The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

Size: px
Start display at page:

Download "The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes"

Transcription

1 The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation from 3D geometry. These processes can be broken up into three major areas: The movement of the object is called a modeling transformation. The movement of the camera is called a viewing transformation. The conversion from 3D to 2D is called a projection transformation. The Modeling Transformation The modeling transformations are those such as gltranslate (), glrotatef () and glscalef (), which dictate the movement of the object in local coordinates. These operations are applied to the modelview matrix, as opposed to the projection matrix. To begin transformation of this matrix, we need to specify it in the matrix mode function, then initialize the matrix to the Identity matrix, and perform your transformations thereafter: glmatrixmode(gl_modelview); glloadidentity(); glpushmatrix(); //store current matrix glrotate{f,d}(f/d,x,y,z); gltranslate{fd}(a, b, c); glscale{f/d}(a, b, c); glpopmatrix(); //restore current matrix

2 Because all coordinates are stored as 4D values, we can manipulate the coordinates with the 4x4 transformation matrix. For a homogeneous coordinate v and a matrix M: v' = Mv, where M is the modified ModelView matrix. Translation gltranslate{fd}(a, b, c); C' = CT, where T= a b c (x+a, y+b, z+c, 1) = T (x, y, z, 1) Scaling glscale{fd}(a, b, c); C' = CS, where S = a b c 0 (xa, yb, zc, 1) = S (x, y, z, 1) Note that scaling is performed relative to the origin of the current coordinate system. Rotation glrotate{fd}(a, x, y, z); where a is the (right-handed) rotation angle, given in degrees, and (x, y, z) define the axis of rotation. C' = CR, where R = 0 M 0 0 where M is a general 3x3 rotation matrix. Note the following three special cases of rotation about the coordinate axes. Rotation about the x-axis glrotatef(a, 1.0, 0.0, 0.0); R = cos(a) -sin(a) 0 0 sin(a) cos(a) 0

3 Rotation about the y-axis glrotatef(a, 0.0, 1.0, 0.0); R = cos(a) 0 sin(a) sin(a) 0 cos(a) 0 Rotation about the z-axis glrotatef(a, 0.0, 0.0, 1.0); R = cos(a) -sin(a) 0 0 sin(a) cos(a) Like scaling, rotation is performed relative to the origin of the current coordinate system. Viewing Transformations The default OpenGL viewpoint is located at the origin, looking down the negative Z- axis. The geometry that we wish to view must either by moved to a position from which it can be seen from the default viewpoint, or the viewpoint must be moved so that it can see the geometry. Note that the modeling and viewing transformations have an inverse relationship: rotating the model geometry in a positive direction about the X-axis is equivalent to rotating the viewpoint in a negative direction about the X-axis. It is possible to build a viewing transformation by concatenating a series of translations and rotations, however, this can be quite complex. Instead, OpenGL provides a simplified function to define the transformation. Note that although the modeling and viewing transformations can be considered logically separate operations, OpenGL concatenates all of the modeling and viewing transformations into a single matrix (i.e. the ModelView Matrix). A separate matrix is provided to perform the projection transformation. double eyex, eyey, eyez; /* viewpoint */ double referx, refery, referz; /* reference point */ double upx, upy, upz; /* view up vector */

4 glulookat(eyex, eyey, eyez, referx, refery, referz, upx, upy, upz); where (eyex,eyey,eyez) is the viewpoint, (referx,refery,referz) is a point along the desired line of sight (if the point is at the center of the scene being looked at, it is usually referred to as the reference point), and (upx,upy,upz) is the view up vector. How To Move The Camera Supposing the eye point is fixed: To pan the camera (like shaking your head left and right): Move the reference point horizontally. To tilt the camera (like nodding your head up and down): Move the reference point vertically. To rock the camera (like tilting your head left and right): Let the eye point to the reference point be the normal vector of a plane A; change the direction of the up vector so that it s projection onto A rotates left and right. Projection Transformations OpenGL provides two types of projection transformations: orthographic and perspective. Each of these transformations defines a volume of space called a frustum. Only geometry that is inside of the frustum is displayed on the screen; any portion of geometry that is outside of the frustum is clipped. Orthographic Projection Given by: double left, right, bottom, top, near, far; glortho(left, right, bottom, top, near, far); which defines a rectangular parallelepiped frustum. An orthographic projection projects a 3D point v onto the 2D near clipping plane (sometimes called the picture plane) by constructing a ray through v that is parallel to the viewing direction, i.e. the Z-axis in the eye coordinate system. The (x,y) position on the picture plane where the ray intersects the plane is the 2D projection of v. In other words, if v is expressed in the eye coordinate system as (x,y,z), then the orthographic projection is (x,y).

5 Perspective Projection Given by: double fov, aspect, near, far; gluperspective(fov, aspect, near, far); which defines a truncated pyramid frustum. A perspective projection projects a 3D point v onto the 2D picture plane by constructing a ray through v that passes through the viewpoint direction, i.e. the origin of the eye coordinate system. The (x,y) position on the picture plane where the ray intersects the plane is the 2D projection of v. In other words, if v is expressed in the eye coordinate system as (x,y,z), then the perspective projection is (near*x/z, near*y/z). Perspective projection produces images that appear more realistic; it more closely mimics the operation of the human eye. This perspective projection can also be achieved by the OpenGL command glufrustum (), which can be used to mimic the behavior of gluperspective (). The frustum command has the added functionality of being able to accommodate off-axis projections, whereas gluperspective only produces symmetrical / on-axis projections (Please look at Kerryn s notes for more info on this function). Building the Pipeline Because all of the transformation matrices are multiplied on the right: C' = CM And the multiplication of a vertex coordinate with the transformation matrices also occurs on the right: v' = Cv The matrix that is farthest to the right is applied to the vertex first.

6 We can represent the viewing pipeline as follows: v' = PMv Where P is the projection matrix (orthographic / perspective transformations) and M is the modelview matrix (modeling and viewing transformations). Since the modelview matrix can be thought of logically as separate viewing and modeling transformations: v' = PVMv where V is the viewing matrix and M is the modeling matrix. Note that first we apply the modeling transformation to orient the geometric model, then we apply the viewing transformation to define the eye coordinate system, and finally we perform the projection from 3D to 2D. The 2D picture plane forms the world coordinate window, which can be mapped to the screen viewport. The viewport can hence be used to stretch the 2D scene if necessary (i.e. W/H ratio of window can be 2x W/H ratio of world window): Since the order of the transformations is significant, we want to invoke the OpenGL functions is the proper order, i.e. in the reverse order in which they will be applied. glviewport(...); /* screen viewport */ glmatrixmode(gl_projection); /* specify the projection matrix */ glloadidentity(); /* initialize to identity */ gluperspective(...); /* or glortho(...) */ glmatrixmode(gl_modelview); /* specify the modelview matrix */ glloadidentity(); /* initialize to identity */ glulookat(...); /* specify viewing transformation */ gltranslate(...); /* modeling transformations, */ glscale(...); /* as necessary */ glrotate(...);...

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics.

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics. Overview (1): Getting Started Setting up OpenGL/GLUT on Windows/Visual Studio COSC 4431/5331 Computer Graphics Thursday January 22, 2004 Overview Introduction Camera analogy Matrix operations and OpenGL

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

Describe the Orthographic and Perspective projections. How do we combine together transform matrices?

Describe the Orthographic and Perspective projections. How do we combine together transform matrices? Aims and objectives By the end of the lecture you will be able to Work with multiple transform matrices Describe the viewing process in OpenGL Design and build a camera control APIs Describe the Orthographic

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

Computer Viewing Computer Graphics I, Fall 2008

Computer Viewing Computer Graphics I, Fall 2008 Computer Viewing 1 Objectives Introduce mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing APIs 2 Computer Viewing Three aspects of viewing process All implemented in

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

CS354 Computer Graphics Viewing and Modeling

CS354 Computer Graphics Viewing and Modeling Slide Credit: Donald S. Fussell CS354 Computer Graphics Viewing and Modeling Qixing Huang February 21th 2018 Computer Viewing There are three aspects of the viewing process, all of which are implemented

More information

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky 7. 3D Viewing Projection: why is projection necessary? 1 7. 3D Viewing Projection: why is projection necessary? Because the display surface is 2D 2 7.1 Projections Perspective projection 3 7.1 Projections

More information

Viewing Transformation

Viewing Transformation CS38: Computer Graphics Viewing Transformation Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Know camera setup parameters Understand viewing and projection processes

More information

Fundamental Types of Viewing

Fundamental Types of Viewing Viewings Fundamental Types of Viewing Perspective views finite COP (center of projection) Parallel views COP at infinity DOP (direction of projection) perspective view parallel view Classical Viewing Specific

More information

CS380: Computer Graphics Viewing Transformation. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS380: Computer Graphics Viewing Transformation. Sung-Eui Yoon ( 윤성의 ) Course URL: CS38: Computer Graphics Viewing Transformation Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Know camera setup parameters Understand viewing and projection processes

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

CSC 470 Computer Graphics. Three Dimensional Viewing

CSC 470 Computer Graphics. Three Dimensional Viewing CSC 470 Computer Graphics Three Dimensional Viewing 1 Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Projections Producing Stereo Views 2 Introduction

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 47 Computer Graphics Three Dimensional Viewing Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Producing Stereo Views 1 2 Introduction We have already

More information

Advanced Computer Graphics (CS & SE )

Advanced Computer Graphics (CS & SE ) Advanced Computer Graphics (CS & SE 233.420) Topics Covered Picking Pipeline Viewing and Transformations Rendering Modes OpenGL can render in one of three modes selected by glrendermode(mode) GL_RENDER

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

The View Frustum. Lecture 9 Sections 2.6, 5.1, 5.2. Robb T. Koether. Hampden-Sydney College. Wed, Sep 14, 2011

The View Frustum. Lecture 9 Sections 2.6, 5.1, 5.2. Robb T. Koether. Hampden-Sydney College. Wed, Sep 14, 2011 The View Frustum Lecture 9 Sections 2.6, 5.1, 5.2 Robb T. Koether Hampden-Sydney College Wed, Sep 14, 2011 Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 1 / 36 Outline 1 The

More information

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S COMP27112 Û ˆF Ŝ Computer Graphics and Image Processing ˆʹ U ˆ ʹ F C E 5: iewing 1: The camera ˆʹ S Toby.Howard@manchester.ac.uk 1 Introduction In part 1 of our study of iewing, we ll look at iewing in

More information

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization Overview Viewing and perspectives Classical views Computer viewing Perspective normalization Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface

More information

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera UNIT - 6 7 hrs VIEWING Classical and computer viewing Viewing with a computer Positioning of the camera Simple projections Projections in OpenGL Hiddensurface removal Interactive mesh displays Parallelprojection

More information

Spring 2013, CS 112 Programming Assignment 2 Submission Due: April 26, 2013

Spring 2013, CS 112 Programming Assignment 2 Submission Due: April 26, 2013 Spring 2013, CS 112 Programming Assignment 2 Submission Due: April 26, 2013 PROJECT GOAL: Write a restricted OpenGL library. The goal of the project is to compute all the transformation matrices with your

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 3D Viewing With acknowledge to: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Classical Viewing Viewing plane projectors Classical

More information

CIS 636 Interactive Computer Graphics CIS 736 Computer Graphics Spring 2011

CIS 636 Interactive Computer Graphics CIS 736 Computer Graphics Spring 2011 CIS 636 Interactive Computer Graphics CIS 736 Computer Graphics Spring 2011 Lab 1a of 7 OpenGL Setup and Basics Fri 28 Jan 2011 Part 1a (#1 5) due: Thu 03 Feb 2011 (before midnight) The purpose of this

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Transformation Pipeline

Transformation Pipeline Transformation Pipeline Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space Coordinate

More information

Lecture 9 Sections 2.6, 5.1, 5.2. Wed, Sep 16, 2009

Lecture 9 Sections 2.6, 5.1, 5.2. Wed, Sep 16, 2009 Lecture 9 Sections 2.6, 5.1, 5.2 Hampden-Sydney College Wed, Sep 16, 2009 Outline 1 2 3 4 5 6 Controlling 7 Definition () A frustum is a truncated pyramid. Definition ( ) The view frustum is the region

More information

COMS 4160: Problems on Transformations and OpenGL

COMS 4160: Problems on Transformations and OpenGL COMS 410: Problems on Transformations and OpenGL Ravi Ramamoorthi 1. Write the homogeneous 4x4 matrices for the following transforms: Translate by +5 units in the X direction Rotate by 30 degrees about

More information

CS4202: Test. 1. Write the letter corresponding to the library name next to the statement or statements that describe library.

CS4202: Test. 1. Write the letter corresponding to the library name next to the statement or statements that describe library. CS4202: Test Name: 1. Write the letter corresponding to the library name next to the statement or statements that describe library. (4 points) A. GLUT contains routines that use lower level OpenGL commands

More information

Order of Transformations

Order of Transformations Order of Transformations Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p Note

More information

Computer Viewing. Prof. George Wolberg Dept. of Computer Science City College of New York

Computer Viewing. Prof. George Wolberg Dept. of Computer Science City College of New York Computer Viewing Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Introduce the mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing

More information

Computer Graphics. Chapter 7 2D Geometric Transformations

Computer Graphics. Chapter 7 2D Geometric Transformations Computer Graphics Chapter 7 2D Geometric Transformations Chapter 7 Two-Dimensional Geometric Transformations Part III. OpenGL Functions for Two-Dimensional Geometric Transformations OpenGL Geometric Transformation

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Introduction to OpenGL General OpenGL Introduction An Example OpenGL Program Drawing with OpenGL Transformations Animation and Depth Buffering

More information

Three-Dimensional Graphics III. Guoying Zhao 1 / 67

Three-Dimensional Graphics III. Guoying Zhao 1 / 67 Computer Graphics Three-Dimensional Graphics III Guoying Zhao 1 / 67 Classical Viewing Guoying Zhao 2 / 67 Objectives Introduce the classical views Compare and contrast image formation by computer with

More information

Prof. Feng Liu. Fall /19/2016

Prof. Feng Liu. Fall /19/2016 Prof. Feng Liu Fall 26 http://www.cs.pdx.edu/~fliu/courses/cs447/ /9/26 Last time More 2D Transformations Homogeneous Coordinates 3D Transformations The Viewing Pipeline 2 Today Perspective projection

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming OpenGL 3D Drawing 2 3D Graphics Projections Getting 3D to 2D 3D scene 2D image 3 Projections Orthographic

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

3D Viewing Episode 2

3D Viewing Episode 2 3D Viewing Episode 2 1 Positioning and Orienting the Camera Recall that our projection calculations, whether orthographic or frustum/perspective, were made with the camera at (0, 0, 0) looking down the

More information

GRAFIKA KOMPUTER. ~ M. Ali Fauzi

GRAFIKA KOMPUTER. ~ M. Ali Fauzi GRAFIKA KOMPUTER ~ M. Ali Fauzi Drawing 2D Graphics VIEWPORT TRANSFORMATION Recall :Coordinate System glutreshapefunc(reshape); void reshape(int w, int h) { glviewport(0,0,(glsizei) w, (GLsizei) h); glmatrixmode(gl_projection);

More information

Lecture 5: Viewing. CSE Computer Graphics (Fall 2010)

Lecture 5: Viewing. CSE Computer Graphics (Fall 2010) Lecture 5: Viewing CSE 40166 Computer Graphics (Fall 2010) Review: from 3D world to 2D pixels 1. Transformations are represented by matrix multiplication. o Modeling o Viewing o Projection 2. Clipping

More information

Overview of Projections: From a 3D world to a 2D screen.

Overview of Projections: From a 3D world to a 2D screen. Overview of Projections: From a 3D world to a 2D screen. Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University, Birmingham, UK

More information

Rendering Pipeline and Coordinates Transforms

Rendering Pipeline and Coordinates Transforms Rendering Pipeline and Coordinates Transforms Alessandro Martinelli alessandro.martinelli@unipv.it 16 October 2013 Rendering Pipeline (3): Coordinates Transforms Rendering Architecture First Rendering

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

Fachhochschule Regensburg, Germany, February 15, 2017

Fachhochschule Regensburg, Germany, February 15, 2017 s Operations Fachhochschule Regensburg, Germany, February 15, 2017 s Motivating Example s Operations To take a photograph of a scene: Set up your tripod and point camera at the scene (Viewing ) Position

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Transformations (Rotations with Quaternions) October 24, 2005

Transformations (Rotations with Quaternions) October 24, 2005 Computer Graphics Transformations (Rotations with Quaternions) October 4, 5 Virtual Trackball (/3) Using the mouse position to control rotation about two axes Supporting continuous rotations of objects

More information

Graphics and Visualization

Graphics and Visualization International University Bremen Spring Semester 2006 Recap Representing graphic objects by homogenous points and vectors Using affine transforms to modify objects Using projections to display objects

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

Viewing COMPSCI 464. Image Credits: Encarta and

Viewing COMPSCI 464. Image Credits: Encarta and Viewing COMPSCI 464 Image Credits: Encarta and http://www.sackville.ednet.ns.ca/art/grade/drawing/perspective4.html Graphics Pipeline Graphics hardware employs a sequence of coordinate systems The location

More information

2D and 3D Viewing Basics

2D and 3D Viewing Basics CS10101001 2D and 3D Viewing Basics Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Viewing Analog to the physical viewing

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 470 Computer Graphics Transformations of Objects CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 1 Transformations of objects - 2D CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 2 Using

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

MORE OPENGL. Pramook Khungurn CS 4621, Fall 2011

MORE OPENGL. Pramook Khungurn CS 4621, Fall 2011 MORE OPENGL Pramook Khungurn CS 4621, Fall 2011 SETTING UP THE CAMERA Recall: OpenGL Vertex Transformations Coordinates specified by glvertex are transformed. End result: window coordinates (in pixels)

More information

Computer Graphics. Basic 3D Programming. Contents

Computer Graphics. Basic 3D Programming. Contents Computer Graphics Basic 3D Programming September 21, 2005 Sun-Jeong Kim 1 http://www.hallym.ac.kr/~sunkim/teach/2005/cga Contents Cameras and objects Perspective projections Orthographic projections Viewing

More information

Computer Viewing. CITS3003 Graphics & Animation. E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley

Computer Viewing. CITS3003 Graphics & Animation. E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley Computer Viewing CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 1 Objectives Introduce the mathematics of projection Introduce OpenGL viewing

More information

Mouse Ray Picking Explained

Mouse Ray Picking Explained Mouse Ray Picking Explained Brian Hook http://www.bookofhook.com April 5, 2005 1 Introduction There comes a time in every 3D game where the user needs to click on something in the scene. Maybe he needs

More information

GL_MODELVIEW transformation

GL_MODELVIEW transformation lecture 3 view transformations model transformations GL_MODELVIEW transformation view transformations: How do we map from world coordinates to camera/view/eye coordinates? model transformations: How do

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coordinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

1 (Practice 1) Introduction to OpenGL

1 (Practice 1) Introduction to OpenGL 1 (Practice 1) Introduction to OpenGL This first practical is intended to get you used to OpenGL command. It is mostly a copy/paste work. Try to do it smartly by tweaking and messing around with parameters,

More information

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1 CS 428: Fall 29 Introduction to Computer Graphics Viewing and projective transformations Andrew Nealen, Rutgers, 29 9/23/29 Modeling and viewing transformations Canonical viewing volume Viewport transformation

More information

Computer Graphics. Transformations. CSC 470 Computer Graphics 1

Computer Graphics. Transformations. CSC 470 Computer Graphics 1 Computer Graphics Transformations CSC 47 Computer Graphics 1 Today s Lecture Transformations How to: Rotate Scale and Translate 2 Introduction An important concept in computer graphics is Affine Transformations.

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 424 Computer Graphics 2D Transformations Yong Cao Virginia Tech References: Introduction to Computer Graphics course notes by Doug Bowman Interactive Computer Graphics, Fourth Edition, Ed Angle Transformations

More information

Chapter 3 - Basic Mathematics for 3D Computer Graphics

Chapter 3 - Basic Mathematics for 3D Computer Graphics Chapter 3 - Basic Mathematics for 3D Computer Graphics Three-Dimensional Geometric Transformations Affine Transformations and Homogeneous Coordinates OpenGL Matrix Logic Translation Add a vector t Geometrical

More information

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 2 due Friday, October 11

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL

OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL OpenGL: Open Graphics Library Introduction to OpenGL Part II CS 351-50 Graphics API ( Application Programming Interface) Software library Layer between programmer and graphics hardware (and other software

More information

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification 蔡侑庭 (Yu-Ting Tsai) Department of Computer Science National Chiao Tung University, Taiwan Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification OpenGL Programming Guide, Chap. 3 & Appendix F 2 OpenGL

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

More information

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #5: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Friday: homework 1 due at 2pm Upload to TritonEd

More information

Modeling Transform. Chapter 4 Geometric Transformations. Overview. Instancing. Specify transformation for objects 李同益

Modeling Transform. Chapter 4 Geometric Transformations. Overview. Instancing. Specify transformation for objects 李同益 Modeling Transform Chapter 4 Geometric Transformations 李同益 Specify transformation for objects Allow definitions of objects in own coordinate systems Allow use of object definition multiple times in a scene

More information

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Classical and Computer Viewing Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Planar Geometric Projections Standard projections project onto a plane Projectors

More information

Precept 2 Aleksey Boyko February 18, 2011

Precept 2 Aleksey Boyko February 18, 2011 Precept 2 Aleksey Boyko February 18, 2011 Getting started Initialization Drawing Transformations Cameras Animation Input Keyboard Mouse Joystick? Textures Lights Programmable pipeline elements (shaders)

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE45 Computer Graphics Lecture 8: Computer Projection CSE45 Lecture 8: Computer Projection 1 Review In the last lecture We set up a Virtual Camera Position Orientation Clipping planes Viewing angles Orthographic/Perspective

More information

Introduction to OpenGL Transformations, Viewing and Lighting. Ali Bigdelou

Introduction to OpenGL Transformations, Viewing and Lighting. Ali Bigdelou Introduction to OpenGL Transformations, Viewing and Lighting Ali Bigdelou Modeling From Points to Polygonal Objects Vertices (points) are positioned in the virtual 3D scene Connect points to form polygons

More information

Viewing transformations. 2004, Denis Zorin

Viewing transformations. 2004, Denis Zorin Viewing transformations OpenGL transformation pipeline Four main stages: Modelview: object coords to eye coords p eye = Mp obj (x obj,y obj,z obj,w obj ) (x eye,y eye,z eye,w eye ) in eye coordinates,

More information

CS559: Computer Graphics. Lecture 12: OpenGL Transformation Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 12: OpenGL Transformation Li Zhang Spring 2008 CS559: Computer Graphics Lecture 2: OpenGL Transformation Li Zhang Spring 28 Today Transformation in OpenGL Reading Chapter 3 Last time Primitive Details glpolygonmode(glenum face, GLenum mode); face:

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

1 OpenGL - column vectors (column-major ordering)

1 OpenGL - column vectors (column-major ordering) OpenGL - column vectors (column-major ordering) OpenGL uses column vectors and matrices are written in a column-major order. As a result, matrices are concatenated in right-to-left order, with the first

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

Computer Graphics Geometric Transformations

Computer Graphics Geometric Transformations Computer Graphics 2016 6. Geometric Transformations Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2016-10-31 Contents Transformations Homogeneous Co-ordinates Matrix Representations of Transformations

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Perspective transformations

Perspective transformations Perspective transformations Transformation pipeline Modelview: model (position objects) + view (position the camera) Projection: map viewing volume to a standard cube Perspective division: project D to

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

Wire-Frame 3D Graphics Accelerator IP Core. C Library Specification

Wire-Frame 3D Graphics Accelerator IP Core. C Library Specification Wire-Frame 3D Graphics Accelerator IP Core C Library Specification Kenji Ishimaru 1 / 29 Revision History Rev. Date Author Description 1.0 2015/09/30 Kenji Ishimaru First release

More information