A Generic Benders Decomposition Algorithm for the AIMMS Modeling Language Informs 2012, Phoenix

Size: px
Start display at page:

Download "A Generic Benders Decomposition Algorithm for the AIMMS Modeling Language Informs 2012, Phoenix"

Transcription

1 A Generic Benders Decomposition Algorithm for the AIMMS Modeling Language Informs 2012, Phoenix Marcel Hunting Paragon Decision Technology Copyright by Paragon Decision Technology BV Julianastraat 30, 2012 ES Haarlem, The Netherlands Tel: Fax: No part of this Paragon publication Decision may be reproduced, Technology stored BV in Haarlem a retrieval -system, The Netherlands or transmitted in any form info@aimms.com or by any means - electronic, Tel: mechanical, photocopying, Fax: recording, or otherwise - without the permission of Paragon Decision Technology BV This document provides an outline of a presentation and is incomplete without the accompanying oral commentary and discussion.

2 Overview Introduction Benders decomposition GMP library Benders implementation in AIMMS Example: network design Future work & conclusions

3 Benders: problem formulation Minimize Subject to c T x + d T y Ax + Qy b x X y 0 η = d T y X: Tx f x can be integer, continuous or mixed

4 Benders: problem formulation Minimize Subject to c T x + η Ax + Qy b x X y 0 η = d T y X: Tx f x can be integer, continuous or mixed

5 Benders decomposition algorithm (classic) Solve master problem optimal solution (x k,η k ) Solve dual subproblem fixing x k If unbounded: get unbounded extreme ray to add feasibility cut T (b Ax) 0 to master If feasible: use dual solution to add optimality cut η T (b Ax) to master Repeat until optimality criterion satisfied

6 Benders: primal subproblem Primal subproblem Minimize Subject to d T y Qy b Ax* y 0 Feasibility problem Minimize z w i 0 Subject to Q it y w i z b i A it x* i y, z 0 Fischetti, Salvagnin, Zanette (2010): w i = 0 if A i = 0

7 Model generation Variables: JobSchedule(j,s) StartTime(s,m) TimeSpan Constraints: OneJobPerSchedule(s) OneSchedulePerJob(j) MachineStartTime(s,m) ScheduleStartTime(s,m) Solve Columns: c0 c48 c49 c118 c119 Rows: r0 r6 r7 r76 r14 r76 r77 r136

8 Generated Math Program (GMP) Symbolic MP symbolic variables symbolic constraints Generated MP Matrix generated columns generated rows generated matrix coefficients mappings from/to variables and constraints Solution Repository 1 solution status level values [basis information] 2 solution status level values [basis information]... Pool of Solver Sessions 1 solver option settings 2 solver option settings...

9 Using GMP library Normally: solve MathProgram; GMP: mygmp := GMP::Instance::Generate(MathProgram); GMP::Instance::Solve(myGMP); Modify: GMP::Column::SetUpperBound(myGMP,StartTime(s1,m1),5); GMP::Instance::FixColumns(myGMP,1,AllIntegerVariables);

10 Selection of GMP functions GMP::Instance:: Generate, CreateFeasibilityProblem, CreateDual, Solve GMP::Column:: Add, Delete, Freeze, SetLowerBound GMP::Row:: Add, Delete, SetRightHandSide GMP::Coefficient:: Set, Get, SetQuadratic GMP::Solution:: Copy, SendToModel, GetColumnValue GMP::Benders:: CreateMasterProblem, CreateSubProblem, UpdateSubProblem, AddOptimalityCut, AddFeasibilityCut

11 Using Benders (easy!) mygmp := GMP::Instance::Generate(MathProgram); GMPBenders::BendersOptimalityTolerance := 1e-6; GMPBenders::UseDual := 1; GMPBenders::FeasibilityOnly := 0; GMPBenders::AddTighteningConstraints := 1; GMPBenders::DoBendersDecomposition( /* GMP */ mygmp, /* MasterVariables */ AllIntegerVariables, /* UseStartingPoint */ 0 );

12 DoBendersDecomposition code (under the hood) gmpm := GMP::Benders::CreateMasterProblem(myGMP, MasterVariables, FeasibilityOnly:0, AddTighteningConstraints); gmps := GMP::Benders::CreateSubProblem(myGMP,gmpM,UseDual:1); GMP::Instance::Solve(gmpM); GMP::Benders::UpdateSubProblem(gmpS, gmpm, 1); GMP::Instance::Solve(gmpS); if ( GMP::Solution::GetProgramStatus(gmpS, 1) = 'Unbounded' ) then GMP::Benders::AddFeasibilityCut(gmpM, gmps, 1, NrFeasCuts); else GMP::Benders::AddOptimalityCut(gmpM, gmps, 1, NrOptCuts); endif;

13 Using Benders: modern approach Single MIP search tree (lazy constraint callback): GMPBenders::DoBendersDecompositionOneMIP ( /* GMP */ mygmp, /* MasterVariables */ AllIntegerVariables ); Two phase 1. RMIP (classic), 2. MIP (classic or single MIP): GMPBenders::DoBendersDecompositionTwoPhase ( /* GMP */ mygmp, /* MasterVariables */ AllIntegerVariables, /* UseSingleMIP */ 0 / 1 );

14 Tightening constraints Fischetti, Salvagnin, Zanette (2010) used idea with w i = 0 if A i = 0 on Network expansion problem Minimize i x i Subject to i M- y i i M+ y i b i i y i u i x i i y i 0 i x i binary i Valid inequality: i M- u i x i b i

15 Example: network design Undirected graph (V,E); capacity C e and cost c e Each edge e E can be used in both directions > (V,A) Set of commodities Q with origin s(q) and destination t(q) Demand value d q for every q Q Goal: find cheapest capacities on e E so that the resulting network can satisfy each demand 1,1 B 1,3 D A 2 3,1 2 3,1 C 3,2 1,2 E 1,1

16 Setup Instances from SNDlib ( Benders: Solve RMIP (classic) followed by MIP (single MIP search tree) Primal subproblem Feasibilty cuts only Normalize feasibility problem according to Fischetti et al (2010) Tightening constraints CPLEX 12.4 using one thread Time limit: 3 hours

17 Results SNDlib NCANN models Problem Benders CPLEX cost266uue 8.00% 6485 cost266uum 7.10% 1.46% dfn-bwindbe 27.87% 26.86% dfn-gwindbm di-yuandbe di-yuanuue francedbm germany50-dbm 7.68% 2.70% janos-usddm % janos-us-caddm 0.01% 0.18% Problem MIPLIB 2010: Recently Benders solved CPLEX newyorkuue % newyorkuum % nobel-euuue 0.39% 0.98% nobel-germadbe MIPLIB : 422 norwaydbe Open % norwayuum % ta1uue 6 87 ta2uue 7 18 zib54dbe % zib54uue

18 Future work Multiple subproblems > multi-cut versus single-cut Combinatorial Benders cuts (Codato & Fischetti, 2006) Nonlinear problems Other tightening constraints Cut bundling

19 Conclusions Benders module in AIMMS offers easy way to try feasibility of Benders algorithm for specific MIP problems Benders module uses modern developments (e.g., single MIP search tree) White box algorithm that you can modify Beta version (almost) available

20

AIMMS Language Reference - Additional Separation Procedures for Benders Decomposition

AIMMS Language Reference - Additional Separation Procedures for Benders Decomposition AIMMS Language Reference - Additional Separation Procedures for Benders Decomposition This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper November, 2011 Abstract This document describes how to

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting marcel.hunting@aimms.com November 2011 This document describes how to use the GMP variant of the AIMMS Outer

More information

Implicit Hitting Set Problems

Implicit Hitting Set Problems Implicit Hitting Set Problems Paul A. Rubin April 15, 2016 Paul A. Rubin Implicit Hitting Set Problems April 15, 2016 1 / 39 Thank you INFORMS Student Chapter at the for the invitation to speak today.

More information

On the selection of Benders cuts

On the selection of Benders cuts Mathematical Programming manuscript No. (will be inserted by the editor) On the selection of Benders cuts Matteo Fischetti Domenico Salvagnin Arrigo Zanette Received: date / Revised 23 February 2010 /Accepted:

More information

On the Global Solution of Linear Programs with Linear Complementarity Constraints

On the Global Solution of Linear Programs with Linear Complementarity Constraints On the Global Solution of Linear Programs with Linear Complementarity Constraints J. E. Mitchell 1 J. Hu 1 J.-S. Pang 2 K. P. Bennett 1 G. Kunapuli 1 1 Department of Mathematical Sciences RPI, Troy, NY

More information

Benders in a nutshell Matteo Fischetti, University of Padova

Benders in a nutshell Matteo Fischetti, University of Padova Benders in a nutshell Matteo Fischetti, University of Padova ODS 2017, Sorrento, September 2017 1 Benders decomposition The original Benders decomposition from the 1960s uses two distinct ingredients for

More information

AIMMS Language Reference - AIMMS Outer Approximation Algorithm for MINLP

AIMMS Language Reference - AIMMS Outer Approximation Algorithm for MINLP AIMMS Language Reference - AIMMS Outer Approximation Algorithm for MINLP This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Using projections to solve problems thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Introduction Using projections Benders decomposition Simple plant location

More information

Outline. Alternative Benders Decomposition Explanation explaining Benders without projections. Primal-Dual relations

Outline. Alternative Benders Decomposition Explanation explaining Benders without projections. Primal-Dual relations Alternative Benders Decomposition Explanation explaining Benders without projections Outline Comments on Benders Feasibility? Optimality? thst@man..dtu.dk DTU-Management Technical University of Denmark

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

AIMMS Language Reference - Advanced Methods for Nonlinear Programs

AIMMS Language Reference - Advanced Methods for Nonlinear Programs AIMMS Language Reference - Advanced Methods for Nonlinear Programs This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com or

More information

A Nonlinear Presolve Algorithm in AIMMS

A Nonlinear Presolve Algorithm in AIMMS A Nonlinear Presolve Algorithm in AIMMS By Marcel Hunting marcel.hunting@aimms.com November 2011 This paper describes the AIMMS presolve algorithm for nonlinear problems. This presolve algorithm uses standard

More information

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov An Extension of the Multicut L-Shaped Method INEN 698 - Large-Scale Stochastic Optimization Semester project Svyatoslav Trukhanov December 13, 2005 1 Contents 1 Introduction and Literature Review 3 2 Formal

More information

Modern Benders (in a nutshell)

Modern Benders (in a nutshell) Modern Benders (in a nutshell) Matteo Fischetti, University of Padova (based on joint work with Ivana Ljubic and Markus Sinnl) Lunteren Conference on the Mathematics of Operations Research, January 17,

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova

Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1 Mixed-Integer Programming We

More information

Advanced Use of GAMS Solver Links

Advanced Use of GAMS Solver Links Advanced Use of GAMS Solver Links Michael Bussieck, Steven Dirkse, Stefan Vigerske GAMS Development 8th January 2013, ICS Conference, Santa Fe Standard GAMS solve Solve william minimizing cost using mip;

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Minimal Infeasible Subsystems and Benders cuts

Minimal Infeasible Subsystems and Benders cuts Mathematical Programming manuscript No. (will be inserted by the editor) Matteo Fischetti Domenico Salvagnin Arrigo Zanette Minimal Infeasible Subsystems and Benders cuts Received: date / Revised Sept.

More information

AIMMS Function Reference - GMPInstance Procedures and Functions

AIMMS Function Reference - GMPInstance Procedures and Functions AIMMS Function Reference - Instance Procedures and Functions This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com Aimms 3.13

More information

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics

Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics Sebastian Orlowski, Zuse Institute Berlin, Takustr. 7, D-14195 Berlin, orlowski@zib.de Arie M.C.A. Koster, Zuse Institute Berlin,

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

Improving the heuristic performance of Benders decomposition

Improving the heuristic performance of Benders decomposition Improving the heuristic performance of Benders decomposition Stephen J. Maher Department of Management Science, Lancaster University, Bailrigg, Lancaster LA1 4YX, UK Abstract A general enhancement of the

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition

Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition Laszlo Ladanyi (IBM T.J. Watson Research Center) joint work with Marta Eso (The Hotchkiss School) David Jensen (IBM T.J.

More information

Primal Heuristics for Branch-and-Price Algorithms

Primal Heuristics for Branch-and-Price Algorithms Primal Heuristics for Branch-and-Price Algorithms Marco Lübbecke and Christian Puchert Abstract In this paper, we present several primal heuristics which we implemented in the branch-and-price solver GCG

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints Daniel Porumbel CEDRIC CS Lab, CNAM, 292 rue Saint-Martin, F-75141 Paris, France

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

Parallel Branch & Bound

Parallel Branch & Bound Parallel Branch & Bound Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Outline Mixed integer programming (MIP) and branch & bound (B&B) Linear programming (LP) based B&B Relaxation and

More information

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Previously Local sensitivity analysis: having found an optimal basis to a problem in standard form,

Previously Local sensitivity analysis: having found an optimal basis to a problem in standard form, Recap, and outline of Lecture 20 Previously Local sensitivity analysis: having found an optimal basis to a problem in standard form, if the cost vectors is changed, or if the right-hand side vector is

More information

AIMMS Modeling Guide - Cutting Stock Problem

AIMMS Modeling Guide - Cutting Stock Problem AIMMS Modeling Guide - Cutting Stock Problem This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com or order your hardcopy at

More information

Best practices for using the multistart algorithm in AIMMS. Marcel Hunting AIMMS Optimization Specialist

Best practices for using the multistart algorithm in AIMMS. Marcel Hunting AIMMS Optimization Specialist Best practices for using the multistart algorithm in AIMMS Marcel Hunting AIMMS Optimization Specialist Webinar, October 21, 2015 Overview >Introduction: Global versus local optimization >The AIMMS multistart

More information

Computing and maximizing the exact reliability of wireless backhaul networks

Computing and maximizing the exact reliability of wireless backhaul networks Computing and maximizing the exact reliability of wireless backhaul networks David Coudert, James Luedtke, Eduardo Moreno, Konstantinos Priftis To cite this version: David Coudert, James Luedtke, Eduardo

More information

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School Heuristics in MILP Group 1 D. Assouline, N. Molyneaux, B. Morén Supervisors: Michel Bierlaire, Andrea Lodi Zinal 2017 Winter School 0 / 23 Primal heuristics Original paper: Fischetti, M. and Lodi, A. (2011).

More information

On the hop-constrained survivable network design problem with reliable edges

On the hop-constrained survivable network design problem with reliable edges 4OR manuscript No. (will be inserted by the editor) On the hop-constrained survivable network design problem with reliable edges Quentin Botton Bernard Fortz Luis Gouveia Received: date / Accepted: date

More information

Optimization: beyond the normal

Optimization: beyond the normal Optimization: beyond the normal Michael C. Ferris Joint work with: Michael Bussieck, Jan Jagla, Lutz Westermann and Roger Wets Supported partly by AFOSR, DOE and NSF University of Wisconsin, Madison Lunchtime

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

Robust Optimization in AIMMS

Robust Optimization in AIMMS Robust Optimization in AIMMS Peter Nieuwesteeg Senior AIMMS specialist Online webinar July 20, 2010 Paragon Decision Technology Inc 5400 Carillon Point, Kirkland, WA, USA E-mail: info@aimms.com Internet:

More information

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints Daniel Porumbel CEDRIC CS Lab, CNAM, 292 rue Saint-Martin, F-75141 Paris, France

More information

Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method

Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method Bo Zeng Department of Industrial and Management Systems Engineering University of South Florida, Email: bzeng@usf.edu

More information

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lecture 5 Mixed Integer Programming and Exercises Marco Chiarandini 2. 3. 2 Outline Modeling 1. Min cost flow Shortest path 2. Max flow Assignment

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

AIMMS User s Guide - Calling AIMMS

AIMMS User s Guide - Calling AIMMS AIMMS User s Guide - Calling AIMMS This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com. Aimms 4 Copyright c 1993 2018 by

More information

A New Multistart Algorithm. Marcel Hunting AIMMS Optimization Specialist

A New Multistart Algorithm. Marcel Hunting AIMMS Optimization Specialist A New Multistart Algorithm Marcel Hunting AIMMS Optimization Specialist Webinar, March 22, 2017 Motivation & Credits >Presentation by John Chinneck about CCGO at INFORMS 2015 >CCGO was compared with Knitro

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Optimization of chemical industrial enterprises problems using mixed integer programming

Optimization of chemical industrial enterprises problems using mixed integer programming BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY OLÁH GYÖRGY PHD SCHOOL Optimization of chemical industrial enterprises problems using mixed integer programming

More information

AIMMS advanced modeling capabilities

AIMMS advanced modeling capabilities AIMMS advanced modeling capabilities March 12-13, 2007 Gertjan de Lange VP Sales & Marketing Peter Nieuwesteeg Senior AIMMS Expert Paragon Decision Technology Inc. 5400 Carillon Point Kirkland, WA 98033

More information

Addressing degeneracy in the dual simplex algorithm using a decompositon approach

Addressing degeneracy in the dual simplex algorithm using a decompositon approach Addressing degeneracy in the dual simplex algorithm using a decompositon approach Ambros Gleixner, Stephen J Maher, Matthias Miltenberger Zuse Institute Berlin Berlin, Germany 16th July 2015 @sj_maher

More information

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization Integer and Combinatorial Optimization GEORGE NEMHAUSER School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia LAURENCE WOLSEY Center for Operations Research and

More information

The Supporting Hyperplane Optimization Toolkit A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach

The Supporting Hyperplane Optimization Toolkit A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach The Supporting Hyperplane Optimization Toolkit A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach Andreas Lundell a, Jan Kronqvist b, and Tapio Westerlund

More information

Mixed Integer Programming Class Library (MIPCL)

Mixed Integer Programming Class Library (MIPCL) Mixed Integer Programming Class Library (MIPCL) Nicolai N. Pisaruk Belarus State University, Faculty of Economy, Nezavisimosty Av., 4, 220088 Minsk, Belarus April 20, 2016 Abstract The Mixed Integer Programming

More information

Tutorial on Integer Programming for Visual Computing

Tutorial on Integer Programming for Visual Computing Tutorial on Integer Programming for Visual Computing Peter Wonka and Chi-han Peng November 2018 1 1 Notation The vector space is denoted as R,R n,r m n,v,w Matricies are denoted by upper case, italic,

More information

A hard integer program made easy by lexicography

A hard integer program made easy by lexicography Noname manuscript No. (will be inserted by the editor) A hard integer program made easy by lexicography Egon Balas Matteo Fischetti Arrigo Zanette February 16, 2011 Abstract A small but notoriously hard

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

Algorithms II MIP Details

Algorithms II MIP Details Algorithms II MIP Details What s Inside Gurobi Optimizer Algorithms for continuous optimization Algorithms for discrete optimization Automatic presolve for both LP and MIP Algorithms to analyze infeasible

More information

Solving lexicographic multiobjective MIPs with Branch-Cut-Price

Solving lexicographic multiobjective MIPs with Branch-Cut-Price Solving lexicographic multiobjective MIPs with Branch-Cut-Price Marta Eso (The Hotchkiss School) Laszlo Ladanyi (IBM T.J. Watson Research Center) David Jensen (IBM T.J. Watson Research Center) McMaster

More information

Exact and Heuristic Approaches for Directional Sensor Control

Exact and Heuristic Approaches for Directional Sensor Control Noname manuscript No. (will be inserted by the editor) Exact and Heuristic Approaches for Directional Sensor Control Hans D. Mittelmann Domenico Salvagnin the date of receipt and acceptance should be inserted

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

2 The Service Provision Problem The formulation given here can also be found in Tomasgard et al. [6]. That paper also details the background of the mo

2 The Service Provision Problem The formulation given here can also be found in Tomasgard et al. [6]. That paper also details the background of the mo Two-Stage Service Provision by Branch and Bound Shane Dye Department ofmanagement University of Canterbury Christchurch, New Zealand s.dye@mang.canterbury.ac.nz Asgeir Tomasgard SINTEF, Trondheim, Norway

More information

Restrict-and-relax search for 0-1 mixed-integer programs

Restrict-and-relax search for 0-1 mixed-integer programs EURO J Comput Optim (23) :2 28 DOI.7/s3675-3-7-y ORIGINAL PAPER Restrict-and-relax search for - mixed-integer programs Menal Guzelsoy George Nemhauser Martin Savelsbergh Received: 2 September 22 / Accepted:

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

The Gurobi Solver V1.0

The Gurobi Solver V1.0 The Gurobi Solver V1.0 Robert E. Bixby Gurobi Optimization & Rice University Ed Rothberg, Zonghao Gu Gurobi Optimization 1 1 Oct 09 Overview Background Rethinking the MIP solver Introduction Tree of Trees

More information

Decomposition in Integer Linear Programming

Decomposition in Integer Linear Programming Decomposition in Integer Linear Programming T.K. Ralphs M.V. Galati December 3, 00 Abstract Both cutting plane methods and traditional decomposition methods are procedures that compute a bound on the optimal

More information

NOTATION AND TERMINOLOGY

NOTATION AND TERMINOLOGY 15.053x, Optimization Methods in Business Analytics Fall, 2016 October 4, 2016 A glossary of notation and terms used in 15.053x Weeks 1, 2, 3, 4 and 5. (The most recent week's terms are in blue). NOTATION

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

The goal of this paper is to develop models and methods that use complementary

The goal of this paper is to develop models and methods that use complementary for a Class of Optimization Problems Vipul Jain Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA Vipul_Jain@i2.com grossmann@cmu.edu

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

Conflict Analysis in Mixed Integer Programming

Conflict Analysis in Mixed Integer Programming Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany TOBIAS ACHTERBERG Conflict Analysis in Mixed Integer Programming URL: http://www.zib.de/projects/integer-optimization/mip

More information

A robust optimization based approach to the general solution of mp-milp problems

A robust optimization based approach to the general solution of mp-milp problems 21 st European Symposium on Computer Aided Process Engineering ESCAPE 21 E.N. Pistikopoulos, M.C. Georgiadis and A. Kokossis (Editors) 2011 Elsevier B.V. All rights reserved. A robust optimization based

More information

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions Chalmers/GU Mathematics EXAM TMA946/MAN280 APPLIED OPTIMIZATION Date: 03 05 28 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

The successful solution of large-scale mixed integer

The successful solution of large-scale mixed integer BRANCH-AND-PRICE: COLUMN GENERATION FOR SOLVING HUGE INTEGER PROGRAMS CYNTHIA BARNHART*, ELLIS L. JOHNSON, GEORGE L. NEMHAUSER, MARTIN W. P. SAVELSBERGH, and PAMELA H. VANCE** Georgia Institute of Technology,

More information

Pure Cutting Plane Methods for ILP: a computational perspective

Pure Cutting Plane Methods for ILP: a computational perspective Pure Cutting Plane Methods for ILP: a computational perspective Matteo Fischetti, DEI, University of Padova Rorschach test for OR disorders: can you see the tree? 1 Outline 1. Pure cutting plane methods

More information

Large-Scale Optimization and Logical Inference

Large-Scale Optimization and Logical Inference Large-Scale Optimization and Logical Inference John Hooker Carnegie Mellon University October 2014 University College Cork Research Theme Large-scale optimization and logical inference. Optimization on

More information

A Benders decomposition approach for the robust shortest path problem with interval data

A Benders decomposition approach for the robust shortest path problem with interval data A Benders decomposition approach for the robust shortest path problem with interval data R. Montemanni, L.M. Gambardella Istituto Dalle Molle di Studi sull Intelligenza Artificiale (IDSIA) Galleria 2,

More information