What is a cone? Anastasia Chavez. Field of Dreams Conference President s Postdoctoral Fellow NSF Postdoctoral Fellow UC Davis

Size: px
Start display at page:

Download "What is a cone? Anastasia Chavez. Field of Dreams Conference President s Postdoctoral Fellow NSF Postdoctoral Fellow UC Davis"

Transcription

1 What is a cone? Anastasia Chavez President s Postdoctoral Fellow NSF Postdoctoral Fellow UC Davis Field of Dreams Conference 2018

2 Roadmap for today 1 Cones 2 Vertex/Ray Description 3 Hyperplane Description 4 An Application

3 Intuitive idea of a Cone "Set of vectors closed under positive combinations"

4 Example Intuitive idea of a Cone "Set of vectors closed under positive combinations" For V = {( 1, 1 2), (1, 2), (2, 1), ( 1 2, 3 4 )}

5 Example Intuitive idea of a Cone "Set of vectors closed under positive combinations" For V = {( 1, 1 2), (1, 2), (2, 1), ( 1 2, 3 4)}, the cone of V is C(V) = ( {a 1 1, 1 ) ( 1 + a 2 (1, 2) + a 3 (2, 1) + a 4 2 2, 3 ) } a i R 0 4

6 Vertex/Ray Description The space generated by a finite set of vertices/rays" Let V = {v 1, v 2,..., v i, r i+1,..., r m } be a set of vertices and rays in R n. The cone generated by V is C(V) = {λ 1 v λ m r m λ i R n 0 }.

7 Vertex/Ray Description The space generated by a finite set of vertices/rays" Let V = {v 1, v 2,..., v i, r i+1,..., r m } be a set of vertices and rays in R n. The cone generated by V is C(V) = {λ 1 v λ m r m λ i R n 0 }.

8 Hyperplane Description The intersection of halfspaces" H 1 = { (x 1, x 2 ) R 2 1 } 2 x 1 x 2 0 Definition A hyperplane H is the set {x R n a(x) = 0}, for linear map a over R n. A closed halfspace H is choosing a side" of H: {x R n a(x) 0}.

9 Hyperplane Description The intersection of halfspaces" H 1 = { (x 1, x 2 ) R 2 1 } 2 x 1 x 2 0 H 2 = { (x 1, x 2 ) R 2 2x 1 x 2 0 } Definition A hyperplane H is the set {x R n a(x) = 0}, for linear map a over R n. A closed halfspace H is choosing a side" of H: {x R n a(x) 0}.

10 Hyperplane Description The intersection of halfspaces" Definition A convex cone C is a collection of closed halfspaces A, such that C = {x R n Ax 0}.

11 Cones from vectors/rays and hyperplanes Theorem (Weyl Minkowski Theorem) A convex polyhedral cone has both a vertex/ray and hyperplane description, which are equivalent.

12 Where Cones Commonly Show Up Solvability of a general system of linear equations (Farka s lemma) Integer point enumeration, Ehrhart Theory Discrete optimization, linear programming, feasibility problems Computational Complexity Where else might they show up?

13 Definition Using Cones to Understand Graphs A graph G = (V, E) is a set of vertices and edges. A cycle of G is a set of edges forming a path that returns to itself only once. Example

14 Using Cones to Understand Graphs We can describe all the cycles of a graph using vectors! Let c {0, 1} n be the indicator vector of a cycle of graph G, where c i = 1 if e i E and 0 if not. Example Cycle in G = (1, 0, 1, 0, 1, 1)

15 Using Cones to Understand Graphs We can describe all the cycles of a graph using vectors! Let c {0, 1} n be the indicator vector of a cycle of graph G, where c i = 1 if e i E and 0 if not. Example C = Every column is a cycle and rows are indexed by edges.

16 Using Cones to Understand Graphs Using the set of cycles of G, we can generate the cone C G over all cycles of G: C G = {λ 1 c λ n c n λ R n } Example C G = λ λ λ λ i R 7

17 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

18 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles. { }

19 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles. { }

20 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles. { }

21 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles. { } Via Cones: The integral cone of cycles of G always contains (2, 2,..., 2).

22 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles. { } Via Cones: The integral cone of cycles of G always contains (2, 2,..., 2). In general: Given vector u = (u 1, u 2,..., u n ), is there a set of cycles so that edge i is covered u i many times?

23 Using Cones to Understand Graphs Why use cones? For a new perspective! CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles. { } Via Cones: The integral cone of cycles of G always contains (2, 2,..., 2). In general: Given vector u = (u 1, u 2,..., u n ), is there a set of cycles so that edge i is covered u i many times? Does the integral cone of cycles of G contain u?

24 References > Beck and Robins, Computing the Continuous Discretely, Springer, > De Loera, Hemmecke, and Köppe, Algebraic and Geometric Ideas in the Theory of Discrete Optimization, Society for Industrial and Applied Mathematics, > Ziegler, Lectures on Polytopes, Springer, 1995.

25 Cones Vertex/Ray Description Hyperplane Description About me ct Instin Play time! Commun ity Suppo rt Allies and Cheerleaders An Application

26 Cones Vertex/Ray Description Hyperplane Description Thank you! ct Instin Play time! Commun ity Suppo rt Allies and Cheerleaders An Application

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets Instructor: Shaddin Dughmi Announcements New room: KAP 158 Today: Convex Sets Mostly from Boyd and Vandenberghe. Read all of

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem IE 5: Integer Programming, Spring 29 24 Jan, 29 Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem Lecturer: Karthik Chandrasekaran Scribe: Setareh Taki Disclaimer: These notes have not been subjected

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

arxiv: v1 [math.co] 15 Dec 2009

arxiv: v1 [math.co] 15 Dec 2009 ANOTHER PROOF OF THE FACT THAT POLYHEDRAL CONES ARE FINITELY GENERATED arxiv:092.2927v [math.co] 5 Dec 2009 VOLKER KAIBEL Abstract. In this note, we work out a simple inductive proof showing that every

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE We now introduce a new concept with important theoretical and algorithmic implications: polyhedral convexity, extreme points, and related issues. LECTURE 1 LECTURE OUTLINE Polar cones and polar cone theorem

More information

Discrete Volume Computations. for Polyhedra

Discrete Volume Computations. for Polyhedra Digital Discrete Volume Computations y for Polyhedra 20 Matthias Beck San Francisco State University math.sfsu.edu/beck DGCI 2016 5 x z 2 Science is what we understand well enough to explain to a computer,

More information

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 Polyhedral Computation Today s Topic: The Double Description Algorithm Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 1 Convexity Review: Farkas-Type Alternative Theorems Gale

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Algebraic-Geometric ideas in Discrete Optimization (Universidad de Sevilla, 2014)

Algebraic-Geometric ideas in Discrete Optimization (Universidad de Sevilla, 2014) Algebraic-Geometric ideas in Discrete Optimization (Universidad de Sevilla, 2014) Jesús A. De Loera, UC Davis Lectures based on the book: Algebraic & Geometric Ideas in the Theory of Discrete Optimization

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes Hans Raj Tiwary hansraj@cs.uni-sb.de FR Informatik Universität des Saarlandes D-66123 Saarbrücken, Germany Tel: +49 681 3023235

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Interval-Vector Polytopes

Interval-Vector Polytopes Interval-Vector Polytopes Jessica De Silva Gabriel Dorfsman-Hopkins California State University, Stanislaus Dartmouth College Joseph Pruitt California State University, Long Beach July 28, 2012 Abstract

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

A mini-introduction to convexity

A mini-introduction to convexity A mini-introduction to convexity Geir Dahl March 14, 2017 1 Introduction Convexity, or convex analysis, is an area of mathematics where one studies questions related to two basic objects, namely convex

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

arxiv: v1 [cs.cc] 30 Jun 2017

arxiv: v1 [cs.cc] 30 Jun 2017 On the Complexity of Polytopes in LI( Komei Fuuda May Szedlá July, 018 arxiv:170610114v1 [cscc] 30 Jun 017 Abstract In this paper we consider polytopes given by systems of n inequalities in d variables,

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation

Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation Banhirup Sengupta, Dipankar Mondal, Prajjal Kumar De, Souvik Ash Proposal Description : ILP [integer linear

More information

In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems.

In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems. 2 Basics In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems. 2.1 Notation Let A R m n be a matrix with row index set M = {1,...,m}

More information

On Unbounded Tolerable Solution Sets

On Unbounded Tolerable Solution Sets Reliable Computing (2005) 11: 425 432 DOI: 10.1007/s11155-005-0049-9 c Springer 2005 On Unbounded Tolerable Solution Sets IRENE A. SHARAYA Institute of Computational Technologies, 6, Acad. Lavrentiev av.,

More information

Combinatorial Optimization and Integer Linear Programming

Combinatorial Optimization and Integer Linear Programming Combinatorial Optimization and Integer Linear Programming 3 Combinatorial Optimization: Introduction Many problems arising in practical applications have a special, discrete and finite, nature: Definition.

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Convex Hull Representation Conversion (cddlib, lrslib)

Convex Hull Representation Conversion (cddlib, lrslib) Convex Hull Representation Conversion (cddlib, lrslib) Student Seminar in Combinatorics: Mathematical Software Niklas Pfister October 31, 2014 1 Introduction In this report we try to give a short overview

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 50 CS 473: Algorithms, Spring 2018 Introduction to Linear Programming Lecture 18 March

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS

SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS David Haws*, James Cussens, Milan Studeny IBM Watson dchaws@gmail.com University of York, Deramore Lane, York, YO10 5GE, UK The Institute

More information

Linear programming and the efficiency of the simplex algorithm for transportation polytopes

Linear programming and the efficiency of the simplex algorithm for transportation polytopes Linear programming and the efficiency of the simplex algorithm for transportation polytopes Edward D. Kim University of Wisconsin-La Crosse February 20, 2015 Loras College Department of Mathematics Colloquium

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems 6. Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

PUBLICATION LIST ( ) Jesús Antonio De Loera

PUBLICATION LIST ( ) Jesús Antonio De Loera PUBLICATION LIST (1995-2013) Jesús Antonio De Loera Books (1) (with F. Santos and J. Rambau) Triangulations: Structure for Algorithms and Applications, No. 25 of the series Algorithms and Computation in

More information

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 1 Dr. Ted Ralphs ISE 418 Lecture 1 1 Reading for This Lecture N&W Sections I.1.1-I.1.4 Wolsey Chapter 1 CCZ Chapter 2 ISE 418 Lecture 1 2 Mathematical Optimization Problems

More information

A Course in Convexity

A Course in Convexity A Course in Convexity Alexander Barvinok Graduate Studies in Mathematics Volume 54 American Mathematical Society Providence, Rhode Island Preface vii Chapter I. Convex Sets at Large 1 1. Convex Sets. Main

More information

Lattice-point generating functions for free sums of polytopes

Lattice-point generating functions for free sums of polytopes Lattice-point generating functions for free sums of polytopes Tyrrell B. McAllister 1 Joint work with Matthias Beck 2 and Pallavi Jayawant 3 1 University of Wyoming 2 San Francisco State University 3 Bates

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Polyhedral Computation and their Applications. Jesús A. De Loera Univ. of California, Davis

Polyhedral Computation and their Applications. Jesús A. De Loera Univ. of California, Davis Polyhedral Computation and their Applications Jesús A. De Loera Univ. of California, Davis 1 1 Introduction It is indeniable that convex polyhedral geometry is an important tool of modern mathematics.

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

Decision Aid Methodologies In Transportation Lecture 1: Polyhedra and Simplex method

Decision Aid Methodologies In Transportation Lecture 1: Polyhedra and Simplex method Decision Aid Methodologies In Transportation Lecture 1: Polyhedra and Simplex method Chen Jiang Hang Transportation and Mobility Laboratory April 15, 2013 Chen Jiang Hang (Transportation and Mobility Decision

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

The Subdivision of Large Simplicial Cones in Normaliz ICMS 2016

The Subdivision of Large Simplicial Cones in Normaliz ICMS 2016 ICMS 2016 The Subdivision of Large Simplicial Cones in Normaliz Richard Sieg joint with Winfried Bruns & Christof Söger NORMALIZ NORMALIZ Open source software (GPL) written in C++ (using Boost and GMP/MPIR)

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Classification of Ehrhart quasi-polynomials of half-integral polygons

Classification of Ehrhart quasi-polynomials of half-integral polygons Classification of Ehrhart quasi-polynomials of half-integral polygons A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master

More information

PROGRAMMING UNDER UNCERTAINTY: THE SOLUTION SET*

PROGRAMMING UNDER UNCERTAINTY: THE SOLUTION SET* Programming Under Uncertainty: The Solution Set Author(s): Roger Wets Reviewed work(s): Source: SIAM Journal on Applied Mathematics, Vol. 14, No. 5 (Sep., 1966), pp. 1143-1151 Published by: Society for

More information

An FPTAS for minimizing the product of two non-negative linear cost functions

An FPTAS for minimizing the product of two non-negative linear cost functions Math. Program., Ser. A DOI 10.1007/s10107-009-0287-4 SHORT COMMUNICATION An FPTAS for minimizing the product of two non-negative linear cost functions Vineet Goyal Latife Genc-Kaya R. Ravi Received: 2

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1.

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1. Discrete Comput Geom 18:455 462 (1997) Discrete & Computational Geometry 1997 Springer-Verlag New York Inc. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope

More information

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017 Semistandard Young Tableaux Polytopes Sara Solhjem Joint work with Jessica Striker North Dakota State University Graduate Student Combinatorics Conference 217 April 9, 217 Sara Solhjem (NDSU) Semistandard

More information

R n a T i x = b i} is a Hyperplane.

R n a T i x = b i} is a Hyperplane. Geometry of LPs Consider the following LP : min {c T x a T i x b i The feasible region is i =1,...,m}. X := {x R n a T i x b i i =1,...,m} = m i=1 {x Rn a T i x b i} }{{} X i The set X i is a Half-space.

More information

Three Integer Programming Algorithms based on Barvinok s Rational Functions

Three Integer Programming Algorithms based on Barvinok s Rational Functions Three Integer Programming Algorithms based on Barvinok s Rational Functions J.A. De Loera, D. Haws, R. Hemmecke, P. Huggins, and R. Yoshida Dept. of Mathematics, University of California, Davis CA 95616,

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1 1 Linear and Combinatorial Optimization Anders Heyden Centre for Mathematical Sciences Lecture 1: Introduction The course and its goals Basic concepts Optimization Combinatorial optimization

More information

Lecture 12 March 4th

Lecture 12 March 4th Math 239: Discrete Mathematics for the Life Sciences Spring 2008 Lecture 12 March 4th Lecturer: Lior Pachter Scribe/ Editor: Wenjing Zheng/ Shaowei Lin 12.1 Alignment Polytopes Recall that the alignment

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

CURVE SKETCHING EXAM QUESTIONS

CURVE SKETCHING EXAM QUESTIONS CURVE SKETCHING EXAM QUESTIONS Question 1 (**) a) Express f ( x ) in the form ( ) 2 f x = x + 6x + 10, x R. f ( x) = ( x + a) 2 + b, where a and b are integers. b) Describe geometrically the transformations

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

arxiv: v2 [math.co] 4 Jul 2018

arxiv: v2 [math.co] 4 Jul 2018 SMOOTH CENTRALLY SYMMETRIC POLYTOPES IN DIMENSION 3 ARE IDP MATTHIAS BECK, CHRISTIAN HAASE, AKIHIRO HIGASHITANI, JOHANNES HOFSCHEIER, KATHARINA JOCHEMKO, LUKAS KATTHÄN, AND MATEUSZ MICHAŁEK arxiv:802.0046v2

More information