Fundamentals of Computer Animation

Size: px
Start display at page:

Download "Fundamentals of Computer Animation"

Transcription

1 Fundamentals of Computer Animation Flexible Objects (1) page 1

2 Flexible Objects Elastic and inelastic behavior, viscoelasticity, plasticity, fracture Elastically Deformable Models Terzopoulos et al SIGGRAPH 87 page 2

3 Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture Terzopoulos and Fleiseher SIGGRAPH 88

4 Graphical Modeling and Animation of Brittle Fracture O Brien and Hodgins SIGGRAPH 99 Simulation of Object and Human Skin Deformations in a Grasping Task Gourred et al SIGGRAPH 89 page 4

5 Graphical Modeling and Animation of Ductile Fracture O Brien et al SIGGRAPH 02 page 5

6 Spring-Mass Systems Model objects as systems of springs and masses The springs exert forces, and you control them by changing their rest length A reasonable, but simple, physical model for muscles Advantage: Good looking motion when it works Disadvantage: Expensive and hard to control page 6

7 Springs (Hooke s law) Spring s rest length: exerts zero force F spring = k spring (x x rest ) x x rest F x F F F page 7

8 SPRING-MASS SYSTEMS The simplest, most common approach Straightforward strategy: Point Mass Spring (rest length = edge length) External Forces (collisions, gravity, wind, ) page 8

9 Spring Mass System V1 External Force V2 V3 spring force F i,j = -F j,i = k(dist i,j (t) len i,j )v i,j dist i,j is the distance at time t and len i,j is the rest length v i,j is a vector in the direction v i to v j. page 9

10 Damping If each time step assumes constant acceleration so the simulation can gain energy and explode. Use a damper which imparts a force against velocity. Damping force i = -k d v i (t) As spring changes length faster and faster damper helps to control change. Damping force is proportional to relative velocity of end points in a mesh. page 10

11 Damping Calm down spring oscillations F damping = k damping v F = k ( x x ) spring rest k damping v page 11

12 Spring Mesh Edges => springs Internal springs to stabilize shape page 12

13 Spring mass fish Due to Xiaoyuan Tu, page 13

14 Spring mass fish page 14

15 Angular Springs An angular spring imparts a restoring torque ie it resists deviation to the rest angle. θ τ = k spring ( θ ( t) θ ) k & θ ( t) rest damping page 15

16 Virtual Springs To increase control. (constraints) Forces can be introduced that do not model physical elements E.g. penalty method: Virtual spring with zero rest length can make one object lie on another or at some given distance apart (rest length>0). Proportional Derivative Controller Keep control variable and derivative within desired values. e.g. To maintain joint angle and joint velocity close to desired values introduce torque: τ = k spring ( θ ( t) θ ) k ( & θ ( t) & θdesired) desired damping page 16

17 Strings A whole line of points attached together with springs Simple to model, great for making realistic straps of bullets for chain guns, tails on animals, bungie ropes. The springs have a normal length of, say, one unit. If the adjacent points move further than one unit of length apart, they experience a force towards each other proportional to the extension of the spring that connects them. Likewise, if they move closer than one unit apart, they experience a force pushing them apart. page 17

18 Strings Two ways to model the force on the points With mass If you are creating animations Without mass If you are just trying to find the optimum shape of a string hanging over a certain object Forces between Two Springs page 18

19 Strings without Mass Forces affect the position of the point c i a v ac f = v ab vab + l ab + v ac vac + l ac v ab s 1 b f = f g Normal length β s s + 2 = 1 f gravity Small amount (0.01 or so): makes the string move slowly page 19

20 Strings with Mass c Forces affect the velocity of the point i a v ac f = v ab vab + l ab + v ac vac + l ac s1 b v ab f v = f g β = v ω + f s s + 2 = 1 v If you make a string like this, you will notice that it is extremely flexible. To make it stiffer, you can compare each point with its 4 or even 6 closest neighbors, instead of 2. Damping (between about 0.95 and 0.99), is the energy loss from the string. If you set it to 1, then the string will never stop swinging around, and setting it to more than 1 will make the string increase its swing by itself and eventually fly off the screen. page 20

21 Cloth Simply a whole load of interwoven strings! We need to add an extra dimension to our string routine. Imagine a cloth to be a sheet of points all connected together by springs. If two points get pulled further apart, then they experience a force pulling them together and vice versa. This very simple model of a cloth is reasonably accurate! Stanford Cloth Demo page 21

22 Cloth Behavior If you compare each point with its 4 nearest neighbors a fisherman's net. If you compare each point with its 8 nearest neighbors a very flexible cloth If you compare each point with its 24 nearest neighbors a more realistic, stiffer cloth, though it's much slower to compute page 22

23 Massless Cloths Every point on the cloth moves at a rate proportional to the sum of the forces acting on it from the neighboring points. Create a 2-dimensional array of co-ordinates to hold the x, y and z positions of the cloth in space. Initialize the values of cloth(p,q) to (p,q,0). We will need two of these arrays. One to hold the current state of the cloth, and the other to hold the new cloth that is being calculated. When we have finished calculating the cloth, copy all the values from our second array back to the first. page 23

24 cloth1 (0 to 31, 0 to 31) cloth2 (0 to 31, 0 to 31) Variables: VECTOR: MovementVector VECTOR: SpringVector VECTOR: ForceVector VECTOR: Gravity (initialised to (0, 0, g) where g is gravity, 0.02 is a good number) REAL: Length REAL: ForceScaler REAL: NormalLength page 24

25 For every point (p,q) on the cloth: MovementVector = Gravity For each of the 24 neighboring points: SpringVector = (position in space of neighbour) - (position in space of point (p,q)) Length = length of SpringVector NormalLength = The length SpringVector would be if the cloth were unstretched ForceScaler = (Length - NormalLength) / NormalLength SpringVector = SpringVector * (1/Length) ForceVector = SpringVector * ForceScaler ForceVector = ForceVector * SmallAmount add ForceVector to MovementVector end of loop Add MovementVector to cloth1(p,q) and store it in cloth2(p,q) make sure this point does not move inside an object end of loop Copy all the values in cloth2 to cloth1 keep doing all this forever

26 Cloth Interacting with Objects We will need some objects for the cloth to interact with. The simplest is a floor. Check each point on the cloth to see if it is below the floor, and if it is, then move it to the surface. It is quite easy to make a sphere for the cloth to fall over! Check each point to see if it is inside the sphere. If it is, then move it to the nearest point on the surface of the sphere. page 26

27 Cloth with Sphere REAL: Distance Distance = distance from the point(p,q) to the center of the sphere if Distance < (radius of sphere) then: end if ForceVector = (position of point in space) - (center of sphere) ForceVector = Forcevector / Distance * radius point(p,q) = (center of sphere) + ForceVector page 27

28 Adding Wind Adding wind to the cloth allows us to simulate the fluttering of flags and other cloth+wind kind of situations. This model is not totally accurate. The wind affects the cloth, but the cloth does not affect the wind, to do this would require a vast amount of fluid dynamic calculation. However, it produces reasonable looking fluttering effects. For this we will need to be modeling cloth with mass. page 28

29 Adding Wind First the cloth must be broken down into triangles. This is easy to do, since the cloth is already described as an array of points. The effect of the wind on the cloth is calculated on each of these triangles individually. At each point of the cloth, the sum of the effect of the wind on the surrounding triangles is calculated. page 29

30 Adding Wind The force acting on a triangle due to air molecules bouncing off it will always be in the direction of the normal vector of that triangle. The normal vector for each triangle will have to be calculated every frame because it will be constantly changing. page 30

31 Adding Wind The force will be proportional to the surface area of the triangle, the angle at which the wind hits the triangle, and the speed of the wind. When we use the Cross Product to calculate the normal vector of the triangle, the length of that vector is proportional to the area of the triangle, which makes things a little simpler. page 31

32 VECTOR: force VECTOR: normal VECTOR: wind set force vector to (0,0,0) on all points on cloth loop through all triangles force = unitvector(normal) * dotproduct(normal, wind) add force to all points making up this triangle end of loop loop through all points on cloth add gravity to force add force to velocity end of loop -- rest of cloth routine --

The jello cube. Undeformed cube. Deformed cube

The jello cube. Undeformed cube. Deformed cube The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC Undeformed cube The jello cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC 1 The jello cube Undeformed cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

Rigid Body Dynamics, Fracture, & Deformation

Rigid Body Dynamics, Fracture, & Deformation Last Time? Rigid Body Dynamics, Fracture, & Deformation Keyframing Procedural Animation Physically-Based Animation Forward and Inverse Kinematics Motion Capture Two solutions Today Rigid Body Dynamics

More information

Announcements. Ray tracer is due in five days you should have started by now or you re going to have a bad week. Missing file posted on the web page

Announcements. Ray tracer is due in five days you should have started by now or you re going to have a bad week. Missing file posted on the web page Announcements Ray tracer is due in five days you should have started by now or you re going to have a bad week Missing file posted on the web page I m sorry for canceling class on Tuesday... 1 Animation

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Introduction to Working Model Welcome to Working Model! What is Working Model? It's an advanced 2-dimensional motion simulation package with sophisticated editing capabilities. It allows you to build and

More information

Lecture VI: Constraints and Controllers

Lecture VI: Constraints and Controllers Lecture VI: Constraints and Controllers Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a chair human body parts trigger of a gun opening

More information

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial Lecture VI: Constraints and Controllers Parts Based on Erin Catto s Box2D Tutorial Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a

More information

Real Time Cloth Simulation

Real Time Cloth Simulation Real Time Cloth Simulation Sebastian Olsson (81-04-20) Mattias Stridsman (78-04-13) Linköpings Universitet Norrköping 2004-05-31 Table of contents Introduction...3 Spring Systems...3 Theory...3 Implementation...4

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid? Fracture

More information

3D Physics Engine for Elastic and Deformable Bodies. Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount

3D Physics Engine for Elastic and Deformable Bodies. Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount 3D Physics Engine for Elastic and Deformable Bodies Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount University of Maryland, College Park December 2002 Abstract The purpose of this project

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Chapter 19- Object Physics

Chapter 19- Object Physics Chapter 19- Object Physics Flowing water, fabric, things falling, and even a bouncing ball can be difficult to animate realistically using techniques we have already discussed. This is where Blender's

More information

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion?

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion? Chapter 3 : Computer Animation (continued) Chapter 3: Computer Animation Reminder: Descriptive animation Describes a single motion, with manual control Ex: direct kinematics with key-frames, inverse kinematics

More information

Mass-Spring Systems. Last Time?

Mass-Spring Systems. Last Time? Mass-Spring Systems Last Time? Implicit Surfaces & Marching Cubes/Tetras Collision Detection & Conservative Bounding Regions Spatial Acceleration Data Structures Octree, k-d tree, BSF tree 1 Today Particle

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Cloth Animation with Collision Detection

Cloth Animation with Collision Detection Cloth Animation with Collision Detection Mara Guimarães da Silva Figure 1: Cloth blowing in the wind. Abstract This document reports the techniques and steps used to implemented a physically based animation

More information

Modeling Cloth Using Mass Spring Systems

Modeling Cloth Using Mass Spring Systems Modeling Cloth Using Mass Spring Systems Corey O Connor Keith Stevens May 2, 2003 Abstract We set out to model cloth using a connected mesh of springs and point masses. After successfully implementing

More information

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces Dynamic Controllers Simulation x i Newtonian laws gravity ground contact forces x i+1. x degrees of freedom equations of motion Simulation + Control x i Newtonian laws gravity ground contact forces internal

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #: Spring and Mass systems Prof. James O Brien University of California, Berkeley V006-F--.0 Today Spring and Mass systems Distance springs Spring dampers Edge springs

More information

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1 Modelling and Animating Human Figures 7-1 Introduction Modeling and animating an articulated figure is one of the most formidable tasks that an animator can be faced with. It is especially challenging

More information

Simulation: Particle Systems

Simulation: Particle Systems Simulation: Particle Systems Course web page: http://goo.gl/eb3aa February 28, 2012 Lecture 5 Particle Systems Definition: Simulation of a set of similar, moving agents in a larger environment Scale usually

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Physically based modelling Computer Graphics I February 27, 2003

Physically based modelling Computer Graphics I February 27, 2003 Physically based modelling 15-462 Computer Graphics I February 27, 2003 Outline Overview Particle systems Numerical solution of ODEs Constraints Collisions Motivation Animation is hard! Secondary motion

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters Computer Animation and Visualisation Lecture 3. Motion capture and physically-based animation of characters Character Animation There are three methods Create them manually Use real human / animal motions

More information

Physically Based Simulation

Physically Based Simulation CSCI 420 Computer Graphics Lecture 21 Physically Based Simulation Examples Particle Systems Numerical Integration Cloth Simulation [Angel Ch. 9] Jernej Barbic University of Southern California 1 Physics

More information

Cloth Simulation. COMP 768 Presentation Zhen Wei

Cloth Simulation. COMP 768 Presentation Zhen Wei Cloth Simulation COMP 768 Presentation Zhen Wei Outline Motivation and Application Cloth Simulation Methods Physically-based Cloth Simulation Overview Development References 2 Motivation Movies Games VR

More information

Rigid Body Dynamics, Collision Response, & Deformation

Rigid Body Dynamics, Collision Response, & Deformation Rigid Body Dynamics, Collision Response, & Deformation Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH What are the horizontal and face velocities after 1, 2, and many iterations of

More information

CS-184: Computer Graphics. Today. Lecture #20: Spring and Mass systems. 20-SpringMassSystems.key - April 23, Spring and Mass systems

CS-184: Computer Graphics. Today. Lecture #20: Spring and Mass systems. 20-SpringMassSystems.key - April 23, Spring and Mass systems CS-184: Computer Graphics Lecture #20: Spring and Mass systems Prof. James O Brien University of California, Berkeley V2014-S-20-1.0 Today Spring and Mass systems Distance springs Spring dampers Edge springs

More information

CS-184: Computer Graphics. Today. Lecture #22: Spring and Mass systems. Spring and Mass systems. Distance springs Spring dampers Edge springs

CS-184: Computer Graphics. Today. Lecture #22: Spring and Mass systems. Spring and Mass systems. Distance springs Spring dampers Edge springs CS-184: Computer Graphics Lecture #: Spring and Mass systems Prof. James O Brien University of California, Berkeley V011-F--1.0 Today Spring and Mass systems Distance springs Spring dampers Edge springs

More information

Soft Body. 9.7 Physics - Soft Body

Soft Body. 9.7 Physics - Soft Body 9.7 Physics - Soft Body Soft Body...1 Typical scenarios for using Soft Bodies...2 Creating a Soft Body...3 Simulation Quality...3 Cache and Bake...4 Interaction in real time...5 Tips...5 Exterior Forces...5

More information

Real-Time Simulation of Deformation and Fracture of Stiff Materials

Real-Time Simulation of Deformation and Fracture of Stiff Materials Real-Time Simulation of Deformation and Fracture of Stiff Materials Matthias Müller Leonard McMillan Julie Dorsey Robert Jagnow Laboratory for Computer Science, Massachusetts Institute of Technology Abstract.

More information

Physically Based Simulation

Physically Based Simulation CSCI 480 Computer Graphics Lecture 21 Physically Based Simulation April 11, 2011 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ Examples Particle Systems Numerical

More information

PHYSICALLY BASED ANIMATION

PHYSICALLY BASED ANIMATION PHYSICALLY BASED ANIMATION CS148 Introduction to Computer Graphics and Imaging David Hyde August 2 nd, 2016 WHAT IS PHYSICS? the study of everything? WHAT IS COMPUTATION? the study of everything? OUTLINE

More information

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010)

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010) Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 24: Animation http://inst.eecs.berkeley.edu/~cs184 To Do Submit HW 4 (today) Start working on HW 5 (can be simple add-on) Many slides courtesy

More information

Ragdoll Physics. Abstract. 2 Background. 1 Introduction. Gabe Mulley, Matt Bittarelli. April 25th, Previous Work

Ragdoll Physics. Abstract. 2 Background. 1 Introduction. Gabe Mulley, Matt Bittarelli. April 25th, Previous Work Ragdoll Physics Gabe Mulley, Matt Bittarelli April 25th, 2007 Abstract The goal of this project was to create a real-time, interactive, and above all, stable, ragdoll physics simulation. This simulation

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Fracture & Tetrahedral Models Last Time? Rigid Body Collision Response Finite Element Method Stress/Strain Deformation Level of Detail backtracking fixing 1 Today Useful & Related Term Definitions Reading

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Integrating Physics into a Modern Game Engine. Object Collision. Various types of collision for an object:

Integrating Physics into a Modern Game Engine. Object Collision. Various types of collision for an object: Integrating Physics into a Modern Game Engine Object Collision Various types of collision for an object: Sphere Bounding box Convex hull based on rendered model List of convex hull(s) based on special

More information

DYNAMICS FOR ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

DYNAMICS FOR ANIMATION. Rémi Ronfard, Animation, M2R MOSIG DYNAMICS FOR ANIMATION Rémi Ronfard, Animation, M2R MOSIG Summary of physics-based animation Motivation Newton s Laws Point-mass models Rigid and articulated bodies Ragdoll physics From kinematics to dynamics

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Cloth Tearing Simulation

Cloth Tearing Simulation Cloth Tearing Simulation Emre Onal*, Veysi Isler Abstract Among different physical simulation topics, cloth simulation is one of the most popular subjects in computer graphics. There are many different

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University What is Animation? Making things move What is Animation? Consider a model with n parameters Polygon

More information

Moving Beyond Ragdolls:

Moving Beyond Ragdolls: Moving Beyond Ragdolls: Generating Versatile Human Behaviors by Combining Motion Capture and Controlled Physical Simulation by Michael Mandel Carnegie Mellon University / Apple Computer mmandel@gmail.com

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Animation. Itinerary Computer Graphics Lecture 22

Animation. Itinerary Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University Itinerary Review Basic Animation Keyed Animation Motion Capture Physically-Based Animation Behavioral

More information

A bouncing ball squashes on its vertical axis and stretches on the horizontal axis as it strikes the ground.

A bouncing ball squashes on its vertical axis and stretches on the horizontal axis as it strikes the ground. Animation Principles The following 12 animation principles are those distilled from the combined wisdom of animators over several decades. Animators developed their own techniques in animating characters,

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

CLOTH - MODELING, DEFORMATION, AND SIMULATION

CLOTH - MODELING, DEFORMATION, AND SIMULATION California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of Graduate Studies 3-2016 CLOTH - MODELING, DEFORMATION, AND SIMULATION Thanh Ho Computer

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^ Computer a jap Animation Algorithms and Techniques Second Edition Rick Parent Ohio State University AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Particle Systems. Lecture 8 Taku Komura

Particle Systems. Lecture 8 Taku Komura Particle Systems Computer Animation and Visualisation Lecture 8 Taku Komura Overview Particle System Modelling fuzzy objects (fire, smoke) Modelling liquid Modelling cloth Integration : implicit integration,

More information

Topics in Computer Animation

Topics in Computer Animation Topics in Computer Animation Animation Techniques Artist Driven animation The artist draws some frames (keyframing) Usually in 2D The computer generates intermediate frames using interpolation The old

More information

What is a Rigid Body?

What is a Rigid Body? Physics on the GPU What is a Rigid Body? A rigid body is a non-deformable object that is a idealized solid Each rigid body is defined in space by its center of mass To make things simpler we assume the

More information

PPGCC Linha de Pesquisa SIV Disciplina: Animação Computadorizada. Profª. Drª. Soraia Raupp Musse Pós-doc Dr Leandro Dihl 12/05/2015

PPGCC Linha de Pesquisa SIV Disciplina: Animação Computadorizada. Profª. Drª. Soraia Raupp Musse Pós-doc Dr Leandro Dihl 12/05/2015 PPGCC Linha de Pesquisa SIV Disciplina: Animação Computadorizada Profª. Drª. Soraia Raupp Musse Pós-doc Dr Leandro Dihl 12/05/2015 Cloth Simulation Cloth simulation has been an important topic in computer

More information

Thompson/Ocean 420/Winter 2005 Internal Gravity Waves 1

Thompson/Ocean 420/Winter 2005 Internal Gravity Waves 1 Thompson/Ocean 420/Winter 2005 Internal Gravity Waves 1 II. Internal waves in continuous stratification The real ocean, of course, is continuously stratified. For continuous stratification, = (z), internal

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module 10 Lecture 1 So far, in this course we have discussed planar linkages, which

More information

Mechanisms. Updated: 18Apr16 v7

Mechanisms. Updated: 18Apr16 v7 Mechanisms Updated: 8Apr6 v7 Mechanism Converts input motion or force into a desired output with four combinations of input and output motion Rotational to Oscillating Rotational to Rotational Rotational

More information

SIMULATION OF ELASTIC SOFT TISSUE DEFORMATION IN ORTHODONTICS BY MASS-SPRING SYSTEM

SIMULATION OF ELASTIC SOFT TISSUE DEFORMATION IN ORTHODONTICS BY MASS-SPRING SYSTEM SIMULATION OF ELASTIC SOFT TISSUE DEFORMATION IN ORTHODONTICS BY MASS-SPRING SYSTEM Pathomphong Phannurat 1, Wichit Tharanon 1, Chanjira Sinthanayothin 2 1 Advanced Dental Technology Center (ADTEC) 2 National

More information

Development of the Compliant Mooring Line Model for FLOW-3D

Development of the Compliant Mooring Line Model for FLOW-3D Flow Science Report 08-15 Development of the Compliant Mooring Line Model for FLOW-3D Gengsheng Wei Flow Science, Inc. October 2015 1. Introduction Mooring systems are common in offshore structures, ship

More information

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Simple Mechanisms 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Assignment #1 All questions at the end of chapter 1 st Exam: Saturday 29/9/2018 3 Kinematic Link or Element kinematic link (link) or

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Animation. Traditional Animation Keyframe Animation. Interpolating Rotation Forward/Inverse Kinematics

Animation. Traditional Animation Keyframe Animation. Interpolating Rotation Forward/Inverse Kinematics Animation Traditional Animation Keyframe Animation Interpolating Rotation Forward/Inverse Kinematics Overview Animation techniques Performance-based (motion capture) Traditional animation (frame-by-frame)

More information

Animation, Motion Capture, & Inverse Kinematics

Animation, Motion Capture, & Inverse Kinematics Animation, Motion Capture, & Inverse Kinematics Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH Enumerate all cases (including rotations) of the 2D version of Marching Cubes, labeling

More information

arxiv: v2 [cs.gr] 25 Jul 2009

arxiv: v2 [cs.gr] 25 Jul 2009 DYNAMIC DEFORMATION OF UNIFORM ELASTIC arxiv:0907.4364v2 [cs.gr] 25 Jul 2009 TWO-LAYER OBJECTS Miao Song A thesis in The Department of Computer Science and Software Engineering Presented in Partial Fulfillment

More information

CS 354 R Game Technology

CS 354 R Game Technology CS 354 R Game Technology Particles and Flocking Behavior Fall 2017 Particle Effects 2 General Particle Systems Objects are considered point masses with orientation Simple rules control how the particles

More information

Project 1: Particle System The Animation of Natural Phenomena Due 10/18

Project 1: Particle System The Animation of Natural Phenomena Due 10/18 Project 1: Particle System The Animation of Natural Phenomena Due 10/18 In this project you will implement a particle system with constraints. You must implement at least the required features. You must

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Controlling Reactive, Motion Capture-driven Simulated Characters

Controlling Reactive, Motion Capture-driven Simulated Characters Controlling Reactive, Motion Capture-driven Simulated Characters Victor B. Zordan University of California at Riverside Motion capture-driven simulations? Motivation: Unreal Havok Havok2 Motion capture

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Directional Constraint Enforcement for Fast Cloth Simulation

Directional Constraint Enforcement for Fast Cloth Simulation In Proceedings of The Fourth International Conference on Motion in Games (MIG), 2011 Directional Constraint Enforcement for Fast Cloth Simulation Oktar Ozgen and Marcelo Kallmann University of California,

More information

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1 Animation Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/23/07 1 Today s Topics Interpolation Forward and inverse kinematics Rigid body simulation Fluids Particle systems Behavioral

More information

Index FEATURES LIST 2

Index FEATURES LIST 2 FULL FEATURES LIST Index RealFlow Features 4 Liquids 4 Elastics 4 Granulars 4 Rigids 5 Viscous Materials 5 Viscoelastic Materials 5 Fibres 5 Built-in Basic Primitives 6 Particle Emitters 6 Rigid Bodies

More information

1 Proximity via Graph Spanners

1 Proximity via Graph Spanners CS273: Algorithms for Structure Handout # 11 and Motion in Biology Stanford University Tuesday, 4 May 2003 Lecture #11: 4 May 2004 Topics: Proximity via Graph Spanners Geometric Models of Molecules, I

More information

Virtual Destruction of a 3D Object with a Stick. Abstract

Virtual Destruction of a 3D Object with a Stick. Abstract Virtual Destruction of a 3D Object with a Stick Tohru Miyazaki, Toyohisa Kaneko, and Shigeru Kuriyama Dept. of Information and Computer Sciences Toyohashi University of Technology {miyazaki,kaneko,kuriyama}@vcl.ics.tut.ac.jp

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

Cloth Hair. and. soft bodies

Cloth Hair. and. soft bodies Cloth Hair Lesson 11 and soft bodies Lesson 08 Outline Problem definition and motivations Modeling deformable solids with mass-spring model Position based dynamics Modeling cloths with mass-spring model

More information

Real-Time Deformation using a Modified Finite Element Method

Real-Time Deformation using a Modified Finite Element Method Real-Time Deformation using a Modified Finite Element Method MSc Computer Animation and Visual Effects Bournemouth University Zoe Sams i7698049 August 2015 Abstract Every day, we interact with deformable

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

A Fast and Stable Approach for Restoration of Warped Document Images

A Fast and Stable Approach for Restoration of Warped Document Images A Fast and Stable Approach for Restoration of Warped Document Images Kok Beng Chua, Li Zhang, Yu Zhang and Chew Lim Tan School of Computing, National University of Singapore 3 Science Drive 2, Singapore

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

BCC Particle System Generator

BCC Particle System Generator BCC Particle System Generator BCC Particle System is an auto-animated particle generator that provides in-depth control over individual particles as well as the overall shape and movement of the system.

More information

Real-Time Simulation of Deformation and Fracture of Stiff Materials

Real-Time Simulation of Deformation and Fracture of Stiff Materials EUROGRAPHICS 200 / Workshop on Animation and Simulation Real-Time Simulation of Deformation and Fracture of Stiff Materials Matthias Müller Leonard McMillan Julie Dorsey Robert Jagnow Laboratory for Computer

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Lec 10 MEL for Dynamics

Lec 10 MEL for Dynamics Lec 10 MEL for Dynamics Create user windows Create customize shelf command icon Create and use of expression within MEL script Create and use of particle and rigid body dynamics panelbreakup exercise (The

More information

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Andrew Smyth, P.E. LPI, Inc., New York, NY, USA Abstract Overhead crane wire ropes utilized within manufacturing plants are subject to extensive

More information

Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go)

Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go) Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go) Class N-2 1. What are some benefits of path networks? 2. Cons of path networks?

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Dynamics in Maya. Gary Monheit Alias Wavefront PHYSICALLY BASED MODELING SH1 SIGGRAPH 97 COURSE NOTES

Dynamics in Maya. Gary Monheit Alias Wavefront PHYSICALLY BASED MODELING SH1 SIGGRAPH 97 COURSE NOTES Dynamics in Maya Gary Monheit Alias Wavefront SH1 Dynamics in Maya Overall Requirements Architecture and Features Animations SH2 Overall Requirements Why Dynamics? Problems with traditional animation techniques

More information

GPU Computing: Particle Simulation

GPU Computing: Particle Simulation GPU Computing: Particle Simulation Dipl.-Ing. Jan Novák Dipl.-Inf. Gábor Liktor Prof. Dr.-Ing. Carsten Dachsbacher Abstract In this assignment we will learn how to implement two simple particle systems

More information

Chapter 9 Animation System

Chapter 9 Animation System Chapter 9 Animation System 9.1 Types of Character Animation Cel Animation Cel animation is a specific type of traditional animation. A cel is a transparent sheet of plastic on which images can be painted

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Generally all considerations in the force analysis of mechanisms, whether static or dynamic, the links are assumed to be rigid. The complexity of the mathematical analysis of mechanisms

More information