Three-Dimensional Viewing Hearn & Baker Chapter 7

Size: px
Start display at page:

Download "Three-Dimensional Viewing Hearn & Baker Chapter 7"

Transcription

1 Three-Dimensional Viewing Hearn & Baker Chapter 7

2 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc.

3 Overview First, set up viewing (or camera) coordinate reference The position and orientation for a view plane (or projection plane) that corresponds to a camera film plane Figure 1-1 Coordinate reference for obtaining a selected view of a three-dimensional scene.

4 Projections Parallel projection As used in engineering and architectural drawings Shows accurate dimensions Perspective projection Objects far away are shown smaller than nearby same size objects Figure 1-2 Three parallel-projection views of an object, showing relative proportions from different viewing positions.

5 Depth Cueing Depth info is important to identify viewing direction Depth cueing: Vary the brightness of lines according to distance

6 3D Viewing Pipeline Choose a viewing position (place the camera) Decide on camera orientation Direction and rotation (up direction) Figure 1-5 Photographing a scene involves selection of the camera position and orientation.

7 3D Viewing Pipeline Some viewing operations in 3D are same as in 2D 2D viewport, 2D clipping window, etc. Some are different Even though clipping window is 2D on the view plane, the scene is clipped against a volume (view volume)

8 3D Viewing Pipeline Figure 1-6 General three-dimensional transformation pipeline, from modeling coordinates (MC) to world coordinates (WC) to viewing coordinates (VC) to projection coordinates (PC) to normalized coordinates (NC) and, ultimately, to device coordinates (DC).

9 3D Viewing-Coordinate Parameters Select View point (or viewing position, eye position, camera position) P =(x,y,z ) View-up vector V to define y view Direction to define z view Figure 1-7 A right-handed viewing-coordinate system, with axes x view, y view, and z view, relative to a right-handed world-coordinate frame.

10 The View-Plane Normal Vector Viewing direction is along z view axis So, view plane (or projection plane) is normally perpendicular to this axis Orientation of the view plane (and direction of positive z view axis) can be defined by a view-plane normal vector N Figure 1-8 Orientation of the view plane and view-plane normal vector N.

11 The View-Plane Normal Vector Then, a scalar parameter is used to set the position of the view plane at coordinate z vp along z view axis Figure 1-9 Three possible positions for the view plane along the z view axis.

12 The View-Up Vector After view plane normal N, we choose a direction for view-up vector V (used to determine positive y view ) V should be perpendicular to N Viewing routines typically adjust user-defined V Often, V=(,1,) is a convenient choice Figure 1-11 Adjusting the input direction of the view-up vector V to an orientation perpendicular to the view-plane normal vector N.

13 The uvn Viewing-Coordinate Reference Frame Right-handed viewing systems are more common, but sometimes left-handed viewing systems are used In left-handed viewing systems viewing direction is towards the positive z view direction Left-handed coordinate references are often used to represent screen coordinates and for the normalization transformation

14 The uvn Viewing-Coordinate Reference Frame View-plane normal N defines z view axis direction View-up vector V is used to obtain y view axis direction We need to determine x view axis direction cross product of N and V gives U in x view axis direction cross product of N and U gives adjusted V u, v, n are unit vectors in directions U, V, N Figure 1-12 A right-handed viewing system defined with unit vectors u, v, and n.

15 Generating 3D Viewing Effects By varying viewing parameters, different viewing effects can be achieved

16 Translate viewing coordinate origin (P ) to the world coordinate origin Align x view, y view, z view with x w, y w, z w Transformation from World to Viewing Coordinates z y x T 1 z y x z y x z y x n n n v v v u u u R

17 The transformation matrix is the product of these translation and rotation matrices Transformation from World to Viewing Coordinates 1, P n n n n P v v v v P u u u u T R M z y x z y x z y x WC VC

18 Projection Transformations In parallel projection, coordinate positions are transferred to view plane along parallel lines orthogonal/orthographic oblique For perspective projection, coordinates are transferred to view plane along lines that converge at a point

19 Orthogonal Projections Projection along lines parallel to the viewplane normal N Front, side, rear orthogonal projections are often called elevations The top one is called plan view Figure 1-17 Orthogonal projections of an object, displaying plan and elevation views.

20 Axonometric and Isometric Orthogonal Projections. Orthogonal projections which show more than one face of an object are called axonometric orthogonal projections Isometric: Most common axonometric o.p.s that are generated by aligning projection plane so that it intersects principal axes at the same distance from origin

21 Orthogonal Projection Coordinates If projection direction is parallel to z view x p =x, y p =y z coordinate is kept for visibility detection procedures Figure 1-19 An orthogonal projection of a spatial position onto a view plane.

22 Clipping Window and Orthogonal Projection View Volume Edges of the clipping window specify the x and y limits These are used to form the top, bottom, and two sides of a clipping region called the orthogonalprojection view volume Limit the volume in z view direction by near-far (or front-back) clipping planes

23 Figure 1-22 A finite orthogonal view volume with the view plane in front of the near plane.

24 M ortho, norm Normalization Transformation for an Orthogonal Projection mapping coordinates into a normalized view volume with coordinates in the range -1 to 1 xw max 2 xw min yw max 2 yw min z near 2 z far xw xw yw yw z z max max max max near near xw xw yw yw z z 1 far far min min min min

25 Oblique Parallel Projections Projection path is not perpendicular to view plane It can be defined with a vector direction The effect is same as z-axis shearing transformation Figure 1-25 An oblique parallel projection of a cube, shown in a top view (a), produces a view (b) containing multiple surfaces of the cube.

26 Figure 1-32 Top view of an oblique parallel-projection transformation. The oblique view volume is converted into a rectangular parallelepiped, and objects in the view volume, such as the green block, are mapped to orthogonalprojection coordinates.

27 Perspective Projections Project objects to view plane along converging paths to projection reference point (or center of projection) Figure 1-33 A perspective projection of two equallength line segments at different distances from the view plane.

28 x ' x ( x x ) prp u y ' y ( y y ) prp u u 1 z ' z ( z z ) prp u Perspective Projections On the viewplane, z =z vp. Solve this for u u z z vp prp z z Substitute this u into x and y equations x y p p z x z prp z y z prp prp prp z vp z z vp z x y prp prp z z z z vp prp vp prp z z z z If projection reference point is on z view If it is at origin x p z x z vp y p z y z vp x p z x z prp prp z vp z y p z y z prp prp z vp z Figure 1-34 A perspective projection of a point P with coordinates (x, y, z) to a selected projection reference point. The intersection position on the view plane is (x p, y p, z vp ).

29 Figure 1-35 A perspective-projection view of an object is upside down when the projection reference point is between the object and the view plane.

30 Figure 1-36 Changing perspective effects by moving the projection reference point away from the view plane.

31 Vanishing Points Lines parallel to view plane are still parallel But, other lines parallel to each other are now converging The point such lines converge at are vanishing points Vanishing points for lines parallel to principal axes are principal vanishing points How many principal v.p.s can be seen depends on projection plane orientation 1-point, 2-point, or 3-point projections

32 Perspective Projection View Volume An infinite pyramid of vision is chopped off by near and far clipping planes and we get a truncated pyramid (or frustum)

33 Perspective-Projection Transformation Matrix Cannot directly apply a matrix and get the result 2 steps are required First, calculate the homogeneous coordinates using perspective projection matrix P h =M pers P Then, after normalization and clipping, divide by h (homogeneous parameter, h=z prp -z) s z (scaling) and t z (translation) factors for normalizing projected z coordinate values (they depend on the selected normalization range M pers z prp z vp z prp z vp x y s z prp prp 1 x y prp prp z t z z z prp prp prp

34 Symmetric Perspective Projection Frustum If the line from perspective reference point through clipping window center (centerline) is perpendicular to view plane, we have a symmetric frustum Clipping window can be specified by width and height, or field-of-view angle and aspect ratio With a symmetric frustum, perspective transformation is a mapping to orthogonal coordinates (figure on next slide)

35 Figure 1-44 A symmetric frustum view volume is mapped to an orthogonal parallelepiped by a perspective-projection transformation.

36 Oblique Perspective-Projection Frustum Centerline not perpendicular to view plane First, transform this into a symmetric frustum (z-axis shearing) Then proceed as before

37 Viewport Transformation and 3D Screen Coordinates Once we have normalized projection coordinates, clipping can be done on the symmetric cube (or unit cube) After clipping, cube contents can be transferred to screen coordinates For x and y, same as in 2D Depth info (z coordinates) must be retained for visibility testing and surface rendering

38 3D Clipping Algorithms No matter what the projection details were, we now have a normalized cube, so we clip against planes parallel to Cartesian planes (either at coordinates and 1, or -1 and 1) The task is to identify object sections within the cube (save parts inside and eliminate parts outside) Algorithms are extensions of the 2D algorithms

39 3D Region Codes The idea is the same as in 2D (we added 2 more bits for near and far planes) A point is now P=(x h,y h,z h,h) h can be a value other than 1 (in perspective projection), so, the inequalities to be satisfied are -1<=x h /h<=1-1<= y h /h<=1-1<= z h /h<=1

40 3D Region Codes h values should be nonzero and often positive (these can be easily checked) So, our inequalities become -h <= x h <= h, -h <= y h <= h, and -h <= z h <= h And bit values can be decided by bit 1 = 1 if h + x h < bit 2 = 1 if h - x h < bit 3 = 1 if h + y h < bit 4 = 1 if h - y h < bit 5 = 1 if h + z h < bit 6 = 1 if h - z h < (left) (right) (bottom) (top) (near) (far)

41 Figure 1-5 Values for the three-dimensional, six-bit region code that identifies spatial positions relative to the boundaries of a view volume.

42 Figure 1-51 Three-dimensional region codes for two line segments. Line P 1 P 2 intersects the right and top clipping boundaries of the view volume, while line P 3 P 4 is completely below the bottom clipping plane.

43 Figure 1-52 Three-dimensional object clipping. Surface sections that are outside the view-volume clipping planes are eliminated from the object description, and new surface facets may need to be constructed.

44 Figure 1-53 Clipping a line segment against a plane with normal vector N.

45 Figure 1-54 Clipping the surfaces of a pyramid against a plane with normal vector N. The surfaces in front of the plane are saved, and the surfaces of the pyramid behind the plane are eliminated.

Introduction to Computer Graphics 4. Viewing in 3D

Introduction to Computer Graphics 4. Viewing in 3D Introduction to Computer Graphics 4. Viewing in 3D National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn

More information

Chapter 8 Three-Dimensional Viewing Operations

Chapter 8 Three-Dimensional Viewing Operations Projections Chapter 8 Three-Dimensional Viewing Operations Figure 8.1 Classification of planar geometric projections Figure 8.2 Planar projection Figure 8.3 Parallel-oblique projection Figure 8.4 Orthographic

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University Computer Graphics P05 Viewing in 3D Part 1 Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Viewing in 3D: context Create views

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

Chap 7, 2008 Spring Yeong Gil Shin

Chap 7, 2008 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 28 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a synthetic camera)

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

Computer Graphics Chapter 7 Three-Dimensional Viewing Viewing

Computer Graphics Chapter 7 Three-Dimensional Viewing Viewing Computer Graphics Chapter 7 Three-Dimensional Viewing Outline Overview of Three-Dimensional Viewing Concepts The Three-Dimensional Viewing Pipeline Three-Dimensional Viewing-Coorinate Parameters Transformation

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Classical and Computer Viewing Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Planar Geometric Projections Standard projections project onto a plane Projectors

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Reading Chapter 4 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller 2 Objectives

More information

15. Clipping. Projection Transformation. Projection Matrix. Perspective Division

15. Clipping. Projection Transformation. Projection Matrix. Perspective Division 15. Clipping Procedures for eliminating all parts of primitives outside of the specified view volume are referred to as clipping algorithms or simply clipping This takes place as part of the Projection

More information

Projection Lecture Series

Projection Lecture Series Projection 25.353 Lecture Series Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba Overview Coordinate Systems Local Coordinate System (LCS) World Coordinate

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

COMP30019 Graphics and Interaction Perspective Geometry

COMP30019 Graphics and Interaction Perspective Geometry COMP30019 Graphics and Interaction Perspective Geometry Department of Computing and Information Systems The Lecture outline Introduction to perspective geometry Perspective Geometry Virtual camera Centre

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE45 Computer Graphics Lecture 8: Computer Projection CSE45 Lecture 8: Computer Projection 1 Review In the last lecture We set up a Virtual Camera Position Orientation Clipping planes Viewing angles Orthographic/Perspective

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

So we have been talking about 3D viewing, the transformations pertaining to 3D viewing. Today we will continue on it. (Refer Slide Time: 1:15)

So we have been talking about 3D viewing, the transformations pertaining to 3D viewing. Today we will continue on it. (Refer Slide Time: 1:15) Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 8 3D Viewing So we have been talking about 3D viewing, the

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S 3D Viewing: the Synthetic Camera Programmer s reference model for specifying 3D view projection parameters to the computer General synthetic camera (e.g., PHIGS Camera, Computer Graphics: Principles and

More information

Viewing. Part II (The Synthetic Camera) CS123 INTRODUCTION TO COMPUTER GRAPHICS. Andries van Dam 10/10/2017 1/31

Viewing. Part II (The Synthetic Camera) CS123 INTRODUCTION TO COMPUTER GRAPHICS. Andries van Dam 10/10/2017 1/31 Viewing Part II (The Synthetic Camera) Brownie camera courtesy of http://www.geh.org/fm/brownie2/htmlsrc/me13000034_ful.html 1/31 The Camera and the Scene } What does a camera do? } Takes in a 3D scene

More information

COMP30019 Graphics and Interaction Perspective & Polygonal Geometry

COMP30019 Graphics and Interaction Perspective & Polygonal Geometry COMP30019 Graphics and Interaction Perspective & Polygonal Geometry Department of Computing and Information Systems The Lecture outline Introduction Perspective Geometry Virtual camera Centre of projection

More information

Fundamental Types of Viewing

Fundamental Types of Viewing Viewings Fundamental Types of Viewing Perspective views finite COP (center of projection) Parallel views COP at infinity DOP (direction of projection) perspective view parallel view Classical Viewing Specific

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

Computer Graphics: Two Dimensional Viewing

Computer Graphics: Two Dimensional Viewing Computer Graphics: Two Dimensional Viewing Clipping and Normalized Window By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. End 2 Transformation between 2 coordinate systems To transform positioned

More information

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization Overview Viewing and perspectives Classical views Computer viewing Perspective normalization Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface

More information

3D Viewing. CS 4620 Lecture 8

3D Viewing. CS 4620 Lecture 8 3D Viewing CS 46 Lecture 8 13 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene projects to pixel explicitly construct

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 02 / 29 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Specifying arbitrary views Transforming into Canonical view volume View Volumes Assuming a rectangular

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

THE VIEWING TRANSFORMATION

THE VIEWING TRANSFORMATION ECS 178 Course Notes THE VIEWING TRANSFORMATION Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview One of the most important

More information

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard Computer Graphics and Image Processing a6: Projections Tob.Howard@manchester.ac.uk Introduction In part 2 of our stud of Viewing, we ll look at The theor of geometrical planar projections Classes of projections

More information

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera UNIT - 6 7 hrs VIEWING Classical and computer viewing Viewing with a computer Positioning of the camera Simple projections Projections in OpenGL Hiddensurface removal Interactive mesh displays Parallelprojection

More information

CS488. Implementation of projections. Luc RENAMBOT

CS488. Implementation of projections. Luc RENAMBOT CS488 Implementation of projections Luc RENAMBOT 1 3D Graphics Convert a set of polygons in a 3D world into an image on a 2D screen After theoretical view Implementation 2 Transformations P(X,Y,Z) Modeling

More information

Viewing/Projections IV. Week 4, Fri Feb 1

Viewing/Projections IV. Week 4, Fri Feb 1 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2008 Tamara Munzner Viewing/Projections IV Week 4, Fri Feb 1 http://www.ugrad.cs.ubc.ca/~cs314/vjan2008 News extra TA office hours in lab

More information

(Refer Slide Time: 00:01:26)

(Refer Slide Time: 00:01:26) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 9 Three Dimensional Graphics Welcome back everybody to the lecture on computer

More information

1 OpenGL - column vectors (column-major ordering)

1 OpenGL - column vectors (column-major ordering) OpenGL - column vectors (column-major ordering) OpenGL uses column vectors and matrices are written in a column-major order. As a result, matrices are concatenated in right-to-left order, with the first

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52 cs337 It looks like a matrix Sort of Viewing III Projection in Practice / 52 cs337 Arbitrary 3D views Now that we have familiarity with terms we can say that these view volumes/frusta can be specified

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

CSCI 4620/8626. The 2D Viewing Pipeline

CSCI 4620/8626. The 2D Viewing Pipeline CSCI 4620/8626 Computer Graphics Two-Dimensional Viewing (Chapter 8) Last update: 2016-03-3 The 2D Viewing Pipeline Given a 2D scene, we select the part of it that we wish to see (render, display) using

More information

Computer Viewing and Projection. Overview. Computer Viewing. David Carr Fundamentals of Computer Graphics Spring 2004 Based on Slides by E.

Computer Viewing and Projection. Overview. Computer Viewing. David Carr Fundamentals of Computer Graphics Spring 2004 Based on Slides by E. INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Computer Viewing and Projection David Carr Fundamentals of Computer Graphics Spring 24 Based on Slides by E. Angel Projection 1 L Overview Computer

More information

Three-Dimensional Graphics III. Guoying Zhao 1 / 67

Three-Dimensional Graphics III. Guoying Zhao 1 / 67 Computer Graphics Three-Dimensional Graphics III Guoying Zhao 1 / 67 Classical Viewing Guoying Zhao 2 / 67 Objectives Introduce the classical views Compare and contrast image formation by computer with

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Overview of Projections: From a 3D world to a 2D screen.

Overview of Projections: From a 3D world to a 2D screen. Overview of Projections: From a 3D world to a 2D screen. Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University, Birmingham, UK

More information

MAE : Lecture #12 - Projection and Perspective. Lecture Overview:

MAE : Lecture #12 - Projection and Perspective. Lecture Overview: Lecture Overview: Miscellaneous Motivation Projection - basics Means for projecting images: Orthographic viewing - basics Perspective viewing - basics The mathematics of projection Vanishing points Numerical

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

Computer Viewing. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Computer Viewing. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Computer Viewing CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce the mathematics of projection Introduce OpenGL viewing functions Look at

More information

Computer Viewing. Prof. George Wolberg Dept. of Computer Science City College of New York

Computer Viewing. Prof. George Wolberg Dept. of Computer Science City College of New York Computer Viewing Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Introduce the mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing

More information

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9 3D Viewing CS 46 Lecture 9 Cornell CS46 Spring 18 Lecture 9 18 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene

More information

5.8.3 Oblique Projections

5.8.3 Oblique Projections 278 Chapter 5 Viewing y (, y, ) ( p, y p, p ) Figure 537 Oblique projection P = 2 left right 0 0 left+right left right 0 2 top bottom 0 top+bottom top bottom far+near far near 0 0 far near 2 0 0 0 1 Because

More information

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky 7. 3D Viewing Projection: why is projection necessary? 1 7. 3D Viewing Projection: why is projection necessary? Because the display surface is 2D 2 7.1 Projections Perspective projection 3 7.1 Projections

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

Game Architecture. 2/19/16: Rasterization

Game Architecture. 2/19/16: Rasterization Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world

More information

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker CMSC427 Transformations II: Viewing Credit: some slides from Dr. Zwicker What next? GIVEN THE TOOLS OF The standard rigid and affine transformations Their representation with matrices and homogeneous coordinates

More information

Computer Graphics Viewing

Computer Graphics Viewing Computer Graphics Viewing What Are Projections? Our 3-D scenes are all specified in 3-D world coordinates To display these we need to generate a 2-D image - project objects onto a picture plane Picture

More information

Prof. Feng Liu. Fall /19/2016

Prof. Feng Liu. Fall /19/2016 Prof. Feng Liu Fall 26 http://www.cs.pdx.edu/~fliu/courses/cs447/ /9/26 Last time More 2D Transformations Homogeneous Coordinates 3D Transformations The Viewing Pipeline 2 Today Perspective projection

More information

Lecture 4: 3D viewing and projections

Lecture 4: 3D viewing and projections Lecture 4: 3D viewing and projections Today s lecture Rotations around an arbitrary axis (Continuation from the last lecture) The view coordinate system Change of coordinate system (same origin) Change

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation

More information

Figure 1. Lecture 1: Three Dimensional graphics: Projections and Transformations

Figure 1. Lecture 1: Three Dimensional graphics: Projections and Transformations Lecture 1: Three Dimensional graphics: Projections and Transformations Device Independence We will start with a brief discussion of two dimensional drawing primitives. At the lowest level of an operating

More information

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52 It looks like a matrix Sort of Viewing III Projection in Practice 1 / 52 Arbitrary 3D views } view volumes/frusta spec d by placement and shape } Placement: } Position (a point) } look and up vectors }

More information

Viewing COMPSCI 464. Image Credits: Encarta and

Viewing COMPSCI 464. Image Credits: Encarta and Viewing COMPSCI 464 Image Credits: Encarta and http://www.sackville.ednet.ns.ca/art/grade/drawing/perspective4.html Graphics Pipeline Graphics hardware employs a sequence of coordinate systems The location

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker)

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker) Viewing in 3D (Chapt. 6 in FVD, Chapt. 2 in Hearn & Baker) Viewing in 3D s. 2D 2D 2D world Camera world 2D 3D Transformation Pipe-Line Modeling transformation world Bod Sstem Viewing transformation Front-

More information

Viewing and Projection Transformations

Viewing and Projection Transformations Viewing and Projection Transformations Projective Rendering Pipeline OCS WCS VCS modeling transformation viewing transformation OCS - object coordinate system WCS - world coordinate system VCS - viewing

More information

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401 Computer Graphics CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401- COMPUTER GRAPHICS UNIT 1-2D PRIMITIVES 1. Define Computer Graphics. 2. Explain any 3 uses of computer graphics applications.

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Viewing and Projection

Viewing and Projection Viewing and Projection Sheelagh Carpendale Camera metaphor. choose camera position 2. set up and organie objects 3. choose a lens 4. take the picture View Volumes what gets into the scene perspective view

More information

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping Interactive Computer Graphics The Graphics Pipeline: The Graphics Pipeline Input: - geometric model - illumination model - camera model - viewport Some slides adopted from F. Durand and B. Cutler, MIT

More information

UNIT 2 2D TRANSFORMATIONS

UNIT 2 2D TRANSFORMATIONS UNIT 2 2D TRANSFORMATIONS Introduction With the procedures for displaying output primitives and their attributes, we can create variety of pictures and graphs. In many applications, there is also a need

More information

CSC 305 The Graphics Pipeline-1

CSC 305 The Graphics Pipeline-1 C. O. P. d y! "#"" (-1, -1) (1, 1) x z CSC 305 The Graphics Pipeline-1 by Brian Wyvill The University of Victoria Graphics Group Perspective Viewing Transformation l l l Tools for creating and manipulating

More information

CSC 470 Computer Graphics. Three Dimensional Viewing

CSC 470 Computer Graphics. Three Dimensional Viewing CSC 470 Computer Graphics Three Dimensional Viewing 1 Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Projections Producing Stereo Views 2 Introduction

More information

UNIT - V PERSPECTIVE PROJECTION OF SIMPLE SOLIDS

UNIT - V PERSPECTIVE PROJECTION OF SIMPLE SOLIDS UNIT - V PERSPECTIVE PROJECTION OF SIMPLE SOLIDS Definitions 1. Perspective Projection is the graphic representation of an object on a single plane called Picture Plane (PP), as it appears to an observer.

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

Graphics pipeline and transformations. Composition of transformations

Graphics pipeline and transformations. Composition of transformations Graphics pipeline and transformations Composition of transformations Order matters! ( rotation * translation translation * rotation) Composition of transformations = matrix multiplication: if T is a rotation

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7 Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.~4.7 Chap 3 View Pipeline, Comp. Graphics (U) CGGM Lab., CS Dept., NCTU Jung Hong Chuang Outline View parameters

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection January 25, 2012 Jernej Barbic University of Southern California Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Transforms II. Overview. Homogeneous Coordinates 3-D Transforms Viewing Projections. Homogeneous Coordinates. x y z w

Transforms II. Overview. Homogeneous Coordinates 3-D Transforms Viewing Projections. Homogeneous Coordinates. x y z w Transforms II Overvie Homogeneous Coordinates 3- Transforms Vieing Projections 2 Homogeneous Coordinates Allos translations to be included into matri transform. Allos us to distinguish beteen a vector

More information

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 3D Viewing With acknowledge to: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Classical Viewing Viewing plane projectors Classical

More information

2D and 3D Viewing Basics

2D and 3D Viewing Basics CS10101001 2D and 3D Viewing Basics Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Viewing Analog to the physical viewing

More information