation for Image Content Changes

Deep Feature Interpolation for Image Content Changes Deep Feature Interpolation for Image Content Changes by P. Upchurch, J. Gardner, G. Pleiss, R. Pleiss, N. Snavely, K. Bala, K. Weinberger Presenter: Aliya Amirzhanova Master Scientific Computing, Heidelberg

More information

Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks

Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks Taeksoo Kim, Byoungjip Kim, Moonsu Cha, Jiwon Kim SK T-Brain {jazzsaxmafia,bjkim,ckanstnzja,jk}@sktbrain.com arxiv:1707.09798v1

More information

Ways of Conditioning Generative Adversarial Networks

Ways of Conditioning Generative Adversarial Networks Ways of Conditioning Generative Adversarial Networks Hanock Kwak and Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University Seoul 151-744, Korea {hnkwak, btzhang}@bi.snu.ac.kr

More information

Generating Images with Perceptual Similarity Metrics based on Deep Networks

Generating Images with Perceptual Similarity Metrics based on Deep Networks Generating Images with Perceptual Similarity Metrics based on Deep Networks Alexey Dosovitskiy and Thomas Brox University of Freiburg {dosovits, brox}@cs.uni-freiburg.de Abstract We propose a class of

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

arxiv: v2 [cs.lg] 7 Feb 2019

arxiv: v2 [cs.lg] 7 Feb 2019 Implicit Autoencoders Alireza Makhzani Vector Institute for Artificial Intelligence University of Toronto makhzani@vectorinstitute.ai arxiv:1805.09804v2 [cs.lg 7 Feb 2019 Abstract In this paper, we describe

More information

Multi-view Generative Adversarial Networks

Multi-view Generative Adversarial Networks Multi-view Generative Adversarial Networks Mickaël Chen and Ludovic Denoyer Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France mickael.chen@lip6.fr, ludovic.denoyer@lip6.fr

More information

Toward Multimodal Image-to-Image Translation

Toward Multimodal Image-to-Image Translation Toward Multimodal Image-to-Image Translation Jun-Yan Zhu UC Berkeley Richard Zhang UC Berkeley Deepak Pathak UC Berkeley Trevor Darrell UC Berkeley Alexei A. Efros UC Berkeley Oliver Wang Adobe Research

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

arxiv: v1 [cs.cv] 19 Apr 2017

arxiv: v1 [cs.cv] 19 Apr 2017 Generative Face Completion Yijun Li 1, Sifei Liu 1, Jimei Yang 2, and Ming-Hsuan Yang 1 1 University of California, Merced 2 Adobe Research {yli62,sliu32,mhyang}@ucmerced.edu jimyang@adobe.com arxiv:1704.05838v1

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

arxiv: v2 [cs.cv] 6 Dec 2017

arxiv: v2 [cs.cv] 6 Dec 2017 Arbitrary Facial Attribute Editing: Only Change What You Want arxiv:1711.10678v2 [cs.cv] 6 Dec 2017 Zhenliang He 1,2 Wangmeng Zuo 4 Meina Kan 1 Shiguang Shan 1,3 Xilin Chen 1 1 Key Lab of Intelligent Information

More information

arxiv: v1 [cs.cv] 4 Apr 2018

arxiv: v1 [cs.cv] 4 Apr 2018 arxiv:1804.01523v1 [cs.cv] 4 Apr 2018 Stochastic Adversarial Video Prediction Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine University of California, Berkeley

More information

Semantic Image Synthesis via Adversarial Learning

Semantic Image Synthesis via Adversarial Learning Semantic Image Synthesis via Adversarial Learning Hao Dong, Simiao Yu, Chao Wu, Yike Guo Imperial College London {hao.dong11, simiao.yu13, chao.wu, y.guo}@imperial.ac.uk Abstract In this paper, we propose

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Mode Regularized Generative Adversarial Networks

Mode Regularized Generative Adversarial Networks Mode Regularized Generative Adversarial Networks Tong Che 1 Yanran Li 2 Athul Paul Jacob 3 Yoshua Bengio 1 Wenjie Li 2 1 Montreal Institute for Learning Algorithms, Universite de Montreal, Montreal, Canada

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Generative Face Completion

Generative Face Completion Generative Face Completion Yijun Li 1, Sifei Liu 1, Jimei Yang 2, and Ming-Hsuan Yang 1 1 University of California, Merced 2 Adobe Research {yli62,sliu32,mhyang}@ucmerced.edu jimyang@adobe.com Abstract

More information

arxiv: v1 [cs.cv] 24 Apr 2018

arxiv: v1 [cs.cv] 24 Apr 2018 Mask-aware Photorealistic Face Attribute Manipulation Ruoqi Sun 1, Chen Huang 2, Jianping Shi 3, Lizhuang Ma 1 1 Shanghai Jiao Tong University 2 Carnegie Mellon University 3 Beijing Sensetime Tech. Dev.

More information

arxiv: v1 [cs.cv] 4 Nov 2018

arxiv: v1 [cs.cv] 4 Nov 2018 Improving GAN with neighbors embedding and gradient matching Ngoc-Trung Tran, Tuan-Anh Bui, Ngai-Man Cheung ST Electronics - SUTD Cyber Security Laboratory Singapore University of Technology and Design

More information

arxiv: v2 [cs.cv] 4 Jun 2017

arxiv: v2 [cs.cv] 4 Jun 2017 Generative Compression Shibani Santurkar David Budden Nir Shavit Massachusetts Institute of Technology {shibani,budden,shanir}@mit.edu arxiv:1703.01467v2 [cs.cv] 4 Jun 2017 Abstract Traditional image and

More information

Implicit generative models: dual vs. primal approaches

Implicit generative models: dual vs. primal approaches Implicit generative models: dual vs. primal approaches Ilya Tolstikhin MPI for Intelligent Systems ilya@tue.mpg.de Machine Learning Summer School 2017 Tübingen, Germany Contents 1. Unsupervised generative

More information

arxiv: v1 [cs.lg] 28 Feb 2017

arxiv: v1 [cs.lg] 28 Feb 2017 Shengjia Zhao 1 Jiaming Song 1 Stefano Ermon 1 arxiv:1702.08658v1 cs.lg] 28 Feb 2017 Abstract We propose a new family of optimization criteria for variational auto-encoding models, generalizing the standard

More information

IMPLICIT AUTOENCODERS

IMPLICIT AUTOENCODERS IMPLICIT AUTOENCODERS Anonymous authors Paper under double-blind review ABSTRACT In this paper, we describe the implicit autoencoder (IAE), a generative autoencoder in which both the generative path and

More information

Deep generative models of natural images

Deep generative models of natural images Spring 2016 1 Motivation 2 3 Variational autoencoders Generative adversarial networks Generative moment matching networks Evaluating generative models 4 Outline 1 Motivation 2 3 Variational autoencoders

More information

arxiv: v1 [cs.cv] 1 May 2018

arxiv: v1 [cs.cv] 1 May 2018 Conditional Image-to-Image Translation Jianxin Lin 1 Yingce Xia 1 Tao Qin 2 Zhibo Chen 1 Tie-Yan Liu 2 1 University of Science and Technology of China 2 Microsoft Research Asia linjx@mail.ustc.edu.cn {taoqin,

More information

arxiv: v2 [stat.ml] 21 Oct 2017

arxiv: v2 [stat.ml] 21 Oct 2017 Variational Approaches for Auto-Encoding Generative Adversarial Networks arxiv:1706.04987v2 stat.ml] 21 Oct 2017 Mihaela Rosca Balaji Lakshminarayanan David Warde-Farley Shakir Mohamed DeepMind {mihaelacr,balajiln,dwf,shakir}@google.com

More information

arxiv: v1 [eess.sp] 23 Oct 2018

arxiv: v1 [eess.sp] 23 Oct 2018 Reproducing AmbientGAN: Generative models from lossy measurements arxiv:1810.10108v1 [eess.sp] 23 Oct 2018 Mehdi Ahmadi Polytechnique Montreal mehdi.ahmadi@polymtl.ca Mostafa Abdelnaim University de Montreal

More information

ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching Chunyuan Li 1, Hao Liu 2, Changyou Chen 3, Yunchen Pu 1, Liqun Chen 1, Ricardo Henao 1 and Lawrence Carin 1 1 Duke University

More information

EFFICIENT GAN-BASED ANOMALY DETECTION

EFFICIENT GAN-BASED ANOMALY DETECTION EFFICIENT GAN-BASED ANOMALY DETECTION Houssam Zenati 1, Chuan-Sheng Foo 2, Bruno Lecouat 3 Gaurav Manek 4, Vijay Ramaseshan Chandrasekhar 2,5 1 CentraleSupélec, houssam.zenati@student.ecp.fr. 2 Institute

More information

EFFICIENT GAN-BASED ANOMALY DETECTION

EFFICIENT GAN-BASED ANOMALY DETECTION EFFICIENT GAN-BASED ANOMALY DETECTION Houssam Zenati 1,2, Chuan-Sheng Foo 2, Bruno Lecouat 2,3 Gaurav Manek 4, Vijay Ramaseshan Chandrasekhar 2,5 1 CentraleSupélec,houssam.zenati@student.ecp.fr. 2 Institute

More information

THIS work investigates the facial attribute editing task, AttGAN: Facial Attribute Editing by Only Changing What You Want

THIS work investigates the facial attribute editing task, AttGAN: Facial Attribute Editing by Only Changing What You Want SUBMITTED MANUSCRIPT TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1 AttGAN: Facial Attribute Editing by Only Changing What You Want Zhenliang He, Wangmeng Zuo, Senior Member, IEEE, Meina Kan, Member, IEEE,

More information

arxiv: v1 [stat.ml] 4 Feb 2018 ABSTRACT

arxiv: v1 [stat.ml] 4 Feb 2018 ABSTRACT HIERARCHICAL ADVERSARIALLY LEARNED INFERENCE Mohamed Ishmael Belghazi 1, Sai Rajeswar 1, Olivier Mastropietro 1, Negar Rostamzadeh 2, Jovana Mitrovic 2 and Aaron Courville 1 1 MILA, Université de Montréal,

More information

Auto-Encoder Guided GAN for Chinese Calligraphy Synthesis

Auto-Encoder Guided GAN for Chinese Calligraphy Synthesis Auto-Encoder Guided GAN for Chinese Calligraphy Synthesis Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu, Tengteng Huang, Wenyu Liu Huazhong University of Science and Technology, Wuhan, Hubei, China Megvii

More information

arxiv: v2 [cs.lg] 9 Jun 2017

arxiv: v2 [cs.lg] 9 Jun 2017 Shengjia Zhao 1 Jiaming Song 1 Stefano Ermon 1 arxiv:1702.08396v2 [cs.lg] 9 Jun 2017 Abstract Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

arxiv: v1 [cs.lg] 10 Nov 2016

arxiv: v1 [cs.lg] 10 Nov 2016 Disentangling factors of variation in deep representations using adversarial training arxiv:1611.03383v1 [cs.lg] 10 Nov 2016 Michael Mathieu, Junbo Zhao, Pablo Sprechmann, Aditya Ramesh, Yann LeCun 719

More information

COVERAGE AND QUALITY DRIVEN TRAINING

COVERAGE AND QUALITY DRIVEN TRAINING COVERAGE AND QUALITY DRIVEN TRAINING OF GENERATIVE IMAGE MODELS Anonymous authors Paper under double-blind review ABSTRACT Generative modeling of natural images has been extensively studied in recent years,

More information

arxiv: v1 [cs.cv] 16 Nov 2017

arxiv: v1 [cs.cv] 16 Nov 2017 Two Birds with One Stone: Iteratively Learn Facial Attributes with GANs arxiv:1711.06078v1 [cs.cv] 16 Nov 2017 Dan Ma, Bin Liu, Zhao Kang University of Electronic Science and Technology of China {madan@std,

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

Adversarial Symmetric Variational Autoencoder

Adversarial Symmetric Variational Autoencoder Adversarial Symmetric Variational Autoencoder Yunchen Pu, Weiyao Wang, Ricardo Henao, Liqun Chen, Zhe Gan, Chunyuan Li and Lawrence Carin Department of Electrical and Computer Engineering, Duke University

More information

arxiv: v3 [cs.cv] 13 Jul 2017

arxiv: v3 [cs.cv] 13 Jul 2017 Semantic Image Inpainting with Deep Generative Models Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do University of Illinois at Urbana-Champaign {yeh17,

More information

FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS Grigory Antipov Moez Baccouche Jean-Luc Dugelay Orange Labs, 4 rue Clos Courtel, 35512 Cesson-Sévigné, France Eurecom, 450 route des Chappes,

More information

IMPROVING SAMPLING FROM GENERATIVE AUTOENCODERS WITH MARKOV CHAINS

IMPROVING SAMPLING FROM GENERATIVE AUTOENCODERS WITH MARKOV CHAINS IMPROVING SAMPLING FROM GENERATIVE AUTOENCODERS WITH MARKOV CHAINS Antonia Creswell, Kai Arulkumaran & Anil A. Bharath Department of Bioengineering Imperial College London London SW7 2BP, UK {ac2211,ka709,aab01}@ic.ac.uk

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Xudong Mao and Qing Li Department of Computer Science, City University of Hong Kong xudong.xdmao@gmail.com, itqli@cityu.edu.hk information

More information

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation Alexander H. Liu 1 Yen-Cheng Liu 2 Yu-Ying Yeh 3 Yu-Chiang Frank Wang 1,4 1 National Taiwan University, Taiwan 2 Georgia

More information

When Variational Auto-encoders meet Generative Adversarial Networks

When Variational Auto-encoders meet Generative Adversarial Networks When Variational Auto-encoders meet Generative Adversarial Networks Jianbo Chen Billy Fang Cheng Ju 14 December 2016 Abstract Variational auto-encoders are a promising class of generative models. In this

More information

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Xudong Mao and Qing Li Department of Computer Science, City University of Hong Kong xudong.xdmao@gmail.com, itqli@cityu.edu.hk Abstract

More information

19: Inference and learning in Deep Learning

19: Inference and learning in Deep Learning 10-708: Probabilistic Graphical Models 10-708, Spring 2017 19: Inference and learning in Deep Learning Lecturer: Zhiting Hu Scribes: Akash Umakantha, Ryan Williamson 1 Classes of Deep Generative Models

More information

Structured GANs. Irad Peleg 1 and Lior Wolf 1,2. Abstract. 1. Introduction. 2. Symmetric GANs Related Work

Structured GANs. Irad Peleg 1 and Lior Wolf 1,2. Abstract. 1. Introduction. 2. Symmetric GANs Related Work Structured GANs Irad Peleg 1 and Lior Wolf 1,2 1 Tel Aviv University 2 Facebook AI Research Abstract We present Generative Adversarial Networks (GANs), in which the symmetric property of the generated

More information

arxiv: v2 [cs.lg] 23 Jul 2018

arxiv: v2 [cs.lg] 23 Jul 2018 Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer David Berthelot Google Brain dberth@google.com Colin Raffel Google Brain craffel@gmail.com Aurko Roy Google Brain

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations

3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations : Learning the Intuitive Physics of Non-Rigid Object Deformations Zhihua Wang 1, Stefano Rosa 1, Bo Yang 1, Sen Wang 2, Niki Trigoni 1 and Andrew Markham 1 1 Department of Computer Science, University

More information

arxiv: v1 [cs.cv] 25 Apr 2018

arxiv: v1 [cs.cv] 25 Apr 2018 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations Zhihua Wang* 1, Stefano Rosa* 1, Bo Yang 1, Sen Wang 2, Niki Trigoni 1 and Andrew Markham 1 1 Department of Computer Science,

More information

arxiv: v1 [cs.cv] 12 Sep 2016

arxiv: v1 [cs.cv] 12 Sep 2016 arxiv:1609.03552v1 [cs.cv] 12 Sep 2016 Generative Visual Manipulation on the Natural Image Manifold Jun-Yan Zhu 1, Philipp Krähenbühl 1, Eli Shechtman 2, and Alexei A. Efros 1 University of California,

More information

arxiv: v1 [cs.cv] 1 Nov 2018

arxiv: v1 [cs.cv] 1 Nov 2018 Examining Performance of Sketch-to-Image Translation Models with Multiclass Automatically Generated Paired Training Data Dichao Hu College of Computing, Georgia Institute of Technology, 801 Atlantic Dr

More information

UCLA UCLA Electronic Theses and Dissertations

UCLA UCLA Electronic Theses and Dissertations UCLA UCLA Electronic Theses and Dissertations Title Application of Generative Adversarial Network on Image Style Transformation and Image Processing Permalink https://escholarship.org/uc/item/66w654x7

More information

arxiv: v1 [cs.cv] 21 Jan 2018

arxiv: v1 [cs.cv] 21 Jan 2018 ecoupled Learning for Conditional Networks Zhifei Zhang, Yang Song, and Hairong Qi University of Tennessee {zzhang61, ysong18, hqi}@utk.edu arxiv:1801.06790v1 [cs.cv] 21 Jan 2018 Abstract Incorporating

More information

arxiv: v1 [cs.cv] 6 Dec 2018

arxiv: v1 [cs.cv] 6 Dec 2018 Traversing Latent Space using Decision Ferns Yan Zuo, Gil Avraham, and Tom Drummond ARC Centre of Excellence for Robotic Vision, Monash University, Australia yan.zuo@monash.edu, gil.avraham@monash.edu,

More information

arxiv: v1 [cs.cv] 27 Mar 2018

arxiv: v1 [cs.cv] 27 Mar 2018 arxiv:1803.09932v1 [cs.cv] 27 Mar 2018 Image Semantic Transformation: Faster, Lighter and Stronger Dasong Li, Jianbo Wang Shanghai Jiao Tong University, ZheJiang University Abstract. We propose Image-Semantic-Transformation-Reconstruction-

More information

arxiv: v1 [cs.lg] 31 Dec 2015

arxiv: v1 [cs.lg] 31 Dec 2015 arxiv:1512.09300v1 [cs.lg] 31 Dec 2015 Anders Boesen Lindbo Larsen 1 ABLL@DTU.DK Søren Kaae Sønderby 2 SKAAESONDERBY@GMAIL.DK Ole Winther 1,2 OLWI@DTU.DK 1 Department for Applied Mathematics and Computer

More information

Deep Hybrid Discriminative-Generative Models for Semi-Supervised Learning

Deep Hybrid Discriminative-Generative Models for Semi-Supervised Learning Volodymyr Kuleshov 1 Stefano Ermon 1 Abstract We propose a framework for training deep probabilistic models that interpolate between discriminative and generative approaches. Unlike previously proposed

More information

arxiv: v3 [cs.cv] 3 Jul 2018

arxiv: v3 [cs.cv] 3 Jul 2018 Improved Training of Generative Adversarial Networks using Representative Features Duhyeon Bang 1 Hyunjung Shim 1 arxiv:1801.09195v3 [cs.cv] 3 Jul 2018 Abstract Despite the success of generative adversarial

More information

arxiv: v1 [cs.cv] 8 Feb 2017

arxiv: v1 [cs.cv] 8 Feb 2017 An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks Mateusz Koziński Loïc Simon Frédéric Jurie Groupe de recherche en Informatique, Image, Automatique et Instrumentation

More information

Semantic Image Inpainting with Deep Generative Models

Semantic Image Inpainting with Deep Generative Models Semantic Image Inpainting with Deep Generative Models Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do University of Illinois at Urbana-Champaign {yeh17,

More information

Flow-GAN: Bridging implicit and prescribed learning in generative models

Flow-GAN: Bridging implicit and prescribed learning in generative models Aditya Grover 1 Manik Dhar 1 Stefano Ermon 1 Abstract Evaluating the performance of generative models for unsupervised learning is inherently challenging due to the lack of welldefined and tractable objectives.

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Extracting and Composing Robust Features with Denoising Autoencoders

Extracting and Composing Robust Features with Denoising Autoencoders Presenter: Alexander Truong March 16, 2017 Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol 1 Outline Introduction

More information

JOINT MULTIMODAL LEARNING WITH DEEP GENERA-

JOINT MULTIMODAL LEARNING WITH DEEP GENERA- JOINT MULTIMODAL LEARNING WITH DEEP GENERA- TIVE MODELS Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo The University of Tokyo Bunkyo-ku, Tokyo, Japan {masa,k-nakayama,matsuo}@weblab.t.u-tokyo.ac.jp ABSTRACT

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

UNDERSTANDING AND IMPROVING INTERPOLATION IN AUTOENCODERS VIA AN ADVERSARIAL REGULARIZER

UNDERSTANDING AND IMPROVING INTERPOLATION IN AUTOENCODERS VIA AN ADVERSARIAL REGULARIZER UNDERSTANDING AND IMPROVING INTERPOLATION IN AUTOENCODERS VIA AN ADVERSARIAL REGULARIZER David Berthelot Google Brain dberth@google.com Colin Raffel Google Brain craffel@gmail.com Aurko Roy Google Brain

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

Optimizing the Latent Space of Generative Networks

Optimizing the Latent Space of Generative Networks Piotr Bojanowski 1 Armand Joulin 1 David Lopez Paz 1 Arthur Szlam 1 Abstract Generative Adversarial Networks (GANs) have achieved remarkable results in the task of generating realistic natural images.

More information

Symmetric Variational Autoencoder and Connections to Adversarial Learning

Symmetric Variational Autoencoder and Connections to Adversarial Learning Symmetric Variational Autoencoder and Connections to Adversarial Learning Liqun Chen 1 Shuyang Dai 1 Yunchen Pu 1 Erjin Zhou 4 Chunyuan Li 1 Qinliang Su 2 Changyou Chen 3 Lawrence Carin 1 1 Duke University,

More information

DEEP LEARNING PART THREE - DEEP GENERATIVE MODELS CS/CNS/EE MACHINE LEARNING & DATA MINING - LECTURE 17

DEEP LEARNING PART THREE - DEEP GENERATIVE MODELS CS/CNS/EE MACHINE LEARNING & DATA MINING - LECTURE 17 DEEP LEARNING PART THREE - DEEP GENERATIVE MODELS CS/CNS/EE 155 - MACHINE LEARNING & DATA MINING - LECTURE 17 GENERATIVE MODELS DATA 3 DATA 4 example 1 DATA 5 example 2 DATA 6 example 3 DATA 7 number of

More information

Recursive Cross-Domain Facial Composite and Generation from Limited Facial Parts

Recursive Cross-Domain Facial Composite and Generation from Limited Facial Parts Recursive Cross-Domain Facial Composite and Generation from Limited Facial Parts Yang Song Zhifei Zhang Hairong Qi Abstract We start by asing an interesting yet challenging question, If a large proportion

More information

Active Decision Boundary Annotation with Deep Generative Models

Active Decision Boundary Annotation with Deep Generative Models Active Decision Boundary Annotation with Deep Generative Models Miriam Huijser Aiir Innovations Amsterdam, The Netherlands https://aiir.nl/ Jan C. van Gemert Delft University of Technology Delft, The Netherlands

More information

ADVERSARIAL EXAMPLES FOR GENERATIVE MODELS

ADVERSARIAL EXAMPLES FOR GENERATIVE MODELS Under review as a conference paper at ICLR ADVERSARIAL EXAMPLES FOR GENERATIVE MODELS Jernej Kos National University of Singapore Ian Fischer Google Research Dawn Song University of California, Berkeley

More information

song2vec: Determining Song Similarity using Deep Unsupervised Learning

song2vec: Determining Song Similarity using Deep Unsupervised Learning song2vec: Determining Song Similarity using Deep Unsupervised Learning CS229 Final Project Report (category: Music & Audio) Brad Ross (bross35), Prasanna Ramakrishnan (pras1712) 1 Introduction Humans are

More information