METE 215 MATERIALS PROCESSING LABORATORY 3D PRINTING

Size: px
Start display at page:

Download "METE 215 MATERIALS PROCESSING LABORATORY 3D PRINTING"

Transcription

1 METE 215 MATERIALS PROCESSING LABORATORY Experiment 8 Dr. Y. Eren Kalay 3D PRINTING 1. WHAT IS 3D PRINTING? Traditional manufacturing methods depend on cutting and molding technologies to create a limited number of structures and shapes having the need to be formed from a number of parts assembled together. Shaping and forming processes are performed through different stages, ranging from casting to cutting at various stages depending on the complexity of the component being manufactured. The traditional method of shaping is through material removal, which is referred to as subtractive manufacturing (SM). Examples of SM processes include milling, drilling and grinding. Manufacturing plastic and metal objects in particular is generally a wasteful process with a lot of surplus materials and chunky parts. However, Additive Manufacturing (AM) technologies transform this process by building near-net shape components one layer at a time using data from 3D CAD (computer aided design) models. These 3D models can be very complex figures, being confined only by a person s imagination with higher structural integrity and more durability. According to their first standard, ASTM F , AM is defined as The process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing technologies. Creating a similar object with the use of additive manufacturing not only utilizes less energy, but also minimizes waste. In addition to these, 3D printing helps companies save up to 70% of their manufacturing cost [1]. Creating a 3D object from a digital model using a 3D printer has been one of the largest innovations of the recent years. The idea is to build the object layer by successive layer until it is complete. Each of these printed layers is a thinly-sliced, horizontal cross-section of the eventual object. In the conventional fabrication methods, the final shape is achieved by following the steps such as cutting, extrusion, grinding and welding from a bulk structure. This sequence of processes results in loss of the original material and loss of energy during production. 3D printing technology, on the other hand, do not need any sequential steps for the final shaping and thereby it is easier to achieve new forms and optimize the shapes without being restricted by capabilities of the conventional methods. Printing begins with a digital file in which the final shape has been coded and the computer software slices the design into multilayers. These layers are then printed on top of each other until the 3D object is created. 1.1 APPLICATION AREAS As the 3D printing has become less expensive, more accessible and new materials have become available, the technology has quickly gained momentum. With the market entry of

2 compact open-source desktop 3D printers, the application areas of 3D printers have broadened from small-scale commercial or educational purposes to household use. 3D printing is most commonly used for rapid prototyping of new products. The ability to rapidly produce new prototypes for testing, often in less than 48 hours after a design revision, greatly accelerates the prototyping process. However, 3D printing technology has now reached the point when it can be applied to manufacturing processes as well. It is no surprise that first applications came from cash-rich industries, such as medical aids, aerospace and car-making. Today, the 3D printer technology is used for accessories, shoe design, industrial and architectural design, building works, defense and automotive industry, medical industry, education, aerospace industry, biotechnology is used in many areas of scientific studies in the field. 3D printed aircraft components are 65% lighter; but as strong as traditional machined parts, representing huge savings and reduced carbon emissions. For every 1 kilogram reduction in weight, airlines save around US$35,000 in fuel costs over an aircraft s life. Although expensive, titanium is light, strong and durable and ideally suited for aircraft manufacturing. In traditional manufacturing, it wears easily during cutting step of the production. This problem is eliminated via 3D printing. NASA engineers are also 3D printing parts that are structurally stronger and more reliable than conventionally crafted parts, for its space launch system [2]. Scientists are also exploring the use of 3D printers at the International Space Station to make spare parts on the spot. What once was the province of science fiction has now become a reality. 1.2 HISTORY OF 3D PRINTING The use of additive manufacturing started as in rapid prototyping (RP) during the late 1980s and early 1990s. The first commercial 3D print technology, stereolithography, was invented in 1984 by Charles Hull. Although imperfect, the machine provided manufacturing of highly complex parts overnight. The first lab grown organ is implanted in humans at the end of 1990s and this innovation opened a door for advanced medical use. The technique is mainly useful for creating artificial organs of patient-specific models, produced human tissue-compatible implants. Today, biocompatible human tissue veins that are millimeters in size are produced by 3D printers [3, 4]. Beyond the use of 3D printing in producing prosthetics and hearing aids, it is also used to treat challenging medical conditions, and to advance medical research, including in the area of regenerative medicine. The breakthroughs in this area are rapid and extraordinary. The first selective laser sintering machine became feasible in This machine uses a laser to fuse the materials into 3D products. The idea of mass customization and on-demand manufacturing of industrial parts started with this invention. Combining different raw materials isn t always possible with mass production methods due to the high costs. This problem is eliminated with the 3D printing technologies. However, additive manufacturing is relatively slower than the traditional mass production processes. In order to compensate with the slow print rate, several fused filament machines now offer multiple extruder heads. These can be used to print in multiple colors, with different polymers, or to make multiple prints simultaneously. This increases their overall print speed during multiple instance production, while requiring less capital cost than duplicate machines since they can share a single controller.

3 At the end of 2000s, 3D printers were placed on market that allows the customers to print their 3D products. Companies have created services where consumers can customize objects using simplified web based customization software and print unique objects. This now allows the consumers to create custom cases for their mobile phones, print accessories as well as many other household items. 2. TYPES OF 3D PRINTING A number of 3D printing techniques including stereolithography (SL), fused deposition modeling (FDM) and selective laser sintering (SLS). Some of these techniques involve melting or softening layers of material, others involve binding powdered materials and yet others involve jetting or selectively-hardening liquid materials. 3D printers use a variety of very different types of additive manufacturing techniques. According to the additives used in printing, 3D printing techniques can be divided into 3 groups. 2.1 BIO-BASED 3D PRINTING Recent advances in 3D printing technology have enabled tissue engineering applications in which organs and body parts are built using inkjet techniques. Biocompatible materials, cells and supporting components are printed into complex 3D functional living tissues to address the need for tissues and organs suitable for transplantation. As of 2013, scientists began printing ears, livers and kidneys with living tissue. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D bioprinted tissue models for research, drug discovery and toxicology [5]. 2.2 POLYMER BASED 3D PRINTING Today s 3D printing technology is mainly based on polymers as they can be easily processed. Polymers can be processed at low temperatures relative to metals and ceramics. The most commonly utilized polymer based composites are high performance, lightweight materials that are produced by dispersing strong additives/fibers in a polymer matrix [6]. These additives may vary from graphene to nanotubes, nanowires and nanoparticles. The additive ratio can be as low as 2% or as high as 60% depending on the application [7].

4 2.3 METALLIC BASED 3D PRINTING In metallic based 3D printing, parts are manufactured by a laser fusing together high performance metals, layer by layer directly from a 3D digital data. Created objects are strong and lightweight with complex internal features, such as undercuts, channels through sections, tubes within tubes and internal voids. It s an accurate and cost-effective method for the production of prototype components and the economical manufacture of small series parts for testing purposes or as final production components for use in many different environments, without the investment in time and money of conventional tooling. Metal 3D printing is mainly used for applications such as automotive and aerospace industry. It is predicted that the market for metal powders for additive manufacturing (AM) applications will take off over the next five years with new applications in the aerospace, oil and gas sectors, exponentially increasing the demand for powered materials [8]. In addition, metal 3D printing is also used in dental sectors for implant and prostheses manufacturing. 3. HARDWARE 3.1 FUSED FILAMENT FABRICATION (FFF) In this experiment, Fused Filament Fabrication (FFF) also known as Fused Deposition Modeling (FDM) technique will be used to produce 3D objects. In this technique, different types of materials can be used. Filaments become semi-molten state above a certain temperature to satisfy required viscosity during printing. After these filaments are deposited they immediately return their solid state. Mostly, thermoplastic polymers and copolymers are preferred as a filament such as Polylactide (PLA) and Acrylonitrile Butadiene Styrene (ABS). Because they can be melted at relatively lower temperatures compared to metals and they easily return to their solid state after deposition. These polymer filaments are deposited layer by layer. Individual layers adhere to each other during printing. Printing process has three main steps (Figure 1). In the first step, a certain amount of filament is extruded from the heater zone. Following this, the filament is heated up to a semi-molten state. Then this semi-molten filament is forced out from a heated nozzle and deposited on the predeposited layers.

5 Figure 1: Working principles of fused filament fabrication technique [9]. In this experiment, a MakerBot Replicator Mini 3D-Printer will be used. The main components of the 3D printer are shown in Figure 2. Gantry moves in X and Y direction, where build plate moves in Z direction. Figure 2: Schematic view of MakerBot Replicator Mini [10].

6 4. EXPERIMENT In this experiment, you will print a complex solid object. Please follow the following steps: Use openscad ( to draw the solid object given by your TA. Use the appropriate commands given in cheat sheet. Cheat Sheet Use slic3r ( to generate the g-code of your engineering drawing and simulate the 3D printing procedure.

7 Upload your g-code to 3D-printer and print your object. CAUTION The printer generates high temperatures. Do not try to reach inside the printer before extruder cools down. Do not try to reach inside the printer during operation. Do not look directly at the operating LED component. In case of emergency disconnect the printer from the wall socket.

8 Please Note That "The members of the METU community are reliable, responsible and honourable people who embrace only the success and recognition they deserve, and act with integrity in their use, evaluation and presentation of facts, data and documents." 1) 2) 3) Gander, K., 3D Printed Pelvis Helps Man with Rare Bone Cancer Keep Walking, The Independent Newspaper (2014,Şubat 10). 4) Laurance, J., Splint Made by 3D Printer Used to Save Baby s Life, The Independent Newspaper (2013, May 23). 5) Sean V Murphy, Anthony Atala, 3D bioprinting of tissues and organs, Nature Biotechnology, 32, (2014) 6) Keller, T., Recent all-composite and hybrid fiber reinforced polymer bridges and buildings, Prog. Struct. Eng. Mater. 3 (2001) ) Ramanathan T.,, A.A. Abdala, S. Stankovich, D.A Dikin, M. Herrera-Alonso, R.D Piner, D.H. Adamson, H.C Schniepp, X. Chen, R.S. Rouoff, S.T. Nguyen, I.A. Aksay, R.K. Prud Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnology, 3 (2008), ) 9) Technology_Download.pdf 10) MakerBot Replicator Mini Cpmpact 3D printer Reference Guide

Rapid Prototyping Rev II

Rapid Prototyping Rev II Rapid Prototyping Rev II D R. T A R E K A. T U T U N J I R E V E R S E E N G I N E E R I N G P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 5 Prototype A prototype can be defined as a model

More information

3D Printing in the FIRST Community. IN FIRST FORUMS Rufus Cochran 10/22/2016

3D Printing in the FIRST Community. IN FIRST FORUMS Rufus Cochran 10/22/2016 3D Printing in the FIRST Community IN FIRST FORUMS Rufus Cochran 10/22/2016 Hello, I am Rufus Cochran 447 student from 2001 to 2006 From Co-Operation FIRST to Aim High FIRST mentor for a decade 447 and

More information

3D PRINTING TECHNOLOGY

3D PRINTING TECHNOLOGY ABSTRACT 3D PRINTING TECHNOLOGY Mrs. Rita S. Pimpalkar Mr. Akshay D. Gosavi Mr. Pavankumar K. Godase Mr. Nandkishor B. Gutte 3D printing is a process of making a three -dimensional solid objects from a

More information

3D PRINTING 1. INTRODUCTION 2. HISTORY 3. GENERAL PRINCIPLES 4. WORKFLOW 5. APPLICATIONS 6. CONCLUSION CONTENT: 12 DECEMBER 2017 PETR VALENTA

3D PRINTING 1. INTRODUCTION 2. HISTORY 3. GENERAL PRINCIPLES 4. WORKFLOW 5. APPLICATIONS 6. CONCLUSION CONTENT: 12 DECEMBER 2017 PETR VALENTA 3D PRINTING 1 12 DECEMBER 2017 PETR VALENTA CONTENT: 1. INTRODUCTION 2. HISTORY 3. GENERAL PRINCIPLES 4. WORKFLOW 5. APPLICATIONS 6. CONCLUSION 1. Introduction 2 2005 2007, Software: Blender 1. Introduction

More information

Figure 1

Figure 1 Figure 1 http://www.geeky-gadgets.com/wp-content/uploads/2013/11/robox-3d-printer5.jpg Table of Contents What 3D printing is... 1 How does 3D Printing work?... 1 Methods and technologies of 3D Printing...

More information

HP 3D Multi Jet Fusion DYNAGRAPH 08/05/2018

HP 3D Multi Jet Fusion DYNAGRAPH 08/05/2018 HP 3D Multi Jet Fusion DYNAGRAPH 08/05/2018 1 Contents DISRUPT TO CREAT CHANGE CURRENT AVAILABLE 3D TECHNOLOGIES WHAT MAKES HP 3D MJF DIFFERENT HOW HP 3D MJF WORKS POST FINISHING MATERIALS MARKET OPPORTUNITIES

More information

3D Printed Droid Parts

3D Printed Droid Parts 3D Printed Droid Parts 1 8/6/13 02:45:36 PM Outline Background of 3D Printing Typical 3D Printers The 3D Printing Process 3D Printing Capabilities & Limitations Designing Parts for 3D printing Foibles

More information

3D Printing 101 THE BASICS BASICS OF THE PRINTER

3D Printing 101 THE BASICS BASICS OF THE PRINTER 3D Printing 101 Are you completely new to 3D printing? Don t worry, we ll help you get started. Whether you are in education, business, or interested for personal use, here is some background to help you

More information

3D Printing Technologies and Materials. Klaus Gargitter

3D Printing Technologies and Materials. Klaus Gargitter 3D Printing Technologies and Materials Klaus Gargitter Agenda 3D Printing Technologies and Materials 3D printing technologies SLA /DLP CLIP/CDLP Material Jetting SLS FDM Near Future 3D Printing technologies

More information

3D printing as an inspiring technology for challenges in 21 st century

3D printing as an inspiring technology for challenges in 21 st century 3D printing as an inspiring technology for challenges in 21 st century Marianna Zichar zichar.marianna@inf.unideb.hu/homepage University of Debrecen Faculty of Informatics HUNGARY 18.05.2017, Valencia

More information

DESIGN AND DEVELOPMENT OF A FUSED DEPOSITION MODELLING RAPID PROTOTYPING MACHINE

DESIGN AND DEVELOPMENT OF A FUSED DEPOSITION MODELLING RAPID PROTOTYPING MACHINE International Journal of Advances in Scientific Research and Engineering (ijasre) E-ISSN : 2454-8006 Vol.3, Special Issue 1 Aug - 2017 DESIGN AND DEVELOPMENT OF A FUSED DEPOSITION MODELLING RAPID PROTOTYPING

More information

EXPLORING THE OPPORTUNITIES FOR PEEK IN 3D PRINTING

EXPLORING THE OPPORTUNITIES FOR PEEK IN 3D PRINTING EXPLORING THE OPPORTUNITIES FOR PEEK IN 3D PRINTING Martin Court Managing Director, Medical & Emerging Businesses Victrex plc 11 December 2017 N+1 Singer 290m+ sales 23% ROCE (10 year average) Operating

More information

MDMD Rapid Product Development

MDMD Rapid Product Development MSc in Manufacturing and Welding Engineering Design - Dr.-Eng. Antonios Lontos Department of Mechanical Engineering School of Engineering and Applied Sciences Frederick University 7 Y. Frederickou Str.,

More information

TTH 3D Printing Handbook

TTH 3D Printing Handbook A Guide to Understanding and Applying the 3D Printing Process Page 2 The technology and techniques of 3D printing and additive manufacturing have drastically changed and improved over the years. These

More information

3D PRINTER USING ARDUINO 644p FIRMWARE

3D PRINTER USING ARDUINO 644p FIRMWARE International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 3D PRINTER USING ARDUINO 644p FIRMWARE Samarshi Baidya 1, Manyala

More information

Sharif University of Technology. Session # Rapid Prototyping

Sharif University of Technology. Session # Rapid Prototyping Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology Session # Rapid Prototyping Contents: Rapid prototyping and manufacturing RP primitives Application

More information

THE EXAMPLE OF A PEN HOLDER PRODUCTION IN 3D PRINTER

THE EXAMPLE OF A PEN HOLDER PRODUCTION IN 3D PRINTER THE EXAMPLE OF A PEN HOLDER PRODUCTION IN 3D PRINTER IZZAT KASS HANNA Abstract This article describes the production of a simple shape (pen holder) by 3D printer using Fused Deposition Modelling, the features,

More information

3D Printing. Kenny George

3D Printing. Kenny George 3D Printing Kenny George What is 3D printing 3D printing is form or rapid prototyping that allows for one off manufacturing of physical objects. There are many types of 3D printing applications: SLS -

More information

3D Printing Process Using Fused Deposition Modelling (FDM)

3D Printing Process Using Fused Deposition Modelling (FDM) 3D Printing Process Using Fused Deposition Modelling (FDM) Miss Urvashi Damor 1, Prof. Tushar J Raval 2, Prof. Karishma A chaudhary 3 1 M.tech Student, Computer engineering, L.D. College of Engineering,

More information

3D Printing For Dummies

3D Printing For Dummies 3D Printing For Dummies Kalani Kirk Hausman, Richard Horne ISBN: 978-1-118-66075-1 384 pages January 2014 Description Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer

More information

Additive Manufacturing (AM) in a Nutshell Spring 2016 Nick Meisel

Additive Manufacturing (AM) in a Nutshell Spring 2016 Nick Meisel Additive Manufacturing (AM) in a Nutshell Spring 2016 Nick Meisel Additive vs. Subtractive Manufacturing Traditional subtractive manufacturing involves the removal of unwanted material from a block of

More information

Additive manufacturing.

Additive manufacturing. Additive manufacturing carmelo.demaria@centropiaggio.unipi.it Building 3D object Building 3D object: subtractive Milling Turning Drilling Planning Sawing Grinding EDM Laser cutting Water jet cutting Building

More information

Lockheed Martin USB Hub Mounting Bracket. Figure 1 Final USB hub bracket design

Lockheed Martin USB Hub Mounting Bracket. Figure 1 Final USB hub bracket design Lockheed Martin USB Hub Mounting Bracket Figure 1 Final USB hub bracket design Team 3 Engineering Design 100 Amanda Kelly: amk6163@psu.edu Dr. Ritter Julia Leybin: jml6428@psu.edu Section 22 Clare McHugh:

More information

3D Printing for Manufacturing: Hype or Reality?

3D Printing for Manufacturing: Hype or Reality? DECEMBER 20, 2012 3D Printing for Manufacturing: Hype or Reality? By Scott Evans and Sal Spada Keywords Additive Manufacturing, 3D Printing, CAD/CAM Software, Rapid Prototyping, Direct Manufacturing, Rapid

More information

VINTAGE COMPUTER DESIGN AND REPAIR WITH 3D PRINTING J. ALEXANDER JACOCKS

VINTAGE COMPUTER DESIGN AND REPAIR WITH 3D PRINTING J. ALEXANDER JACOCKS VINTAGE COMPUTER DESIGN AND REPAIR WITH 3D PRINTING J. ALEXANDER JACOCKS INTRODUCTION A BRIEF HISTORY OF 3D PRINTING 1981: Hideo Kodama, from Nagoya Municipal Industrial Research Institute, describes a

More information

Who Are We? Who is CTC? 10/13/2017. Simulation 2017: Collaborate, Create, Elevate

Who Are We? Who is CTC? 10/13/2017. Simulation 2017: Collaborate, Create, Elevate Who Are We? Josh Radle 3 years at CTC Experience: VR, 3D Printing, Training, Visualization Software A.A. in 3D Art & Animation A.A. in Visual Effects and Motion Graphics Kiefer Paulson 3D Generalist, Game

More information

3D Printing. Technology, Applications, and Selection

3D Printing. Technology, Applications, and Selection 3D Printing. Technology, Applications, and Selection Dr. Rafiq Noorani Professor and Graduate Director of Department of Mechanical Engineering Fellow of ASME Loyola Marymount University Los Angeles, CA,

More information

Keywords: Rapid Prototyping (RP), Fused Deposition Modeling (FDM), Geneva Mechanism.

Keywords: Rapid Prototyping (RP), Fused Deposition Modeling (FDM), Geneva Mechanism. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Prototype of Mechanisms using Fused Deposition Modelling Process Mr. Shrikant B. Gawas *, Mr.Pranit M. Patil *# Assistant Professor,

More information

INNOVATIONS IN 3D PRINTING MATERIALS FOR ADDITIVE MANUFACTURING. Dr Mike J Idacavage, Amelia Davenport and Dr Neil Cramer

INNOVATIONS IN 3D PRINTING MATERIALS FOR ADDITIVE MANUFACTURING. Dr Mike J Idacavage, Amelia Davenport and Dr Neil Cramer INNOVATIONS IN 3D PRINTING MATERIALS FOR ADDITIVE MANUFACTURING Dr Mike J Idacavage, Amelia Davenport and Dr Neil Cramer Introduction Prototyping Targeted Performance Properties Improve the dimensional

More information

3d Building Model Printing

3d Building Model Printing Volume 6 Issue V, May 2018- Available at www.ijraset.com 3d Building Model Printing Vidula Waskar 1, Gautami Ugale 2, Akshaya Taralekar 3 1 Assistant Professor, 2, 3 Student, Department of Civil Engineering,

More information

State of 3D Printing. Survey Results. A review of 3D Printing in southeastern Wisconsin

State of 3D Printing. Survey Results. A review of 3D Printing in southeastern Wisconsin State of 3D Printing Survey Results A review of 3D Printing in southeastern Wisconsin Introduction In December of 2017, Big Systems conducted an online survey entitled The State of 3D Printing in Southeastern

More information

A Review on 3D Printing and Technologies Used For Developing 3D Models

A Review on 3D Printing and Technologies Used For Developing 3D Models A Review on 3D Printing and Technologies Used For Developing 3D Models Priyanka Takalkar 1, Prof. A. S. Patel 2 ME Scholar 1, Asst. Prof. 2, Departme nt of E & TC, MSSCET, Jalna ABSTRACT This paper presents

More information

Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques

Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques L. Francis Xavier 1, Dr. D. Elangovan 2, N.Subramani 3, R.Mahesh 4 Assistant Professor, Department of Mechanical Engineering,

More information

MODERN RAPID 3D PRINTER - A DESIGN REVIEW

MODERN RAPID 3D PRINTER - A DESIGN REVIEW International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 3, May June 2016, pp.29 37, Article ID: IJMET_07_03_003 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=3

More information

3D Printing. Bringing new dimensions to advanced visualization A FEATURED EBOOK

3D Printing. Bringing new dimensions to advanced visualization A FEATURED EBOOK A FEATURED EBOOK 3D Printing Bringing new dimensions to advanced visualization A 3D Printing CONTENTS 3 4 5 6 7 8 What is 3D Printing? Obstacles to Widespread Adoption Voxels to Vectors Printers and Materials

More information

3D Printing Examining the Myths. Olaf Diegel

3D Printing Examining the Myths. Olaf Diegel 3D Printing Examining the Myths Olaf Diegel From A to Z Life before academia Subtractive Manufacturing You want to make a bust of yourself... The really old way: Take a block of material and carve it out

More information

3D Printing: With POLAR3D

3D Printing: With POLAR3D 3D Printing: With POLAR3D Buttercup The Duck Buttercup The Duck Nike Prototype Nike Prototype ow does 3D Printing work? What is 3D Printing? Additive Manufacturing is the process of making a 3D, solid

More information

MarketsandMarkets

MarketsandMarkets GLOBAL ADDITIVE MANUFACTURING MARKET By Application [Medical Devices, Automotives, & Aerospace] & Technology [3D Printing, Laser Sintering, Stereolithography, Fused Deposition Modeling, Electron Beam Melting,

More information

The Future of 3D Printing. Michael Wilson 3M Buckley Innovation Centre, Huddersfield

The Future of 3D Printing. Michael Wilson 3M Buckley Innovation Centre, Huddersfield The Future of 3D Printing Michael Wilson 3M Buckley Innovation Centre, Huddersfield What will be covered What the 3D printing process is like What is on the horizon in terms of Potential business threats

More information

3D Printing for Architects with MakerBot

3D Printing for Architects with MakerBot 3D Printing for Architects with MakerBot Matthew B. Stokes Chapter No. 1 "A Primer on 3D Printing" In this package, you will find: A Biography of the author of the book A preview chapter from the book,

More information

Rapid prototyping for engineers.

Rapid prototyping for engineers. Rapid prototyping for engineers carmelo.demaria@centropiaggio.unipi.it 3D world A picture says than 1000 words...... a model tells the whole story Building 3D object Building 3D object: subtractive Milling

More information

Feasibility of 3D Printed Patient specific Phantoms for IMRT QA and Other Dosimetric Special Procedures

Feasibility of 3D Printed Patient specific Phantoms for IMRT QA and Other Dosimetric Special Procedures Feasibility of 3D Printed Patient specific Phantoms for IMRT QA and Other Dosimetric Special Procedures ehler 046@umn.edu Eric Ehler, PhD Assistant Professor Department of Radiation Oncology What is 3D

More information

3D Printing. Rob Miles. Department of Computer Science University of Hull

3D Printing. Rob Miles. Department of Computer Science University of Hull 3D Printing Rob Miles Department of Computer Science University of Hull Agenda 3D Printing Overview 3D Printing Workflow Design something and Print it The future of 3D Printing 2 Printing Not that many

More information

Stratasys 3D Printing Systems

Stratasys 3D Printing Systems Stratasys 3D Printing Systems Alessio Caldano Technimold 1 ST RATASYS / THE 3D PRINTING SOLUTIONS COMPANY 2 ST RATASYS / THE 3D PRINTING SOLUTIONS COMPANY ABOUT 3D PRINTING ABOUT STRATASYS We help designers,

More information

3D SCANNING & 3D PRINTING. 2/21/2019 GINGER CHICOS and JUAN PINTO

3D SCANNING & 3D PRINTING. 2/21/2019 GINGER CHICOS and JUAN PINTO 3D SCANNING & 2/21/2019 GINGER CHICOS and JUAN PINTO TYPES OF 3D SCANNERS MOST COMMONLY USED IN CONSTRUCTION LASER PULSE (LIDAR) STRUCTURED LIGHT PHOTOGRAMMETRY 3D SCANNING TYPES OF 3D SCANNERS LASER

More information

New product design using prototype manufacturing using CAD-CAM-CAE 3D printing and Analysis

New product design using prototype manufacturing using CAD-CAM-CAE 3D printing and Analysis New product design using prototype manufacturing using CAD-CAM-CAE 3D printing and Analysis Tapasya.Borate 1, R.S Shelake 2 1 Student, Mechanical, SVIT, Maharashtra, India 2 Professors, Mechanical, SVIT,

More information

CNC Based 3D Printer using Arduino

CNC Based 3D Printer using Arduino CNC Based 3D Printer using Arduino Prof. Sanjay Sonar 1, Deepak Tiwari 2, Rahul Wagh 3, Snehal Utekar 4, Ashwini Thete 5 1 Prof. Sanjay V. Sonar,Electronics and Telecommunication Engineering, Konkan Gyanpeeth

More information

3D PRINTING TECHNIQUES AND RAPID PROTOTYPING. Distributed in Australia by: Document Solutions

3D PRINTING TECHNIQUES AND RAPID PROTOTYPING. Distributed in Australia by: Document Solutions 3D PRINTING TECHNIQUES AND RAPID PROTOTYPING Distributed in Australia by: Document Solutions CONTENTS INTRODUCTION 3 3D PRINTING PROCESS 4 3D PRINTING TECHNOLOGIES 6 FUSED FILAMENT FABRICATION 7 STEREO-LITHOGRAPHY

More information

Intro to 3D Printing. Stelian Coros

Intro to 3D Printing. Stelian Coros Intro to 3D Printing Stelian Coros What is it and how does it work? *additive manufacturing An Example An Example 3D Printing: how it started Chuck Hull, father of 3D Printing Came up with the idea in

More information

3D Printing. Rob Miles. Department of Computer Science University of Hull

3D Printing. Rob Miles. Department of Computer Science University of Hull 3D Printing Rob Miles Department of Computer Science University of Hull Agenda 3D Printing Overview 3D Printing Workflow Design something and Print it The future of 3D Printing Printing Not that many years

More information

EVALUATION OF ACCURACY AND USEFULLNES OF OPTICAL ENCODER MADE WITH 3D PRINTER

EVALUATION OF ACCURACY AND USEFULLNES OF OPTICAL ENCODER MADE WITH 3D PRINTER EVALUATION OF ACCURACY AND USEFULLNES OF OPTICAL ENCODER MADE WITH 3D PRINTER M.Sc. Eng Wiktor Harmatys, M.Sc. Eng Piotr Gąska, M.Sc. Eng Maciej Gruza, Abstract Rapid Prototyping Techniques allow to put

More information

We have two types of plastic printer (Makerbot and Up) and one powder printer at School of Architecture.

We have two types of plastic printer (Makerbot and Up) and one powder printer at School of Architecture. 3D printers are rapid prototyping tools which make solid, threedimensional objects out of melted plastic filament. Digital models are translated into instructions for the 3D printer (3d models are converted

More information

The Impact of Temperature Changing on Dimensional Accuracy of FFF process

The Impact of Temperature Changing on Dimensional Accuracy of FFF process The Impact of Temperature Changing on Dimensional Accuracy of FFF process CHAIDAS DIMITRIOS 1, NIKOS MASTORAKIS 2, JOHN KECHAGIAS 1 1 Mechanical Engineering Department, Technological Educational Institute

More information

3D PRINTING METHODS AND TECHNOLOGIES: A SURVEY

3D PRINTING METHODS AND TECHNOLOGIES: A SURVEY 3D PRINTING METHODS AND TECHNOLOGIES: A SURVEY Aayush Srivastava 1, Akshat Singhal 2, Aman Sachan 3 1,2,3 Author Student, Computer Engineering, Bharati Vidyapeeth Deemed University C.O.E, Pune, Maharashtra,

More information

Additive Manufacturing Technology Development: A Trajectory Towards Industrial Revolution

Additive Manufacturing Technology Development: A Trajectory Towards Industrial Revolution American Journal of Mechanical and Industrial Engineering 2018; 3(5): 80-90 http://www.sciencepublishinggroup.com/j/ajmie doi: 10.11648/j.ajmie.20180305.12 ISSN: 2575-6079 (Print); ISSN: 2575-6060 (Online)

More information

Maximizing your 3D Printing Workflow

Maximizing your 3D Printing Workflow Maximizing your 3D Printing Workflow Integration of Solid Edge & 3YOURMIND The Solid Edge-3YOURMIND print service portal provides an end-to-end additive manufacturing solution (AM) for product development.

More information

Rapid Prototyping Technologies

Rapid Prototyping Technologies 15-294 Rapid Prototyping Technologies Instructor: Dave Touretzky TAs: Meg Richards Adam Moran Chase Klingensmith 5.0 Units / 7 Weeks (Mini) http://www.cs.cmu.edu/afs/cs/academic/class/15294t-s16 1 2 Three

More information

Chapter 2. Literature Review

Chapter 2. Literature Review Chapter 2 Literature Review This chapter reviews the different rapid prototyping processes and process planning issues involved in rapid prototyping. 2.1 Rapid Prototyping Processes Most of the rapid prototyping

More information

An introduction to. the Additive Direct Digital Manufacturing (DDM) Value Chain. Terrence J. McGowan Associate Technical Fellow Boeing

An introduction to. the Additive Direct Digital Manufacturing (DDM) Value Chain. Terrence J. McGowan Associate Technical Fellow Boeing An introduction to the Additive Direct Digital Manufacturing (DDM) Value Chain Terrence J. McGowan Associate Technical Fellow Boeing Copyright 2015 2014 Boeing. All rights reserved. GPDIS_2015.ppt 1 Intro

More information

3D Printing and Simulation of Naturally-Randomized Cellular-Automata

3D Printing and Simulation of Naturally-Randomized Cellular-Automata 3D Printing and Simulation of Naturally-Randomized Cellular-Automata Yasusi Kanada Dasyn.com, Japan yasusi@kanadas.com Abstract: 3D printing technology usually aims reproducing objects deterministically

More information

GEEETECH. Me Creator2 printers contain heated moving parts. Never reach inside the printer while it is in operation or before it has cooled down.

GEEETECH. Me Creator2 printers contain heated moving parts. Never reach inside the printer while it is in operation or before it has cooled down. ME CREATOR 2 SAFETY INSTRUCTION Do read all the instructions and cautionary markings in this manual before operating your Me Creator. Me Creator2 printers contain heated moving parts. Never reach inside

More information

Telangana INDIA

Telangana INDIA A COMPARATIVE STUDY ON THE COMPONENTS FABRICATED BY INJECTION MOULDING AND FDM 3D PRINTING PROCESS 1 L. SIVA RAMA KRISHNA, 2 ASHOK GUNDETI 1,2 Dept. of Mechanical Engineering, University College of Engineering,

More information

Self-organized 3D-printing Patterns Simulated by Cellular Automata

Self-organized 3D-printing Patterns Simulated by Cellular Automata Self-organized 3D-printing Patterns Simulated by Cellular Automata Yasusi Kanada Dasyn.com yasusi@kanadas.com Abstract. 3D printers are usually used for printing objects designed by 3D CAD exactly, i.e.,

More information

Research on the Key Technology of Continuous Carbon Fiber Composite 3D Printing

Research on the Key Technology of Continuous Carbon Fiber Composite 3D Printing Research on the Key Technology of Continuous Carbon Fiber Composite 3D Printing Fan Zhang, Peizhen Jiang *, Yuegang Tan School of Mechanical and Electrical Engineering, Wuhan University of Technology,

More information

Example: Resolution of 1024X 768 (1024 screens dots going across and 768 from top to bottom)

Example: Resolution of 1024X 768 (1024 screens dots going across and 768 from top to bottom) Monitors Monitors, commonly called as Visual Display Unit (VDU), are the main output device of a computer. It forms images from tiny dots, called pixels or picture elements that are arranged in a rectangular

More information

Available online at ScienceDirect. Procedia Engineering 149 (2016 )

Available online at   ScienceDirect. Procedia Engineering 149 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 149 (2016 ) 100 104 International Conference on Manufacturing Engineering and Materials, ICMEM 2016, 6-10 June 2016, Nový Smokovec,

More information

Click to edit Master title style

Click to edit Master title style Click to edit Master title style Accelerating Products to Marketing with Additive Manufacturing Digital Solution overview for Nanoinnovation 2017, Rome, Italy Davide Malacalza 1 Sales Enablement & Marketing

More information

Additive Manufacturing

Additive Manufacturing Additive Manufacturing Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur March 28, 2018 Outline Introduction to Additive Manufacturing Classification of Additive Manufacturing Systems Introduction

More information

--3D Printing and beyond Desktop manufacture and its application in scientific research

--3D Printing and beyond Desktop manufacture and its application in scientific research --3D Printing and beyond Desktop manufacture and its application in scientific research Find me on Linked-in And join the: Song Xu, Ph.D. Sr. Application scientist Desktop Manufacturing Makes It Possible

More information

Revamp High School Engineering, Technology and STEM Courses on Any Budget

Revamp High School Engineering, Technology and STEM Courses on Any Budget 1 Revamp High School Engineering, Technology and STEM Courses on Any Budget Teaching students to apply science, technology, engineering, and math (STEM) concepts to solve complex, open-ended problems in

More information

Gantry Melting 3D Printer

Gantry Melting 3D Printer Gantry Melting 3D Printer Hongzhi Chen 1, a 1 School of Shandong, Shandong University of Science and Technology, Qingdao, 266590, China. Abstract a 835889654@qq.com 3D printing technology is a new manufacturing

More information

Computer Graphics at University of Toronto

Computer Graphics at University of Toronto Computer Graphics at University of Toronto 2 Modeling 5 Geometry Processing is biology 6 Geometry processing studies the life of a shape birth e.g., scan of a physical object or modeling in Maya 7 Geometry

More information

Enter an environment of professional 3D printing

Enter an environment of professional 3D printing Enter an environment of professional 3D printing Introduction Meet the Zortrax M200 Zortrax M200 3D printer transforms virtual projects into three-dimensional reality. It is used to prototype and create

More information

SURVEY OF RAPID PROTOTYPING TECHNOLOGY IN MECHANICAL SCALE MODELS

SURVEY OF RAPID PROTOTYPING TECHNOLOGY IN MECHANICAL SCALE MODELS SURVEY OF RAPID PROTOTYPING TECHNOLOGY IN MECHANICAL SCALE MODELS 1 NISHAN SHETTY, 2 NISCHITH SHETTY 1,2 Mechanical Engineering Department, DayanandaSagar College of Engineering, Bangalore, India Email:

More information

René van der Meer Lead Technologist Industrial printing R&D Océ-A Canon Company

René van der Meer Lead Technologist Industrial printing R&D Océ-A Canon Company René van der Meer Lead Technologist Industrial printing R&D Océ-A Canon Company 1 Fieldlab Multi Material 3D Start 2016: Co-creation platform for Multi Material Additive Manufacturing Innovation projects:

More information

Star Trek TNG 1987 Replicator

Star Trek TNG 1987 Replicator Star Trek TNG 1987 Replicator Engineering Technology Department Three Programs Leading to A.S. Degree Manufacturing Engineering Technologist Nano Engineering Technology Industrial Engineering Technician

More information

FACT SHEET A LEADING 3D PRINTER MANUFACTURER 15 YEARS OF 3D PRINTING LOCATIONS AROUND THE GLOBE

FACT SHEET A LEADING 3D PRINTER MANUFACTURER 15 YEARS OF 3D PRINTING LOCATIONS AROUND THE GLOBE FACT SHEET A LEADING 3D PRINTER MANUFACTURER EnvisionTEC is a leading global provider of professional-grade 3D printing solutions. The company s technologies are used to rapidly build precise, functional

More information

Computer Aided Engineering Applications 3. Advanced Manufacturing 3.5 NC programming 3.6 Automated Manufacturing systems 3.7 Rapid prototyping

Computer Aided Engineering Applications 3. Advanced Manufacturing 3.5 NC programming 3.6 Automated Manufacturing systems 3.7 Rapid prototyping Computer Aided Engineering Applications 3. Advanced Manufacturing 3.5 NC programming 3.6 Automated Manufacturing systems 3.7 Rapid prototyping Engi 6928 - Fall 2014 3.5 Part programming Structure of an

More information

The Importance Role of 3D Printing in India Innovation

The Importance Role of 3D Printing in India Innovation IJIRST International Journal for Innovative Research in Science & Technology Volume 5 Issue 5 October 2018 ISSN (online): 2349-6010 The Importance Role of 3D Printing in India Innovation Ankur Srivastav

More information

3D-printing plates without support

3D-printing plates without support 3D-printing plates without support Yasusi Kanada Dasyn.com Not yet published in conferences or journals When printing a plate (dish) using a 3D printer, normally, so-called support material, which is disposed

More information

ELEC 391 3D Printing D Printing ECE Lightning Lab. 3D Printing

ELEC 391 3D Printing D Printing ECE Lightning Lab. 3D Printing 3D Printing ECE Lightning Lab 3D Printing Fused Deposition Modeling (FDM) Extrusion printing Plastic melted and extruded to create features layer by layer PLA (polylactic acid) ABS (acrylonitrile butadiene

More information

Hybrid LENS CNC Machine. A Joint Project to Accelerate Industry Adoption of Metal Additive Manufacturing

Hybrid LENS CNC Machine. A Joint Project to Accelerate Industry Adoption of Metal Additive Manufacturing Hybrid LENS CNC Machine A Joint Project to Accelerate Industry Adoption of Metal Additive Manufacturing America Makes Project Call Develop A Cost Effective Method to Accelerate Adoption of Metal Additive

More information

industrial 3d printing made easy Fastest Time to Fabricated Part

industrial 3d printing made easy Fastest Time to Fabricated Part industrial 3d printing made easy Fastest Time to Fabricated Part DEMYSTIFYING AUGMENTED DEPOSITIOn Rize Inc. 4C Gill Street, Woburn, MA 01801, USA (978) 699-3085 info@rize3d.com www.rize3d.com INTRODUCTION

More information

Methods for increasing customization in rapid machining patient-specific bone implants

Methods for increasing customization in rapid machining patient-specific bone implants Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Methods for increasing customization in rapid machining patient-specific bone implants Shawn Spencer Iowa

More information

Analogue Processes, Additive Manufacturing and RepRap

Analogue Processes, Additive Manufacturing and RepRap Analogue Processes, Additive Manufacturing and RepRap Adrian Bowyer 9 March 2012 5 ways to make things 1. Cut 5 ways to make things 2. Bend 5 ways to make things 3. Mould 5 ways to make things 4. Add 5

More information

Overview. A fact sheet from Feb 2015

Overview. A fact sheet from Feb 2015 A fact sheet from Feb 2015 U.S. Department of Energy Public-Private Partnerships Give the United States an Edge in Manufacturing Federal investment in scientific discovery and technology is vital to maintaining

More information

Additive manufacturing with NX

Additive manufacturing with NX Additive manufacturing with processes. By using you have the power to drive the latest additive manu facturing equipment, including powder bed 3D printers. Delivering design, simulation and manufacturing

More information

Dr. Charles Browning Director, Materials & Manufacturing Air Force Research Laboratory

Dr. Charles Browning Director, Materials & Manufacturing Air Force Research Laboratory Dr. Charles Browning Director, Materials & Manufacturing Air Force Research Laboratory Locations & Facilities Aerospace materials & manufacturing leadership for the Air Force & the Nation WPAFB, OH LA

More information

3D Printing A Processing Approach CONTENTS

3D Printing A Processing Approach CONTENTS 3D Printing A Processing Approach 1 CONTENTS 3D Printing Workflow Digital Modeling Simple Rules for Printable Model Digital Modeling Tools Case 1 Battery Cover Case 2 Housing Case 3 Broken Edge Repair

More information

Case study: Bringing 3D Printed Electronics into Mass Production Lessons Learned

Case study: Bringing 3D Printed Electronics into Mass Production Lessons Learned Case study: Bringing 3D Printed Electronics into Mass Production Lessons Learned Mike O Reilly Optomec, Inc. Henrik Johansson LiteON Mobile Mechanical About Optomec Leader in Printed Electronics and Additive

More information

3D Printing Training Guide (FDM)

3D Printing Training Guide (FDM) 3D Printing Training Guide (FDM) Introduction 3D printing is coming out of its status as an emerging manufacturing technique and becoming a more commonly accepted means of manufacturing. This is due to

More information

Vat Photopolymerization

Vat Photopolymerization Kon-15.4126 Production Technology, Special Topics Vat Photopolymerization Pekka Lehtinen pekka.a.lehtinen@aalto.fi Content Vat photopolymerization Photopolymerization Stereolithography Part fabrication

More information

3D Printing For Dummies Ebooks Free

3D Printing For Dummies Ebooks Free 3D Printing For Dummies Ebooks Free Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just aâ figment of your imagination. This remarkable technology is coming to

More information

Mechatronic Finger Structure with Pressure-Sensitive Conductive Layer

Mechatronic Finger Structure with Pressure-Sensitive Conductive Layer ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 21, Number 2, 2018, 139 150 Mechatronic Finger Structure with Pressure-Sensitive Conductive Layer O. G. DONŢU 1, A. BARBILIAN 3, C. FLOREA

More information

April 27, :38 9in x 6in B-741 b741-ch13 FA

April 27, :38 9in x 6in B-741 b741-ch13 FA CHAPTER 13 Inkjet 3D Printing Eduardo Napadensky Objet Geometries Ltd., Israel INTRODUCTION Inkjet three-dimensional (3D) Printing is a fast, flexible and cost effective technology which enables the construction

More information

Applied Finite Element Method Simulation in 3D Printing

Applied Finite Element Method Simulation in 3D Printing Applied Finite Element Method Simulation in 3D Printing M. Iliescu, E. Nuţu, B. Comănescu Abstract 3D printing, as part of Rapid Prototyping Technology, is a modern and efficient way of reducing product

More information

COMPILED BY MAKERBOT EDUCATION

COMPILED BY MAKERBOT EDUCATION COMPILED BY MAKERBOT EDUCATION Copyright 2015 by MakerBot www.makerbot.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means,

More information

Application of 3D printing technology in aerodynamic study

Application of 3D printing technology in aerodynamic study Journal of Physics: Conference Series OPEN ACCESS Application of 3D printing technology in aerodynamic study To cite this article: K Olasek and P Wiklak 2014 J. Phys.: Conf. Ser. 530 012009 View the article

More information

MANUFACTURING OPTIMIZING COMPONENT DESIGN

MANUFACTURING OPTIMIZING COMPONENT DESIGN 82 39 OPTIMIZING COMPONENT DESIGN MANUFACTURING SIMULATION OF LASER WELDING SHORTENS DESIGN CYCLE AND OPTIMIZES COMPONENT DESIGN AT OWENS CORNING JOHN KIRKLEY interviews BYRON BEMIS of Owens Corning It

More information

3D Printing M A R C O C A L L I E R I I S T I - C N R

3D Printing M A R C O C A L L I E R I I S T I - C N R 3D Printing M A R C O C A L L I E R I I S T I - C N R Chi sono? Marco Callieri Master degree & PhD in computer science Researcher at the Visual Computing Lab, ISTI-CNR, in Pisa I work on 3D data manipulation

More information