Topological Inference via Meshing

Size: px
Start display at page:

Download "Topological Inference via Meshing"

Transcription

1 Topological Inference via Meshing Benoit Hudson, Gary Miller, Steve Oudot and Don Sheehy SoCG 2010

2 Mesh Generation and Persistent Homology

3 The Problem Input: Points in Euclidean space sampled from some unknown object. Output: Information about the topology of the unknown object.

4 Points, offsets, homology, and persistence.

5 Points, offsets, homology, and persistence. Input: P R d

6 Points, offsets, homology, and persistence. Input: P R d P α = ball(p, α) p P

7 Points, offsets, homology, and persistence. Input: P R d P α = ball(p, α) p P

8 Points, offsets, homology, and persistence. Input: P R d P α = ball(p, α) p P

9 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P

10 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Compute the Homology

11 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Compute the Homology

12 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Compute the Homology

13 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Compute the Homology

14 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Compute the Homology

15 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Compute the Homology

16 Points, offsets, homology, and persistence. Offsets Input: P R d P α = ball(p, α) p P Persistent Compute the Homology

17 Persistence Diagrams

18 Persistence Diagrams

19 Persistence Diagrams Bottleneck Distance d B = max i p i q i

20 Approximate Persistence Diagrams Bottleneck Distance d B = max i p i q i

21 Approximate Persistence Diagrams Birth and Death times differ by a constant factor. Bottleneck Distance d B = max i p i q i

22 Approximate Persistence Diagrams Birth and Death times differ by a constant factor. Bottleneck Distance d B = max i p i q i This is just the bottleneck distance of the log-scale diagrams.

23 Approximate Persistence Diagrams Birth and Death times differ by a constant factor. Bottleneck Distance d B = max i p i q i This is just the bottleneck distance of the log-scale diagrams. log a log b log a b a b < ε < ε < 1 + ε

24 We need to build a filtered simplicial complex. Associate a birth time with each simplex in complex K. At time, we have a complex K consisting of all simplices born at or before time. time

25 There are two phases, one is geometric the other is topological. Geometry Build a filtration, i.e. a filtered simplicial complex. Topology (linear algebra) Compute the persistence diagram (Run the Persistence Algorithm).

26 There are two phases, one is geometric the other is topological. Geometry Build a filtration, i.e. a filtered simplicial complex. Topology (linear algebra) Compute the persistence diagram (Run the Persistence Algorithm). We ll focus on this side.

27 There are two phases, one is geometric the other is topological. Geometry Build a filtration, i.e. a filtered simplicial complex. Topology (linear algebra) Compute the persistence diagram (Run the Persistence Algorithm). We ll focus on this side. Running time: O(N 3 ). N is the size of the complex.

28 Idea 1: Use the Delaunay Triangulation

29 Idea 1: Use the Delaunay Triangulation Good: It works, (alpha-complex filtration).

30 Idea 1: Use the Delaunay Triangulation Good: It works, (alpha-complex filtration). Bad: It can have size n O(d).

31 Idea 2: Connect up everything close.

32 Idea 2: Connect up everything close. Čech Filtration: Add a k-simplex for every k+1 points that have a smallest enclosing ball of radius at most.

33 Idea 2: Connect up everything close. Čech Filtration: Add a k-simplex for every k+1 points that have a smallest enclosing ball of radius at most. Rips Filtration: Add a k-simplex for every k+1 points that have all pairwise distances at most.

34 Idea 2: Connect up everything close. Čech Filtration: Add a k-simplex for every k+1 points that have a smallest enclosing ball of radius at most. Rips Filtration: Add a k-simplex for every k+1 points that have all pairwise distances at most. Still n d, but we can quit early.

35 Our Idea: Build a quality mesh.

36 Our Idea: Build a quality mesh.

37 Our Idea: Build a quality mesh. We can build meshes of size 2 O(d 2 ) n.

38 Meshing Counter-intuition Delaunay Refinement can take less time and space than Delaunay Triangulation.

39 Meshing Counter-intuition Delaunay Refinement can take less time and space than Delaunay Triangulation. Theorem [Hudson, Miller, Phillips, 06]: A quality mesh of a point set can be constructed in O(n log ) time, where is the spread.

40 Meshing Counter-intuition Delaunay Refinement can take less time and space than Delaunay Triangulation. Theorem [Hudson, Miller, Phillips, 06]: A quality mesh of a point set can be constructed in O(n log ) time, where is the spread. Theorem [Miller, Phillips, Sheehy, 08]: A quality mesh of a well-paced point set has size O(n).

41 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

42 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

43 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

44 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

45 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

46 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

47 The α-mesh filtration 1. Build a mesh M. 2. Assign birth times to vertices based on distance to P (special case points very close to P). 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm.

48 Approximation via interleaving.

49 Approximation via interleaving. Definition: Two filtrations, {P α } and {Q α } are ε-interleaved if P α ε Q α P α+ε for all α.

50 Approximation via interleaving. Definition: Two filtrations, {P α } and {Q α } are ε-interleaved if P α ε Q α P α+ε for all α. Theorem [Chazal et al, 09]: If {P α } and {Q α } are ε-interleaved then their persistence diagrams are ε-close in the bottleneck distance.

51 The Voronoi filtration interleaves with the offset filtration.

52 The Voronoi filtration interleaves with the offset filtration.

53 The Voronoi filtration interleaves with the offset filtration.

54 The Voronoi filtration interleaves with the offset filtration.

55 The Voronoi filtration interleaves with the offset filtration. Theorem: For all α > r P, V α/ρ M P α V αρ M, where r P is minimum distance between any pair of points in P.

56 The Voronoi filtration interleaves with the offset filtration. Theorem: For all α > r P, V α/ρ M P α V αρ M, where r P is minimum distance between any pair of points in P. Finer refinement yields a tighter interleaving.

57 The Voronoi filtration interleaves with the offset filtration. Theorem: For all α > r P, V α/ρ M P α V αρ M, where r P is minimum distance between any pair of points in P. Finer refinement yields a tighter interleaving. Special case for small scales.

58 Geometric Approximation Topologically Equivalent

59 Geometric Approximation Topologically Equivalent

60 The Results Approximation ratio Complex Size 1. Build a mesh M. Previous Work 1 n O(d) 2. Assign birth times to vertices based on distance to P (special case points very close to P).** 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. 4. Feed this filtered complex to the persistence algorithm. Simple mesh filtration Over-refine the mesh Linear-Size Meshing

61 The Results Approximation ratio Complex Size 1. Build a mesh M. Previous Work 1 n O(d) 2. Assign birth times to vertices based on distance to P (special case points very close to P).** Simple mesh filtration ρ 2 O(d2) n log 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. Over-refine the mesh 4. Feed this filtered complex to the persistence algorithm. Linear-Size Meshing

62 The Results Approximation ratio Complex Size 1. Build a mesh M. Previous Work 1 n O(d) 2. Assign birth times to vertices based on distance to P (special case points very close to P).** Simple mesh filtration ρ =~3 2 O(d2) n log 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. Over-refine the mesh 4. Feed this filtered complex to the persistence algorithm. Linear-Size Meshing

63 The Results Approximation ratio Complex Size 1. Build a mesh M. Over-refine it. Previous Work 1 n O(d) 2. Assign birth times to vertices based on distance to P (special case points very close to P).** Simple mesh filtration ρ =~3 2 O(d2) n log 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. Over-refine the mesh 1 + ε ε O(d2) n log 4. Feed this filtered complex to the persistence algorithm. Linear-Size Meshing

64 The Results Approximation ratio Complex Size 1. Build a mesh M. Over-refine it. Use linear-size meshing. 2. Assign birth times to vertices based on distance to P (special case points very close to P).** Previous Work Simple mesh filtration 1 n O(d) ρ =~3 2 O(d2) n log 3. For each simplex s of Del(M), let birth(s) be the min birth time of its vertices. Over-refine the mesh 1 + ε ε O(d2) n log 4. Feed this filtered complex to the persistence algorithm. Linear-Size Meshing 1 + ε + 3θ (εθ) O(d2) n

65 Thank you.

Topological Inference via Meshing

Topological Inference via Meshing Topological Inference via Meshing Don Sheehy Theory Lunch Joint work with Benoit Hudson, Gary Miller, and Steve Oudot Computer Scientists want to know the shape of data. Clustering Principal Component

More information

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France A Multicover Nerve for Geometric Inference Don Sheehy INRIA Saclay, France Computational geometers use topology to certify geometric constructions. Computational geometers use topology to certify geometric

More information

Persistent Homology and Nested Dissection

Persistent Homology and Nested Dissection Persistent Homology and Nested Dissection Don Sheehy University of Connecticut joint work with Michael Kerber and Primoz Skraba A Topological Data Analysis Pipeline A Topological Data Analysis Pipeline

More information

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Tamal K. Dey Department of Computer Science and Engineering The Ohio State University Dey (2014) Computational Topology CCCG

More information

A Geometric Perspective on Sparse Filtrations

A Geometric Perspective on Sparse Filtrations CCCG 2015, Kingston, Ontario, August 10 12, 2015 A Geometric Perspective on Sparse Filtrations Nicholas J. Cavanna Mahmoodreza Jahanseir Donald R. Sheehy Abstract We present a geometric perspective on

More information

New Results on the Stability of Persistence Diagrams

New Results on the Stability of Persistence Diagrams New Results on the Stability of Persistence Diagrams Primoz Skraba Jozef Stefan Institute TAGS - Linking Topology to Algebraic Geometry and Statistics joint work with Katharine Turner and D. Yogeshwaran

More information

A fast and robust algorithm to count topologically persistent holes in noisy clouds

A fast and robust algorithm to count topologically persistent holes in noisy clouds A fast and robust algorithm to count topologically persistent holes in noisy clouds Vitaliy Kurlin Durham University Department of Mathematical Sciences, Durham, DH1 3LE, United Kingdom vitaliy.kurlin@gmail.com,

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Persistence stability for geometric complexes

Persistence stability for geometric complexes Lake Tahoe - December, 8 2012 NIPS workshop on Algebraic Topology and Machine Learning Persistence stability for geometric complexes Frédéric Chazal Joint work with Vin de Silva and Steve Oudot (+ on-going

More information

A Multicover Nerve for Geometric Inference

A Multicover Nerve for Geometric Inference A Multicover Nerve for Geometric Inference Donald R. Sheehy Abstract We show that filtering the barycentric decomposition of a Čech complex by the cardinality of the vertices captures precisely the topology

More information

Donald Sheehy. Education. Employment. Teaching. Grants and Funding

Donald Sheehy. Education. Employment. Teaching. Grants and Funding Donald Sheehy Computer Science & Engineering Department 371 Fairfield Way, Unit 4155 University of Connecticut Storrs, CT 06269-4155 Email: don.r.sheehy@gmail.com Homepage: donsheehy.net Phone: (860) 486-0006

More information

Homology and Persistent Homology Bootcamp Notes 2017

Homology and Persistent Homology Bootcamp Notes 2017 Homology and Persistent Homology Bootcamp Notes Summer@ICERM 2017 Melissa McGuirl September 19, 2017 1 Preface This bootcamp is intended to be a review session for the material covered in Week 1 of Summer@ICERM

More information

Computational Geometry Learning

Computational Geometry Learning Computational Geometry Learning Jean-Daniel Boissonnat Frédéric Chazal Geometrica, INRIA http://www-sop.inria.fr/geometrica Lectures at MPRI MPRI Computational Geometry Learning Lectures at MPRI 1 / 14

More information

Observing Information: Applied Computational Topology.

Observing Information: Applied Computational Topology. Observing Information: Applied Computational Topology. Bangor University, and NUI Galway April 21, 2008 What is the geometric information that can be gleaned from a data cloud? Some ideas either already

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

Geometric Inference. 1 Introduction. Frédéric Chazal 1 and David Cohen-Steiner 2

Geometric Inference. 1 Introduction. Frédéric Chazal 1 and David Cohen-Steiner 2 Geometric Inference Frédéric Chazal 1 and David Cohen-Steiner 2 1 INRIA Futurs, 4 rue Jacques Monod - 91893 Orsay Cedex France frederic.chazal@inria.fr 2 INRIA Sophia-Antipolis, 2004 route des lucioles

More information

Geometric Data. Goal: describe the structure of the geometry underlying the data, for interpretation or summary

Geometric Data. Goal: describe the structure of the geometry underlying the data, for interpretation or summary Geometric Data - ma recherche s inscrit dans le contexte de l analyse exploratoire des donnees, dont l obj Input: point cloud equipped with a metric or (dis-)similarity measure data point image/patch,

More information

Random Simplicial Complexes

Random Simplicial Complexes Random Simplicial Complexes Duke University CAT-School 2015 Oxford 8/9/2015 Part I Random Combinatorial Complexes Contents Introduction The Erdős Rényi Random Graph The Random d-complex The Random Clique

More information

Geometric Inference. 1 Introduction. Frédéric Chazal 1 and David Cohen-Steiner 2

Geometric Inference. 1 Introduction. Frédéric Chazal 1 and David Cohen-Steiner 2 Geometric Inference Frédéric Chazal 1 and David Cohen-Steiner 2 1 INRIA Futurs, 4 rue Jacques Monod - 91893 Orsay Cedex France frederic.chazal@inria.fr 2 INRIA Sophia-Antipolis, 2004 route des lucioles

More information

A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations

A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations Don Sheehy INRIA Saclay, France soon: UConn Joint work with Gary Miller at CMU Voronoi Diagrams Voronoi Diagrams The Voronoi

More information

Data Analysis, Persistent homology and Computational Morse-Novikov theory

Data Analysis, Persistent homology and Computational Morse-Novikov theory Data Analysis, Persistent homology and Computational Morse-Novikov theory Dan Burghelea Department of mathematics Ohio State University, Columbuus, OH Bowling Green, November 2013 AMN theory (computational

More information

Estimating Geometry and Topology from Voronoi Diagrams

Estimating Geometry and Topology from Voronoi Diagrams Estimating Geometry and Topology from Voronoi Diagrams Tamal K. Dey The Ohio State University Tamal Dey OSU Chicago 07 p.1/44 Voronoi diagrams Tamal Dey OSU Chicago 07 p.2/44 Voronoi diagrams Tamal Dey

More information

A Practical Guide to Persistent Homology

A Practical Guide to Persistent Homology A Practical Guide to Persistent Homology Dmitriy Morozov Lawrence Berkeley National Lab A Practical Guide to Persistent Code snippets available at: http://hg.mrzv.org/dionysus-tutorial Homology (Dionysus

More information

Clustering algorithms and introduction to persistent homology

Clustering algorithms and introduction to persistent homology Foundations of Geometric Methods in Data Analysis 2017-18 Clustering algorithms and introduction to persistent homology Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr Introduction

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Statistical properties of topological information inferred from data

Statistical properties of topological information inferred from data Saclay, July 8, 2014 DataSense Research day Statistical properties of topological information inferred from data Frédéric Chazal INRIA Saclay Joint works with B.T. Fasy (CMU), M. Glisse (INRIA), C. Labruère

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Stability and Statistical properties of topological information inferred from metric data

Stability and Statistical properties of topological information inferred from metric data Beijing, June 25, 2014 ICML workshop: Topological Methods for Machine Learning Stability and Statistical properties of topological information inferred from metric data Frédéric Chazal INRIA Saclay Introduction

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Dynamic Mesh Refinement

Dynamic Mesh Refinement Dynamic Mesh Refinement Benoît Hudson Joint work with Umut A. Acar, Gary Miller, Todd Phillips Why Mesh? Geometry is continuous Computers are discrete Graphics Scientific Computing Vision, AI,... Mesh

More information

Analyse Topologique des Données

Analyse Topologique des Données Collège de France 31 mai 2017 Analyse Topologique des Données Frédéric Chazal DataShape team INRIA Saclay - Ile-de-France frederic.chazal@inria.fr Introduction [Shape database] [Galaxies data] [Scanned

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Topological estimation using witness complexes. Vin de Silva, Stanford University

Topological estimation using witness complexes. Vin de Silva, Stanford University Topological estimation using witness complexes, Acknowledgements Gunnar Carlsson (Mathematics, Stanford) principal collaborator Afra Zomorodian (CS/Robotics, Stanford) persistent homology software Josh

More information

Random Simplicial Complexes

Random Simplicial Complexes Random Simplicial Complexes Duke University CAT-School 2015 Oxford 10/9/2015 Part III Extensions & Applications Contents Morse Theory for the Distance Function Persistent Homology and Maximal Cycles Contents

More information

arxiv: v1 [cs.it] 10 May 2016

arxiv: v1 [cs.it] 10 May 2016 Separating Topological Noise from Features using Persistent Entropy Nieves Atienza 1, Rocio Gonzalez-Diaz 1, and Matteo Rucco 2 arxiv:1605.02885v1 [cs.it] 10 May 2016 1 Applied Math Department, School

More information

Collars and Intestines: Practical Conforming Delaunay Refinement

Collars and Intestines: Practical Conforming Delaunay Refinement Collars and Intestines: Practical Conforming Delaunay Refinement Alexander Rand and Noel Walkington Carnegie Mellon University Summary. While several existing Delaunay refinement algorithms allow acute

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns.

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns. III.2 Convex Set Systems 53 III.2 Convex Set Systems A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns. Nerves. Let F be a finite

More information

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Outline Reducing the constant from O ( ɛ d) to O ( ɛ (d 1)/2) in uery time Need to know ɛ ahead of time Preprocessing time and

More information

Random Simplicial Complexes

Random Simplicial Complexes Random Simplicial Complexes Duke University CAT-School 2015 Oxford 9/9/2015 Part II Random Geometric Complexes Contents Probabilistic Ingredients Random Geometric Graphs Definitions Random Geometric Complexes

More information

arxiv: v7 [math.at] 12 Sep 2017

arxiv: v7 [math.at] 12 Sep 2017 A Roadmap for the Computation of Persistent Homology arxiv:1506.08903v7 [math.at] 12 Sep 2017 Nina Otter (otter@maths.ox.ac.uk) Mason A. Porter (mason@math.ucla.edu) Ulrike Tillmann (tillmann@maths.ox.ac.uk)

More information

An Efficient Query Structure for Mesh Refinement

An Efficient Query Structure for Mesh Refinement An Efficient Query Structure for Mesh Refinement Benoît Hudson Duru Türkoğlu September 18, 2008 Abstract We are interested in the following mesh refinement problem: given an input set of points P in R

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Linear-Time Surface Reconstruction

Linear-Time Surface Reconstruction Linear-Time Surface Reconstruction Benoît Hudson Toyota Technological Institute at Chicago bhudson@tti-c.org July 6, 2009 Abstract By now it is moderately well understood how to take as input a set of

More information

arxiv: v1 [math.st] 11 Oct 2017

arxiv: v1 [math.st] 11 Oct 2017 An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists Frédéric Chazal and Bertrand Michel October 12, 2017 arxiv:1710.04019v1 [math.st] 11 Oct 2017 Abstract

More information

WIRELESS sensor networks (WSNs) have attracted a. Homology-based Distributed Coverage Hole Detection in Wireless Sensor Networks

WIRELESS sensor networks (WSNs) have attracted a. Homology-based Distributed Coverage Hole Detection in Wireless Sensor Networks IEEE/ACM TRANSACTIONS ON NETWORKING 1 Homology-based Distributed Coverage Hole Detection in Wireless Sensor Networks Feng Yan, Member, IEEE, Anaïs Vergne, Philippe Martins, Senior Member, IEEE, Laurent

More information

Topological Persistence

Topological Persistence Topological Persistence Topological Persistence (in a nutshell) X topological space f : X f persistence X Dg f signature: persistence diagram encodes the topological structure of the pair (X, f) 1 Topological

More information

Diffusion Maps and Topological Data Analysis

Diffusion Maps and Topological Data Analysis Diffusion Maps and Topological Data Analysis Melissa R. McGuirl McGuirl (Brown University) Diffusion Maps and Topological Data Analysis 1 / 19 Introduction OVERVIEW Topological Data Analysis The use of

More information

Surface segmentation for improved isotropic remeshing

Surface segmentation for improved isotropic remeshing J. Edwards (Univ. of Texas) IMR 2012 1 / 20 Surface segmentation for improved isotropic remeshing John Edwards, Wenping Wang, Chandrajit Bajaj Department of Computer Science The University of Texas at

More information

What will be new in GUDHI library version 2.0.0

What will be new in GUDHI library version 2.0.0 What will be new in GUDHI library version 2.0.0 Jean-Daniel Boissonnat, Paweł Dłotko, Marc Glisse, François Godi, Clément Jamin, Siargey Kachanovich, Clément Maria, Vincent Rouvreau and David Salinas DataShape,

More information

Topological Inference for Modern Data Analysis

Topological Inference for Modern Data Analysis Topological Inference for Modern Data Analysis An Introduction to Persistent Homology Giancarlo Sanchez A project presented for the degree of Master s of Science in Mathematics Department of Mathematics

More information

Statistical topological data analysis using. Persistence landscapes

Statistical topological data analysis using. Persistence landscapes Motivation Persistence landscape Statistical topological data analysis using persistence landscapes Cleveland State University February 3, 2014 funded by AFOSR Motivation Persistence landscape Topological

More information

25 HIGH-DIMENSIONAL TOPOLOGICAL DATA ANALYSIS

25 HIGH-DIMENSIONAL TOPOLOGICAL DATA ANALYSIS 25 HIGH-DIMENSIONAL TOPOLOGICAL DATA ANALYSIS Frédéric Chazal INTRODUCTION Modern data often come as point clouds embedded in high-dimensional Euclidean spaces, or possibly more general metric spaces.

More information

Tutorial on the R package TDA

Tutorial on the R package TDA Tutorial on the R package TDA Jisu Kim Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, Vincent Rouvreau Abstract This tutorial gives an introduction to the R package TDA, which provides some

More information

Detection and approximation of linear structures in metric spaces

Detection and approximation of linear structures in metric spaces Stanford - July 12, 2012 MMDS 2012 Detection and approximation of linear structures in metric spaces Frédéric Chazal Geometrica group INRIA Saclay Joint work with M. Aanjaneya, D. Chen, M. Glisse, L. Guibas,

More information

Metrics on diagrams and persistent homology

Metrics on diagrams and persistent homology Background Categorical ph Relative ph More structure Department of Mathematics Cleveland State University p.bubenik@csuohio.edu http://academic.csuohio.edu/bubenik_p/ July 18, 2013 joint work with Vin

More information

Computing Robustness and Persistence for Images

Computing Robustness and Persistence for Images To appear in an IEEE VGTC sponsored conference proceedings Computing Robustness and Persistence for Images Paul Bendich, Herbert Edelsbrunner, and Michael Kerber Abstract We are interested in 3-dimensional

More information

The Topology of Skeletons and Offsets

The Topology of Skeletons and Offsets The Topology of Skeletons and Offsets Stefan Huber 1 1 B&R Industrial Automation stefan.huber@br-automation.com Abstract Given a polygonal shape with holes, we investigate the topology of two types of

More information

Persistent homology in TDA

Persistent homology in TDA Barcelona, June, 2016 Persistent homology in TDA Frédéric Chazal and Bertrand Michel Persistent homology R X topological space f : X R X persistence Persistence diagram Nested spaces A general mathematical

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

An Analysis of Shewchuk s Delaunay Refinement Algorithm

An Analysis of Shewchuk s Delaunay Refinement Algorithm An Analysis of Shewchuk s Delaunay Refinement Algorithm Hang Si Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin si@wias-berlin.de Summary. Shewchuk s Delaunay refinement algorithm

More information

Open Problems Column Edited by William Gasarch

Open Problems Column Edited by William Gasarch Open Problems Column Edited by William Gasarch 1 This Issues Column! This issue s Open Problem Column is by Brittany Terese Fasy and Bei Wang and is on Open Problems in Computational Topology; however,

More information

Approximating Polygonal Objects by Deformable Smooth Surfaces

Approximating Polygonal Objects by Deformable Smooth Surfaces Approximating Polygonal Objects by Deformable Smooth Surfaces Ho-lun Cheng and Tony Tan School of Computing, National University of Singapore hcheng,tantony@comp.nus.edu.sg Abstract. We propose a method

More information

Persistent Homology and Nested Dissection

Persistent Homology and Nested Dissection Persistent Homology and Nested Dissection Michael Kerber Donald R. Sheehy Primoz Skraba Abstract Nested dissection exploits the underlying topology to do matrix reductions while persistent homology exploits

More information

Western TDA Learning Seminar. June 7, 2018

Western TDA Learning Seminar. June 7, 2018 The The Western TDA Learning Seminar Department of Mathematics Western University June 7, 2018 The The is an important tool used in TDA for data visualization. Input point cloud; filter function; covering

More information

On the Topology of Finite Metric Spaces

On the Topology of Finite Metric Spaces On the Topology of Finite Metric Spaces Meeting in Honor of Tom Goodwillie Dubrovnik Gunnar Carlsson, Stanford University June 27, 2014 Data has shape The shape matters Shape of Data Regression Shape of

More information

Topology and Data. Gunnar Carlsson Department of Mathematics, Stanford University Stanford, California October 2, 2008

Topology and Data. Gunnar Carlsson Department of Mathematics, Stanford University Stanford, California October 2, 2008 Topology and Data Gunnar Carlsson Department of Mathematics, Stanford University Stanford, California 94305 October 2, 2008 1 Introduction An important feature of modern science and engineering is that

More information

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Sophia-Antipolis, January 2016 Winter School An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

More information

Beating the Spread: Time-Optimal Point Meshing

Beating the Spread: Time-Optimal Point Meshing Beating the Spread: Time-Optimal Point Meshing [Extended Abstract] Gary L. Miller Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15217 glmiller@cs.cmu.edu Todd Phillips Google Inc. Pittsburgh,

More information

Towards topological analysis of high-dimensional feature spaces.

Towards topological analysis of high-dimensional feature spaces. Towards topological analysis of high-dimensional feature spaces. Hubert Wagner and Pawe l D lotko January 7, 2014 Abstract In this paper we present ideas from computational topology, applicable in analysis

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism CS 6170 Computational Topology: Topological Data Analysis University of Utah Spring 2017 School of Computing Lecture 7: Jan 31, 2017 Lecturer: Prof. Bei Wang Scribe: Avani Sharma,

More information

TOPOLOGICAL DATA ANALYSIS

TOPOLOGICAL DATA ANALYSIS TOPOLOGICAL DATA ANALYSIS BARCODES Ghrist, Barcodes: The persistent topology of data Topaz, Ziegelmeier, and Halverson 2015: Topological Data Analysis of Biological Aggregation Models 1 Questions in data

More information

Kinetic Mesh Refinement in 2D

Kinetic Mesh Refinement in 2D Kinetic Mesh Refinement in D Umut A. Acar Max Planck Institute for Software Systems Germany umut@mpi-sws.org Benoît Hudson Autodesk, Inc. Montréal, QC, Canada benoit.hudson@autodesk.com Duru Türkoğlu Dept.

More information

Stratified Structure of Laplacian Eigenmaps Embedding

Stratified Structure of Laplacian Eigenmaps Embedding Stratified Structure of Laplacian Eigenmaps Embedding Abstract We construct a locality preserving weight matrix for Laplacian eigenmaps algorithm used in dimension reduction. Our point cloud data is sampled

More information

topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013

topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013 topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013 Promise of topological data analysis: extract the structure from the data. In: point clouds Out: hidden structure

More information

Alpha-Beta Witness Complexes

Alpha-Beta Witness Complexes Alpha-Beta Witness Complexes Dominique Attali 1, Herbert Edelsbrunner 2, John Harer 3, and Yuriy Mileyko 4 1 LIS-CNRS, Domaine Universitaire, BP 46, 38402 Saint Martin d Hères, France 2 Departments of

More information

Topological Abstraction and Planning for the Pursuit-Evasion Problem

Topological Abstraction and Planning for the Pursuit-Evasion Problem Topological Abstraction and Planning for the Pursuit-Evasion Problem Alberto Speranzon*, Siddharth Srivastava (UTRC) Robert Ghrist, Vidit Nanda (UPenn) IMA 1/1/2015 *Now at Honeywell Aerospace Advanced

More information

Topological space - Wikipedia, the free encyclopedia

Topological space - Wikipedia, the free encyclopedia Page 1 of 6 Topological space From Wikipedia, the free encyclopedia Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity.

More information

Approximating Nearest Neighbor Distances

Approximating Nearest Neighbor Distances Approximating Nearest Neighbor Distances Michael B. Cohen 1, Brittany Terese Fasy 2, Gary L. Miller 3, Amir Nayyeri 4, Donald R. Sheehy 5, and Ameya Velingker 3 1 Massachusetts Institute of Technology

More information

Topological Perspectives On Stratification Learning

Topological Perspectives On Stratification Learning Topological Perspectives On Stratification Learning Bei Wang School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah www.sci.utah.edu/~beiwang August 9, 2018 Talk Overview

More information

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College Vin de Silva Pomona College CBMS Lecture Series, Macalester College, June 2017 o o The homology of a planar region Chain complex We have constructed a diagram of vector spaces and linear maps @ 0 o 1 C

More information

Topology-driven Trajectory Synthesis with an Example on Retinal Cell Motions

Topology-driven Trajectory Synthesis with an Example on Retinal Cell Motions Topology-driven Trajectory Synthesis with an Example on Retinal Cell Motions Chen Gu 1, Michael Kerber 2, and Leonidas Guibas 1 1 Stanford University, USA guc@stanford.edu, guibas@cs.stanford.edu 2 Max-Planck-Institut

More information

The Borsuk-Ulam theorem- A Combinatorial Proof

The Borsuk-Ulam theorem- A Combinatorial Proof The Borsuk-Ulam theorem- A Combinatorial Proof Shreejit Bandyopadhyay April 14, 2015 1 Introduction The Borsuk-Ulam theorem is perhaps among the results in algebraic topology having the greatest number

More information

Mesh Generation. Jean-Daniel Boissonnat DataShape, INRIA

Mesh Generation. Jean-Daniel Boissonnat DataShape, INRIA Mesh Generation Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/datashape Algorithmic Geometry Mesh generation J-D. Boissonnat 1 / 27 Meshing surfaces and 3D domains visualization and graphics

More information

Computational Geometry. Definition, Application Areas, and Course Overview

Computational Geometry. Definition, Application Areas, and Course Overview Computational Geometry Definition, Application Areas, and Course Overview Computational Geometry is a subfield of the Design and Analysis of Algorithms Computational Geometry is a subfield of the Design

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

The Gudhi Library: Simplicial Complexes and Persistent Homology

The Gudhi Library: Simplicial Complexes and Persistent Homology The Gudhi Library: Simplicial Complexes and Persistent Homology Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, Mariette Yvinec To cite this version: Clément Maria, Jean-Daniel Boissonnat, Marc Glisse,

More information

Topological Data Analysis

Topological Data Analysis Proceedings of Symposia in Applied Mathematics Topological Data Analysis Afra Zomorodian Abstract. Scientific data is often in the form of a finite set of noisy points, sampled from an unknown space, and

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn Divide And Conquer Principle Important algorithm design method Examples from Informatik 2: Sorting: Mergesort, Quicksort Binary search

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

Persistent Homology of Directed Networks

Persistent Homology of Directed Networks Persistent Homology of Directed Networks Samir Chowdhury and Facundo Mémoli Abstract While persistent homology has been successfully used to provide topological summaries of point cloud data, the question

More information

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee Analysis of high dimensional data via Topology Louis Xiang Oak Ridge National Laboratory Oak Ridge, Tennessee Contents Abstract iii 1 Overview 1 2 Data Set 1 3 Simplicial Complex 5 4 Computation of homology

More information

Topology and fmri Data

Topology and fmri Data Topology and fmri Data Adam Jaeger Statistical and Applied Mathematical Sciences Institute & Duke University May 5, 2016 fmri and Classical Methodology Most statistical analyses examine data with a variable

More information

Basic Measures for Imprecise Point Sets in R d

Basic Measures for Imprecise Point Sets in R d Basic Measures for Imprecise Point Sets in R d Heinrich Kruger Masters Thesis Game and Media Technology Department of Information and Computing Sciences Utrecht University September 2008 INF/SCR-08-07

More information

Meshing Volumes with Curved Boundaries

Meshing Volumes with Curved Boundaries Engineering with Computers manuscript No. (will be inserted by the editor) Meshing Volumes with Curved Boundaries Steve Oudot 1, Laurent Rineau 2, Mariette Yvinec 3 1 INRIA, BP 93 06902 Sophia Antipolis,

More information

Three-Dimensional α Shapes

Three-Dimensional α Shapes Herbert Edelsbrunner and Ernst P. Mücke ACM Tran. Graph. 13(1), 1994 20 September 2005 1 2 α-complexes Edelsbrunner s Algorithm 3 Properties Surface Reconstruction Shape Question Given a set of points,

More information