Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Size: px
Start display at page:

Download "Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard"

Transcription

1 Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment 1 is due TONIGHT at 11:59pm If you want to demo your program in person, I d like to do it Friday afternoon if possible Please contact me by (TODAY) to set up a time Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard blackboard.unc.edu Include a document that lists What optional components you did Instructions for use Any problems that you had, or components that do not work properly Please submit as a zip file with your name in the filename Last Time Today Presented the functions needed for lighting and shading in OpenGL Demoed some lighting and shading functions in OpenGL Briefly discussed Non-Photorealistic Rendering (NPR) Review the OpenGL pipeline Discuss viewing and how it applies to computer graphics 1

2 Geometry (Vertices) Rendering Pipeline OpenGL rendering works like an assembly line Each stage of the pipeline performs a distinct function on the data flowing by Each stage is applied to every vertex to determine its contribution to output pixels Vertex Processing Rasterizer Fragment Processing Pixels Vertex Processing The job of the vertex processing step is to take arbitrary input geometry, and turn it into something that the rasterizer can understand Input: arbitrary geometry, lighting and camera information Output: Shaded screen-space polygons Vertex Processing Vertex processing consists of: ModelView transform Projection transform Lighting divide Polygon clipping Viewport transform Vertex Processing Vertex Processing Vertex Processing Projection Transform Viewport Transform Vertices Modelview Transform Lighting Clipping & Primitive Assembly Vertex Processing We already talked about lighting We already talked about modeling transformations We talked a bit about projections and viewports We re going to do that in more detail today Clipping is for next time Viewing in OpenGL The OpenGL viewpoint acts as a virtual camera What parameters do you need to define a camera? Viewpoint (Center of Projection) View direction Field of view Film size Projection plane 2

3 Viewing Viewing requires 3 elements: Objects to be viewed A viewer with a projection surface A projection from the objects to the viewing surface Viewing Example: A real camera Objects: Whatever you re taking a picture of: landscape, people, etc. Viewer: The camera (with its film as the projection surface) Projection: Defined by the lens, maps 3D objects on to the 2D surface Viewing Example: OpenGL camera Objects: The input geometry Viewer: The OpenGL camera (with the view volume as its viewing surface ) Projection: The OpenGL projection matrix (GL_PROJECTION), maps 3D space (world coordinates) into 3D space (eye coordinates) Eventually into normalized device coordinates (NDC) Classical Viewing Classical views are based on the relationship between these 3 elements: objects, a viewer, and a projection In classical views, objects are assumed to be constructed from flat principal faces i.e. many buildings Used primarily by architects / engineers Planar Geometric Standard projections are assumed to be onto a single plane A projection can be perspective or orthographic In perspective projection, all rays converge at a single point (the center of projection, or COP) In orthographic projection, all rays are parallel vs. Parallel Viewing volume is a truncated pyramid aka frustum Orthographic Viewing volume is a box Orthographic 3

4 Taxonomy of Planar Geometric Planar Geometric Parallel / Orthographic Multiview Axonometric Oblique Multiview Orthographic Projection plane parallel to principle face Multiview simply means generating an orthographic view for multiple faces Commonly seen in 3D modeling programs Isometric Top View Isometric Dimetric Trimetric One-point Two-point Three-point Side View Front View Benefits Why use orthographic? Preserves distances and angles does not Can be used for measurements Why multiview? The main problem with orthographic projection is that it hides many surfaces Often add isometric view as well Axonometric Direction of projection is still perpendicular to the viewing plane But principle faces not parallel to it 3 different kinds: Isometric, dimetric, trimetric Classified by number of different foreshortening factors Axonometric Typically, one axis of space is drawn as the vertical (as seen here) Advantages and Advantages: Disadvantages Can see multiple faces of an object simultaneously Lines are scaled, but by a constant factor Could still be used for measurement Disadvantages: Angles not preserved Foreshortening does not depend on distance Not realistic 4

5 Oblique Projection Direction of projection is not perpendicular to the viewing plane Most general parallel projection Is this possible with a normal camera? Orthogonal So what is the matrix for an orthogonal projection? Assume we re looking down z How would you implement an axonometric projection? Orthogonal Projection + Rotation(s) How would you implement an oblique projection? Orthogonal Projection + Rotation(s) + Shear(s) Orthographic Examples How would you map an arbitrary bounding volume (nearxyz, farxyz) into the volume defined by (-1, -1, -1) and (1, 1, 1)? Vanishing Points In perspective projection, parallel lines (parallel in the scene) appear to converge to a single point This is called the vanishing point projections are distinguished by the number of vanishing points in the image One, two, or three One-point One principal face is parallel to the projection plane 5

6 Two-point One principal direction (i.e. axis) is parallel to the projection plane Three-point Nothing parallel to the projection plane Usually used when looking up at or down on buildings Classical Viewing Recap Classical viewing is not accurate Can be useful for various reasons Two main branches Parallel projection projection Movie Break! The Aeronaut Nicholas Lombardo Ringling School of Art & Design SIGGRAPH 2006 Available online: kerid=269&filmid=628 Doing in OpenGL We already know the commands to set up projection matrices: glortho(...) gluortho2d(...) gl(...) glufrustum(...) Now we ll talk a bit about what they really mean Positioning the Camera We usually assume that the camera is located at (0,0,0), looking down -z What do we do if we want it to appear somewhere else? Translate the world by the opposite of the new location Two ways to think about this: Whole object moves into the camera frame Camera moves (need to apply transforms in reverse order) 6

7 Projection Divide divide is the mechanism by which objects farther away are made to appear smaller How? Divide x = (x * d) / z y = (y * d) / z How would you implement this in a matrix? [ ] [ ] [ ] [0 0 1/d 0] d is the z location of the projection plane How does this work? Divide M * [x y z 1] T = [x y z (z/d)] T Need to normalize new point: normalize([x y z (z/d)] T ) = [(xd/z) (yd/z) d 1] This is the image of that point on the projection plane What happens if d = 0? Viewport Transform After perspective divide, we know where the vertices will map to in 2D But in normalized device coordinates Need to know where these will actually be displayed This is the viewport transform Viewport Transform Just need to translate into a different set of 2D coordinates From the rectangle defined by (-1, -1) and (1, 1) to the rectangle defined by (0, 0) and (width, height) How? Translate and scale What if the aspect ratio of the viewport is different from that of the camera? 7

8 Next Time Continuing with vertex processing Clipping Discussion of vertex shaders Assignment 2 will go out Reminder: Programming assignment 1 due TONIGHT by 11:59pm Upload to blackboard.unc.edu 8

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

More information

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Classical and Computer Viewing Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Planar Geometric Projections Standard projections project onto a plane Projectors

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University Computer Graphics P05 Viewing in 3D Part 1 Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Viewing in 3D: context Create views

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization Overview Viewing and perspectives Classical views Computer viewing Perspective normalization Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface

More information

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera UNIT - 6 7 hrs VIEWING Classical and computer viewing Viewing with a computer Positioning of the camera Simple projections Projections in OpenGL Hiddensurface removal Interactive mesh displays Parallelprojection

More information

Introduction to Computer Graphics 4. Viewing in 3D

Introduction to Computer Graphics 4. Viewing in 3D Introduction to Computer Graphics 4. Viewing in 3D National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Reading Chapter 4 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller 2 Objectives

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

Three-Dimensional Graphics III. Guoying Zhao 1 / 67

Three-Dimensional Graphics III. Guoying Zhao 1 / 67 Computer Graphics Three-Dimensional Graphics III Guoying Zhao 1 / 67 Classical Viewing Guoying Zhao 2 / 67 Objectives Introduce the classical views Compare and contrast image formation by computer with

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

Movie: Geri s Game. Announcements. Ray Casting 2. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available

Movie: Geri s Game. Announcements. Ray Casting 2. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available Now Playing: Movie: Geri s Game Pixar, 1997 Academny Award Winner, Best Short Film Quicksand Under Carpet New Radiant Storm King from Leftover Blues: 1991-003 Released 004 Ray Casting Rick Skarbez, Instructor

More information

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 3D Viewing With acknowledge to: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Classical Viewing Viewing plane projectors Classical

More information

Overview of Projections: From a 3D world to a 2D screen.

Overview of Projections: From a 3D world to a 2D screen. Overview of Projections: From a 3D world to a 2D screen. Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University, Birmingham, UK

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

CS452/552; EE465/505. Models & Viewing

CS452/552; EE465/505. Models & Viewing CS452/552; EE465/505 Models & Viewing 2-03 15 Outline! Building Polygonal Models Vertex lists; gl.drawarrays( ) Edge lists: gl.drawelements( )! Viewing Classical Viewing Read: Viewing in Web3D Angel, Section

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

Building Models. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Building Models. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Building Models CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce simple data structures for building polygonal models - Vertex lists - Edge

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

More information

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard Computer Graphics and Image Processing a6: Projections Tob.Howard@manchester.ac.uk Introduction In part 2 of our stud of Viewing, we ll look at The theor of geometrical planar projections Classes of projections

More information

2D and 3D Viewing Basics

2D and 3D Viewing Basics CS10101001 2D and 3D Viewing Basics Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Viewing Analog to the physical viewing

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #5: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Friday: homework 1 due at 2pm Upload to TritonEd

More information

Chapter 8 Three-Dimensional Viewing Operations

Chapter 8 Three-Dimensional Viewing Operations Projections Chapter 8 Three-Dimensional Viewing Operations Figure 8.1 Classification of planar geometric projections Figure 8.2 Planar projection Figure 8.3 Parallel-oblique projection Figure 8.4 Orthographic

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Fundamental Types of Viewing

Fundamental Types of Viewing Viewings Fundamental Types of Viewing Perspective views finite COP (center of projection) Parallel views COP at infinity DOP (direction of projection) perspective view parallel view Classical Viewing Specific

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S 3D Viewing: the Synthetic Camera Programmer s reference model for specifying 3D view projection parameters to the computer General synthetic camera (e.g., PHIGS Camera, Computer Graphics: Principles and

More information

Viewing/Projections IV. Week 4, Fri Feb 1

Viewing/Projections IV. Week 4, Fri Feb 1 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2008 Tamara Munzner Viewing/Projections IV Week 4, Fri Feb 1 http://www.ugrad.cs.ubc.ca/~cs314/vjan2008 News extra TA office hours in lab

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Spring 2017 Lecture 6 February 2, 2017 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to get

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Fall 2016 Lecture 6/7 September 26-28 2016 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to

More information

Movie: For The Birds. Announcements. Ray Tracing 1. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available

Movie: For The Birds. Announcements. Ray Tracing 1. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available Now Playing: Movie: For The Birds Pixar, 2000 Liar Built To Spill from You In Reverse Released April 11, 2006 Ray Tracing 1 Rick Skarbez, Instructor COMP 575 November 1, 2007 Announcements Programming

More information

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 2 due Friday, October 11

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Game Architecture. 2/19/16: Rasterization

Game Architecture. 2/19/16: Rasterization Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world

More information

Announcement. Project 1 has been posted online and in dropbox. Due: 11:59:59 pm, Friday, October 14

Announcement. Project 1 has been posted online and in dropbox. Due: 11:59:59 pm, Friday, October 14 Announcement Project 1 has been posted online and in dropbox Due: 11:59:59 pm, Friday, October 14 Project 1: Interactive Viewing of Two Teapots How to create a teapot? Before OpenGL 3., glutsolidteapot

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

Shadows in the graphics pipeline

Shadows in the graphics pipeline Shadows in the graphics pipeline Steve Marschner Cornell University CS 569 Spring 2008, 19 February There are a number of visual cues that help let the viewer know about the 3D relationships between objects

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker CMSC427 Transformations II: Viewing Credit: some slides from Dr. Zwicker What next? GIVEN THE TOOLS OF The standard rigid and affine transformations Their representation with matrices and homogeneous coordinates

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Albrecht Dürer, Underweysung der Messung mit

More information

3D Viewing. CS 4620 Lecture 8

3D Viewing. CS 4620 Lecture 8 3D Viewing CS 46 Lecture 8 13 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene projects to pixel explicitly construct

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

Viewing and Projection Transformations

Viewing and Projection Transformations Viewing and Projection Transformations Projective Rendering Pipeline OCS WCS VCS modeling transformation viewing transformation OCS - object coordinate system WCS - world coordinate system VCS - viewing

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Spring 2016 Lecture 6 February 11, 2016 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to get

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation

More information

Chap 7, 2008 Spring Yeong Gil Shin

Chap 7, 2008 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 28 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a synthetic camera)

More information

COMP30019 Graphics and Interaction Perspective Geometry

COMP30019 Graphics and Interaction Perspective Geometry COMP30019 Graphics and Interaction Perspective Geometry Department of Computing and Information Systems The Lecture outline Introduction to perspective geometry Perspective Geometry Virtual camera Centre

More information

Building Models. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Building Models. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Building Models 1 Objectives Introduce simple data structures for building polygonal models Vertex lists Edge lists 2 Representing a Mesh Consider a mesh v 5 v 6 e e e 3 v 9 8 8 v e 4 1 e 11 e v v 7 7

More information

Computer graphics 2: Graduate seminar in computational aesthetics

Computer graphics 2: Graduate seminar in computational aesthetics Computer graphics 2: Graduate seminar in computational aesthetics Angus Forbes evl.uic.edu/creativecoding/cs526 Homework 2 RJ ongoing... - Follow the suggestions in the Research Journal handout and find

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

Viewing Transformation

Viewing Transformation Viewing and Projection Transformations Projective Rendering Pipeline OCS WCS VCS modeling transformation Mm.odd viewing transformation Mview OCS - object coordinate system WCS - world coordinate system

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

RASTERISED RENDERING

RASTERISED RENDERING DH2323 DGI16 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION RASTERISED RENDERING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

1 OpenGL - column vectors (column-major ordering)

1 OpenGL - column vectors (column-major ordering) OpenGL - column vectors (column-major ordering) OpenGL uses column vectors and matrices are written in a column-major order. As a result, matrices are concatenated in right-to-left order, with the first

More information

Chapter 5-3D Camera & Optimizations, Rasterization

Chapter 5-3D Camera & Optimizations, Rasterization Chapter 5-3D Camera Optimizations, Rasterization Classical Viewing Taxonomy 3D Camera Model Optimizations for the Camera How to Deal with Occlusion Rasterization Clipping Drawing lines Filling areas Based

More information

COMP30019 Graphics and Interaction Perspective & Polygonal Geometry

COMP30019 Graphics and Interaction Perspective & Polygonal Geometry COMP30019 Graphics and Interaction Perspective & Polygonal Geometry Department of Computing and Information Systems The Lecture outline Introduction Perspective Geometry Virtual camera Centre of projection

More information

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9 3D Viewing CS 46 Lecture 9 Cornell CS46 Spring 18 Lecture 9 18 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene

More information

Chapter 4-3D Camera & Optimizations, Rasterization

Chapter 4-3D Camera & Optimizations, Rasterization Chapter 4-3D Camera & Optimizations, Rasterization Classical Viewing Taxonomy 3D Camera Model Optimizations for the Camera How to Deal with Occlusion Rasterization Clipping Drawing lines Filling areas

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Logistics Update! all homework submissions:

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, Breaking out of 2D now we are ready to break out of 2D And enter the

More information

CSE 167: Introduction to Computer Graphics Lecture #7: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #7: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #7: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015 Announcements Thursday in-class: Midterm Can include material

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

Three Main Themes of Computer Graphics

Three Main Themes of Computer Graphics Three Main Themes of Computer Graphics Modeling How do we represent (or model) 3-D objects? How do we construct models for specific objects? Animation How do we represent the motion of objects? How do

More information

CSC 470 Computer Graphics. Three Dimensional Viewing

CSC 470 Computer Graphics. Three Dimensional Viewing CSC 470 Computer Graphics Three Dimensional Viewing 1 Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Projections Producing Stereo Views 2 Introduction

More information

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Projection and viewing. Computer Graphics CSE 167 Lecture 4

Projection and viewing. Computer Graphics CSE 167 Lecture 4 Projection and viewing Computer Graphics CSE 167 Lecture 4 CSE 167: Computer Graphics Review: transformation from the object (or model) coordinate frame to the camera (or eye) coordinate frame Projection

More information

MAE : Lecture #12 - Projection and Perspective. Lecture Overview:

MAE : Lecture #12 - Projection and Perspective. Lecture Overview: Lecture Overview: Miscellaneous Motivation Projection - basics Means for projecting images: Orthographic viewing - basics Perspective viewing - basics The mathematics of projection Vanishing points Numerical

More information

Advanced Computer Graphics (CS & SE )

Advanced Computer Graphics (CS & SE ) Advanced Computer Graphics (CS & SE 233.420) Topics Covered Picking Pipeline Viewing and Transformations Rendering Modes OpenGL can render in one of three modes selected by glrendermode(mode) GL_RENDER

More information

Computer Graphics. Ch 6. 3D Viewing

Computer Graphics. Ch 6. 3D Viewing Computer Graphics Ch 6. 3D Viewing 3D Viewing Basic do you see this image as flat? 12 lines 3D Coordinate System 3D homogeneous coordinates: p = [x y z w] T Our textbook and OpenGL use a RIGHT-HANDED system

More information

CS 4620 Program 3: Pipeline

CS 4620 Program 3: Pipeline CS 4620 Program 3: Pipeline out: Wednesday 14 October 2009 due: Friday 30 October 2009 1 Introduction In this assignment, you will implement several types of shading in a simple software graphics pipeline.

More information

CS 418: Interactive Computer Graphics. Projection

CS 418: Interactive Computer Graphics. Projection CS 418: Interactive Computer Graphics Projection Eric Shaffer Based on John Hart s CS 418 Slides Hierarchical Solar System Model Without push/pop, You can t move the Earth scale to before you draw the

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52 cs337 It looks like a matrix Sort of Viewing III Projection in Practice / 52 cs337 Arbitrary 3D views Now that we have familiarity with terms we can say that these view volumes/frusta can be specified

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

So we have been talking about 3D viewing, the transformations pertaining to 3D viewing. Today we will continue on it. (Refer Slide Time: 1:15)

So we have been talking about 3D viewing, the transformations pertaining to 3D viewing. Today we will continue on it. (Refer Slide Time: 1:15) Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 8 3D Viewing So we have been talking about 3D viewing, the

More information

3D computer graphics: geometric modeling of objects in the computer and rendering them

3D computer graphics: geometric modeling of objects in the computer and rendering them SE313: Computer Graphics and Visual Programming Computer Graphics Notes Gazihan Alankus, Spring 2012 Computer Graphics 3D computer graphics: geometric modeling of objects in the computer and rendering

More information

CS 112 The Rendering Pipeline. Slide 1

CS 112 The Rendering Pipeline. Slide 1 CS 112 The Rendering Pipeline Slide 1 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n

More information

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012.

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012. CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions The Midterm Exam was given in class on Tuesday, October 16, 2012. 1. [7 pts] Synthetic-Camera Model. Describe the Synthetic-Camera Model : how

More information

Projection Lecture Series

Projection Lecture Series Projection 25.353 Lecture Series Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba Overview Coordinate Systems Local Coordinate System (LCS) World Coordinate

More information

3D Viewing Episode 2

3D Viewing Episode 2 3D Viewing Episode 2 1 Positioning and Orienting the Camera Recall that our projection calculations, whether orthographic or frustum/perspective, were made with the camera at (0, 0, 0) looking down the

More information

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics.

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics. Overview (1): Getting Started Setting up OpenGL/GLUT on Windows/Visual Studio COSC 4431/5331 Computer Graphics Thursday January 22, 2004 Overview Introduction Camera analogy Matrix operations and OpenGL

More information