Robust Optimization in AIMMS

Size: px
Start display at page:

Download "Robust Optimization in AIMMS"

Transcription

1 Robust Optimization in AIMMS Peter Nieuwesteeg Senior AIMMS specialist Online webinar July 20, 2010 Paragon Decision Technology Inc 5400 Carillon Point, Kirkland, WA, USA Internet: Tel: (425) Fax: (425)

2 Today s Roadmap Why Robust Optimization? Alternatives Basic Example Main Robust Optimization Concepts How to implement in AIMMS Robust Optimization Demo Advanced Features Adjustable variables Chance constraints Summary & Next Steps 2

3 Why Robust Optimization? Data Uncertainty! Do you have any of these sources of data uncertainty in your business? estimation errors: part of the data is measured/estimated; prediction errors: part of the data (e.g., future demands/prices) does not exist when problem is solved; implementation errors: some components of a solution cannot be implemented exactly as computed. Uncertainty is not considered in traditional (deterministic) optimization, but it can be handled by: Stochastic programming Robust optimization 3

4 Stochastic programming The stochastic programming approach: Generate scenarios to reflect possible realizations of uncertainty Assign a probability to these scenario s Create one optimization model that considers all these scenario s The down-side of this approach is: The number of scenarios grows rapidly The model becomes too large too quickly In many cases, it is hard to create the right scenarios In many cases, it is hard to come up with the right probabilities 4

5 Basic Example Max x + y st 3x + 4 y 12 x 0, y 0 (Optimal: x=4 and y = 0) What happens to the feasible space if 3 (C1) and 4 (C2) are not perfect, but can vary? For instance: C 1 2, C 2 2 C + C

6 Basic Example Original (C1,C2) = (3,4) Some: (C1,C2) = (2,5), (5,3), (3,5), (4,4) Most restrictive: (C1,C2) = (2,6), (6,2) Robust optimization will find the optimal solution for all combination of the (uncertain) coefficients (x = 1.5 & y = 1.5) 6

7 Robust Optimization Main Concepts uncertainty set U : the uncertain data belongs to certain ranges or regions, or depends on a certain (partially known) distribution Hard constraints : feasibility must be guaranteed Robust Optimization is the modeling framework of choice when the hard constraints must be satisfied for all data realizations within an uncertainty set U The robust optimal solution is the best solution against the worst possible data realization within the uncertainty set U. 7

8 Single Stage Linear RO Consider the linear program min c T x s.t. Ax b The constraints Ax b must be satisfied for all realizations of the data A within uncertainty set U The robust counterpart is (A. Ben-Tal and A. Nemirovski, 2000): min c T x s.t. Ax b A Є U 8

9 Uncertainty Set Main questions: How to specify a reasonable uncertainty set, i.e., meaningful for practical applications? When leads the uncertainty set to a computationally tractable (solvable) robust counterpart? 9

10 Computationally Tractable Box: L ij A ij U ij Robust counterpart: LP 10

11 Computationally Tractable Polyhedron: ij c ijm A ij δ m m = 1,, M Robust counterpart: LP 11

12 Computationally Tractable Ellipsoid: ij ((A ij c ij )/δ ij ) 2 1 Robust counterpart: Second Order Cone Problem (SOCP) 12

13 Computationally Tractable Convex Hull: Set of scenarios Convex Hull Scenarios Robust counterpart: LP 13

14 Refresh We have the robust counterpart: min c T x s.t. Ax b A Є U In order to formulate the problem, we need to define: The variable space: Traditional variables & constraints (Ax b) The parameter space: Uncertain variables & uncertainty constraint Based on this information, AIMMS is able to generate the robust counterpart and use existing solvers (XA, GUROBI, CPLEX & Mosek) to solve that model In close cooperation with Prof. Aharon Ben-Tal of the Technion Israel Institute of Technology 14

15 How to implement in AIMMS? Uncertainty Constraints 15

16 How to implement in AIMMS? Uncertainty attribute 16

17 How to implement in AIMMS? Box constraints Box: L ij A ij U ij 17

18 How to implement in AIMMS? Ellipsoid constraints Ellipsoid: ij ((A ij c ij )/δ ij )

19 How to implement in AIMMS? Convex Hull Convex Hull: Set of scenarios 19

20 Example Model Deterministic Version Goal of the example is to find the least cost investment in a chemical plant to reduce pollutants by at least given amount: 2 types of furnaces (Blast Furnaces & Open-Hearth furnaces) 3 types of pollutants (Particulates, Sulfur Oxides & Hydrocarbons) 3 type of modifications (Taller Smokestacks, Filters & Better Fuels) Each modification i has its own impact on pollutants and depends d on the furnace type Each modification has its own cost Each modification can be done partially Model and data taken from Introduction ti to Operations Research by Hillier & Lieberman 20

21 AIMMS Demo 1. Solve deterministic model 2. The improvement reductions are estimations. Introduce uncertainty to guarantee feasibility: -5 <= PR(ft,m,p) - PR(ft,m,p).level<= 5 3. Solve Robust Optimization Model This results in large increase in cost 4. Uncertainty (per pollutant) is not independent. Introducing an uncertainty constraint to limit the uncertainty: Sum((p), [PR(ft,m,p) - PR(ft,m,p).level]^2) <= Solve robust optimization model again This results in large increase in cost 21

22 DEMO Robust Optimization 22

23 Adjustable variables A non-adjustable variable reflects a here and now decision; they should get numerical values as a result of solving the problem before the actual data reveals itself; An adjustable variable reflects a decision made after (part of) the uncertain data has been revealed; Solution of adjustable variable depends on uncertain data. 23

24 Adjustable variable - Example Assume X(t) depends on Demand(s), s < t Linear decision rule: AIMMS naming: X(t) () = X 0 0( (t) + X s (t) () Demand(s) s<t X 0 (t) - X.adjustable.constant(t) Variables X s (t) - X.adjustable.Demand(t,s) 24

25 25

26 Chance constraints The robust solution has to satisfy the constraint with probability at least 1- ε, where 0 ε 1, i.e. ε=0.05: Prob( a(ξ) T x b ) 95%; General characteristics of uncertain parameter ξ are needed; A chance constraint model is very difficult to solve, but there exists very good RO approximations; The more information about distribution is provided the better the approximation. 26

27 Distributions Bounded(m,s) mean m with support [m-s,m+s] Bounded(m,l,u) support [l,u] and mean m not in center Bounded(m_l,m_u,l,u) Bounded(m_l,m_u,l,u,v) Unimodal(c,s) Symmetric(c,s) Symmetric(c,s,v) Support(l,u) support [l,u] and mean in range [m_l,m_u] as above and variance bounded by v unimodal around c with support [c-s,c+s] symmetric around c with support [c-s,c+s] as above and variance bounded by v support [l,u] (and no info about the mean) Gaussian(m_l,m_u,v) Gaussian with mean in range [m_l,m_u], and variance bounded by v 27

28 Approximations Approximation Distribution Automatic Ball Box Ball-box Budgeted Bounded(m,s) linear conic linear conic linear Bounded(m,l,u) u) conic linear Unimodal(c,s) conic linear Symmetric(c,s) conic conic linear conic linear Support(l,u) linear linear Gaussian(l,u,v) conic 28

29 Chance constraint - AIMMS 29

30 Summary Features available in 3.11FR1: No need to reformulate the deterministic model Non-adjustable LP Mix of box, polyhedral and ellipsoidal uncertainty sets Uncertainty set defined by scenarios (Linear) adjustable LP Chance constraints Features available in future releases: MIP More decision rules for adjustable models 30

31 Pricing & Availability Pricing: $2,250 in 2010 (25% off regular price $3,000) Free academic use Availability: In 3.11 FR1 and higher only Commercial users with maintenance All academic users (need to Update license) Trial requestors Requirements: Any LP solver, for specific classes SOCP solver (CPLEX, MOSEK) 31

32 Additional information Try out RO: install AIMMS 3.11 Feature Release FR1 or higher Examples: Power System Expansion Portfolio Management (chance constraints) Article Dealing with uncertainty, downloadable from Contact us at 32

AIMMS Language Reference - Robust Optimization

AIMMS Language Reference - Robust Optimization AIMMS Language Reference - Robust Optimization This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com. Aimms 4 Copyright c 1993

More information

AIMMS advanced modeling capabilities

AIMMS advanced modeling capabilities AIMMS advanced modeling capabilities March 12-13, 2007 Gertjan de Lange VP Sales & Marketing Peter Nieuwesteeg Senior AIMMS Expert Paragon Decision Technology Inc. 5400 Carillon Point Kirkland, WA 98033

More information

ROBUST OPTIMIZATION. Lecturer : Majid Rafiee

ROBUST OPTIMIZATION. Lecturer : Majid Rafiee ROBUST OPTIMIZATION Uncertainty : INTRODUCTION Very often, the realistic data are subect to uncertainty due to their random nature, measurement errors, or other reasons. Robust optimization belongs to

More information

AIMMS advanced modeling capabilities

AIMMS advanced modeling capabilities AIMMS advanced modeling capabilities March 12-13, 2007 Gertjan de Lange VP Sales & Marketing Peter Nieuwesteeg Senior AIMMS Expert Paragon Decision Technology Inc. 5400 Carillon Point Kirkland, WA 98033

More information

13. Cones and semidefinite constraints

13. Cones and semidefinite constraints CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 13. Cones and semidefinite constraints ˆ Geometry of cones ˆ Second order cone programs ˆ Example: robust linear program ˆ Semidefinite constraints

More information

Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method

Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method Bo Zeng Department of Industrial and Management Systems Engineering University of South Florida, Email: bzeng@usf.edu

More information

Introduction to Convex Optimization. Prof. Daniel P. Palomar

Introduction to Convex Optimization. Prof. Daniel P. Palomar Introduction to Convex Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19,

More information

AIMMS Function Reference - GMPInstance Procedures and Functions

AIMMS Function Reference - GMPInstance Procedures and Functions AIMMS Function Reference - Instance Procedures and Functions This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com Aimms 3.13

More information

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs 1 / 34 Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs Erick Delage CRC in decision making under uncertainty Department of Decision Sciences HEC Montreal (joint work with

More information

Using AIMMS for Monte Carlo Simulation

Using AIMMS for Monte Carlo Simulation Using AIMMS for Monte Carlo Simulation Product Training Webinar Deanne Zhang November 16, 2016 Agenda > Introduction > Steps to do Monte Carlo simulation in AIMMS > A demo of running multiple simulations

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser H. Milton Stewart School of Industrial and Systems

More information

Outline. Robust MPC and multiparametric convex programming. A. Bemporad C. Filippi. Motivation: Robust MPC. Multiparametric convex programming

Outline. Robust MPC and multiparametric convex programming. A. Bemporad C. Filippi. Motivation: Robust MPC. Multiparametric convex programming Robust MPC and multiparametric convex programming A. Bemporad C. Filippi D. Muñoz de la Peña CC Meeting Siena /4 September 003 Outline Motivation: Robust MPC Multiparametric convex programming Kothares

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

arxiv: v4 [math.oc] 4 Nov 2018

arxiv: v4 [math.oc] 4 Nov 2018 BCOL RESEARCH REPORT 17.02 Industrial Engineering & Operations Research University of California, Berkeley, CA 94720 1777 arxiv:1706.05795v4 [math.oc] 4 Nov 2018 SIMPLEX QP-BASED METHODS FOR MINIMIZING

More information

Convex Optimization. August 26, 2008

Convex Optimization. August 26, 2008 Convex Optimization Instructor: Angelia Nedich August 26, 2008 Outline Lecture 1 What is the Course About Who Cares and Why Course Objective Convex Optimization History New Interest in the Topic Formal

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper November, 2011 Abstract This document describes how to

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Tilburg University. Document version: Publisher final version (usually the publisher pdf) Publication date: Link to publication

Tilburg University. Document version: Publisher final version (usually the publisher pdf) Publication date: Link to publication Tilburg University Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set (Revision of CentER Discussion Paper 2014-056) Postek, Krzysztof; den Hertog,

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE Optimization Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE What We ll Cover Today Introduction Frontline Systems Session Ι beta training program goals Overview of Analytic Solver Platform

More information

Chapter 4 Convex Optimization Problems

Chapter 4 Convex Optimization Problems Chapter 4 Convex Optimization Problems Shupeng Gui Computer Science, UR October 16, 2015 hupeng Gui (Computer Science, UR) Convex Optimization Problems October 16, 2015 1 / 58 Outline 1 Optimization problems

More information

What's New In Gurobi 5.0. Dr. Edward Rothberg

What's New In Gurobi 5.0. Dr. Edward Rothberg What's New In Gurobi 5.0 Dr. Edward Rothberg Our Main Goals for Gurobi 5.0 Expand the reach of the product: New problem types: Quadratic constraints: QCP, SOCP, MIQCP Massive numbers of constraints: Through

More information

Welcome to the Webinar. What s New in Gurobi 7.5

Welcome to the Webinar. What s New in Gurobi 7.5 Welcome to the Webinar What s New in Gurobi 7.5 Speaker Introduction Dr. Tobias Achterberg Director of R&D at Gurobi Optimization Formerly a developer at ILOG, where he worked on CPLEX 11.0 to 12.6 Obtained

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

On Constraint Problems with Incomplete or Erroneous Data

On Constraint Problems with Incomplete or Erroneous Data On Constraint Problems with Incomplete or Erroneous Data Neil Yorke-Smith and Carmen Gervet IC Parc, Imperial College, London, SW7 2AZ, U.K. nys,cg6 @icparc.ic.ac.uk Abstract. Real-world constraint problems

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting marcel.hunting@aimms.com November 2011 This document describes how to use the GMP variant of the AIMMS Outer

More information

Modeling Cone Optimization Problems with COIN OS

Modeling Cone Optimization Problems with COIN OS instance Modeling Cone Optimization s with COIN OS Joint work with Gus Gassman, Jun Ma, Kipp Martin Lehigh University Department of ISE INFORMS 2009, San Diego October 12, 2009 instance 1 Cone optimization

More information

Tutorial on Integer Programming for Visual Computing

Tutorial on Integer Programming for Visual Computing Tutorial on Integer Programming for Visual Computing Peter Wonka and Chi-han Peng November 2018 1 1 Notation The vector space is denoted as R,R n,r m n,v,w Matricies are denoted by upper case, italic,

More information

AIMMS Language Reference - Advanced Methods for Nonlinear Programs

AIMMS Language Reference - Advanced Methods for Nonlinear Programs AIMMS Language Reference - Advanced Methods for Nonlinear Programs This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com or

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

Optimization: beyond the normal

Optimization: beyond the normal Optimization: beyond the normal Michael C. Ferris Joint work with: Michael Bussieck, Jan Jagla, Lutz Westermann and Roger Wets Supported partly by AFOSR, DOE and NSF University of Wisconsin, Madison Lunchtime

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

Financial Optimization ISE 347/447. Lecture 13. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 13. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 13 Dr. Ted Ralphs ISE 347/447 Lecture 13 1 Reading for This Lecture C&T Chapter 11 ISE 347/447 Lecture 13 2 Integer Linear Optimization An integer linear optimization

More information

OR 674 DYNAMIC PROGRAMMING Rajesh Ganesan, Associate Professor Systems Engineering and Operations Research George Mason University

OR 674 DYNAMIC PROGRAMMING Rajesh Ganesan, Associate Professor Systems Engineering and Operations Research George Mason University OR 674 DYNAMIC PROGRAMMING Rajesh Ganesan, Associate Professor Systems Engineering and Operations Research George Mason University Ankit Shah Ph.D. Candidate Analytics and Operations Research (OR) Descriptive

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

LaGO - A solver for mixed integer nonlinear programming

LaGO - A solver for mixed integer nonlinear programming LaGO - A solver for mixed integer nonlinear programming Ivo Nowak June 1 2005 Problem formulation MINLP: min f(x, y) s.t. g(x, y) 0 h(x, y) = 0 x [x, x] y [y, y] integer MINLP: - n

More information

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Vijay Gupta Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh Bora Tarhan ExxonMobil

More information

A Nonlinear Presolve Algorithm in AIMMS

A Nonlinear Presolve Algorithm in AIMMS A Nonlinear Presolve Algorithm in AIMMS By Marcel Hunting marcel.hunting@aimms.com November 2011 This paper describes the AIMMS presolve algorithm for nonlinear problems. This presolve algorithm uses standard

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Runtime Libraries and Model Edit Functions

Runtime Libraries and Model Edit Functions Runtime Libraries and Model Edit Functions Deanne e Zhang Paragon Decision Technology November 2, 2010 Paragon Decision Technology Inc 500 108th Ave NE, Bellevue WA, USA E-mail: info@aimms.com Internet:

More information

GAMS. Grid Computing

GAMS. Grid Computing GAMS Grid Computing Solver Technology Tremendous algorithmic and computational progress LP in fact only restricted by available memory MIP Some small (academic) problems still unsolvable Commercial problems

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets Instructor: Shaddin Dughmi Announcements New room: KAP 158 Today: Convex Sets Mostly from Boyd and Vandenberghe. Read all of

More information

Extended Mathematical Programming: Structure and Solution

Extended Mathematical Programming: Structure and Solution Extended Mathematical Programming: Structure and Solution Michael C. Ferris, Steven Dirkse, Jan Jagla, Alex Meeraus University of Wisconsin, Madison FOCAPO 2008: July 1, 2008 Michael Ferris (University

More information

mixed-integer convex optimization

mixed-integer convex optimization mixed-integer convex optimization Miles Lubin with Emre Yamangil, Russell Bent, Juan Pablo Vielma, Chris Coey April 1, 2016 MIT & Los Alamos National Laboratory First, Mixed-integer linear programming

More information

A set-based approach to robust control and verification of piecewise affine systems subject to safety specifications

A set-based approach to robust control and verification of piecewise affine systems subject to safety specifications Dipartimento di Elettronica, Informazione e Bioingegneria A set-based approach to robust control and verification of piecewise affine systems subject to safety specifications Maria Prandini maria.prandini@polimi.it

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

Introduction to Linear Programming

Introduction to Linear Programming Introduction to Linear Programming Eric Feron (updated Sommer Gentry) (updated by Paul Robertson) 16.410/16.413 Historical aspects Examples of Linear programs Historical contributor: G. Dantzig, late 1940

More information

Generating Hard Instances for Robust Combinatorial Optimization

Generating Hard Instances for Robust Combinatorial Optimization Generating Hard Instances for Robust Combinatorial Optimization Marc Goerigk 1 and Stephen J. Maher 2 1 Network and Data Science Management, University of Siegen, Germany 2 Department of Management Science,

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 25, 2017 1 / 40 Outline Key Concepts MILP Set Monoids LP set Relaxation of MILP Set Formulation Quality

More information

15. Cutting plane and ellipsoid methods

15. Cutting plane and ellipsoid methods EE 546, Univ of Washington, Spring 2012 15. Cutting plane and ellipsoid methods localization methods cutting-plane oracle examples of cutting plane methods ellipsoid method convergence proof inequality

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

OPTIMIZAÇÃO E DECISÃO 09/10

OPTIMIZAÇÃO E DECISÃO 09/10 OPTIMIZAÇÃO E DECISÃO 09/10 PL #7 Integer Programming Alexandra Moutinho (from Hillier & Lieberman Introduction to Operations Research, 8 th edition) Problem 1 Pawtucket University is planning to buy new

More information

A Generic Benders Decomposition Algorithm for the AIMMS Modeling Language Informs 2012, Phoenix

A Generic Benders Decomposition Algorithm for the AIMMS Modeling Language Informs 2012, Phoenix A Generic Benders Decomposition Algorithm for the AIMMS Modeling Language Informs 2012, Phoenix Marcel Hunting marcel.hunting@aimms.com Paragon Decision Technology Copyright by Paragon Decision Technology

More information

Write Fast and Efficient AIMMS

Write Fast and Efficient AIMMS Write Fast and Efficient AIMMS Code Deanne Zhang Paragon Decision Technology April 19, 2011 Paragon Decision Technology Inc 500 108th Ave NE, Bellevue WA, USA E-mail: info@aimms.com Internet: www.aimms.com

More information

Convex Optimization. Chapter 1 - chapter 2.2

Convex Optimization. Chapter 1 - chapter 2.2 Convex Optimization Chapter 1 - chapter 2.2 Introduction In optimization literatures, one will frequently encounter terms like linear programming, convex set convex cone, convex hull, semidefinite cone

More information

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Ismael Regis de Farias Jr. Department of Industrial Engineering Texas Tech Summary Problem definition Solution strategy Multiple-choice

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

LaGO. Ivo Nowak and Stefan Vigerske. Humboldt-University Berlin, Department of Mathematics

LaGO. Ivo Nowak and Stefan Vigerske. Humboldt-University Berlin, Department of Mathematics LaGO a Branch and Cut framework for nonconvex MINLPs Ivo Nowak and Humboldt-University Berlin, Department of Mathematics EURO XXI, July 5, 2006 21st European Conference on Operational Research, Reykjavik

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

A robust optimization based approach to the general solution of mp-milp problems

A robust optimization based approach to the general solution of mp-milp problems 21 st European Symposium on Computer Aided Process Engineering ESCAPE 21 E.N. Pistikopoulos, M.C. Georgiadis and A. Kokossis (Editors) 2011 Elsevier B.V. All rights reserved. A robust optimization based

More information

A Robust Approach to the Capacitated Vehicle Routing Problem with Uncertain Costs

A Robust Approach to the Capacitated Vehicle Routing Problem with Uncertain Costs A Robust Approach to the Capacitated Vehicle Routing Problem with Uncertain Costs Lars Eufinger Deutsche Bahn AG, Poststraße 0, 6039 Frankfurt a. Main, Germany, lars.eufinger@deutschebahn.com Jannis Kurtz

More information

Optimization Under Uncertainty

Optimization Under Uncertainty Optimization Under Uncertainty Vineet Goyal Submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Algorithms, Combinatorics and Optimization August 2008 Tepper School

More information

3 Interior Point Method

3 Interior Point Method 3 Interior Point Method Linear programming (LP) is one of the most useful mathematical techniques. Recent advances in computer technology and algorithms have improved computational speed by several orders

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

ENERGY EFFICIENT CONTROL OF VIRTUAL MACHINE CONSOLIDATION UNDER UNCERTAIN INPUT PARAMETERS FOR GREEN CLOUDS

ENERGY EFFICIENT CONTROL OF VIRTUAL MACHINE CONSOLIDATION UNDER UNCERTAIN INPUT PARAMETERS FOR GREEN CLOUDS ENERGY EFFICIENT CONTROL OF VIRTUAL MACHINE CONSOLIDATION UNDER UNCERTAIN INPUT PARAMETERS FOR GREEN CLOUDS ENERGY SAVING IN VIRTUALIZED DATACENTERS Assume small datacenter, 1064 Servers 10 72 28 LighWng

More information

Introduction to Stochastic Combinatorial Optimization

Introduction to Stochastic Combinatorial Optimization Introduction to Stochastic Combinatorial Optimization Stefanie Kosuch PostDok at TCSLab www.kosuch.eu/stefanie/ Guest Lecture at the CUGS PhD course Heuristic Algorithms for Combinatorial Optimization

More information

Recoverable Robust Optimization for (some) combinatorial problems

Recoverable Robust Optimization for (some) combinatorial problems Recoverable Robust Optimization for (some) combinatorial problems Marjan van den Akker joint work with 1 Han Hoogeveen, Paul Bouman, Denise Tönissen, Judith Stoef Recoverable robustness Method to cope

More information

Two algorithms for large-scale L1-type estimation in regression

Two algorithms for large-scale L1-type estimation in regression Two algorithms for large-scale L1-type estimation in regression Song Cai The University of British Columbia June 3, 2012 Song Cai (UBC) Two algorithms for large-scale L1-type regression June 3, 2012 1

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof Yaron Singer Lecture 3 February 1st 1 Overview In our previous lecture we presented fundamental results from convex analysis and in particular the separating

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Math 273a: Optimization Linear programming

Math 273a: Optimization Linear programming Math 273a: Optimization Linear programming Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from the textbook Chong-Zak, 4th Ed. History The word programming used traditionally

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Robust validation of network designs under uncertain demands and failures

Robust validation of network designs under uncertain demands and failures Robust validation of network designs under uncertain demands and failures Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani Purdue University USENIX NSDI 2017 Validating network design Network design today

More information

CO367/CM442 Nonlinear Optimization Lecture 1

CO367/CM442 Nonlinear Optimization Lecture 1 CO367/CM442 Nonlinear Optimization Lecture 1 Instructor: Henry Wolkowicz hwolkowi@uwaterloo.ca TA: Vris Cheung, yl2cheun@math.uwaterloo.ca orion.math.uwaterloo.ca/ hwolkowi/henry/teaching/w10/367.w10/index.shtml

More information

February 10, 2005

February 10, 2005 15.053 February 10, 2005 The Geometry of Linear Programs the geometry of LPs illustrated on DTC Announcement: please turn in homework solutions now with a cover sheet 1 Goal of this Lecture 3 mathematical

More information

AIMMS Modeling Guide - Cutting Stock Problem

AIMMS Modeling Guide - Cutting Stock Problem AIMMS Modeling Guide - Cutting Stock Problem This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com or order your hardcopy at

More information

Convex Sets (cont.) Convex Functions

Convex Sets (cont.) Convex Functions Convex Sets (cont.) Convex Functions Optimization - 10725 Carlos Guestrin Carnegie Mellon University February 27 th, 2008 1 Definitions of convex sets Convex v. Non-convex sets Line segment definition:

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Recent Advances In The New Mosek 8

Recent Advances In The New Mosek 8 Recent Advances In The New Mosek 8 16-November-2016 Erling D. Andersen www.mosek.com Improvements in version 8 An overview Presolve Reduce memory requirements in the eliminator. Conic presolve. Conic optimizer

More information

Lagrangean Relaxation of the Hull-Reformulation of Linear Generalized Disjunctive Programs and its use in Disjunctive Branch and Bound

Lagrangean Relaxation of the Hull-Reformulation of Linear Generalized Disjunctive Programs and its use in Disjunctive Branch and Bound Lagrangean Relaxation of the Hull-Reformulation of Linear Generalized Disjunctive Programs and its use in Disjunctive Branch and Bound Francisco Trespalacios, Ignacio E. Grossmann Department of Chemical

More information

A New Bound for the Midpoint Solution in Minmax Regret Optimization with an Application to the Robust Shortest Path Problem

A New Bound for the Midpoint Solution in Minmax Regret Optimization with an Application to the Robust Shortest Path Problem A New Bound for the Midpoint Solution in Minmax Regret Optimization with an Application to the Robust Shortest Path Problem André Chassein and Marc Goerigk Fachbereich Mathematik, Technische Universität

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

Robust real-time optimization for the linear oil blending

Robust real-time optimization for the linear oil blending Robust real-time optimization for the linear oil blending Stefan Janaqi, Jorge Aguilera, Mèriam Chèbre To cite this version: Stefan Janaqi, Jorge Aguilera, Mèriam Chèbre. Robust real-time optimization

More information

Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs

Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs Robert Fourer, Jared Erickson Industrial Engineering & Management Sciences Northwestern University 4er@northwestern.edu,

More information

Parallel and Distributed Optimization with Gurobi Optimizer

Parallel and Distributed Optimization with Gurobi Optimizer Parallel and Distributed Optimization with Gurobi Optimizer Our Presenter Dr. Tobias Achterberg Developer, Gurobi Optimization 2 Parallel & Distributed Optimization 3 Terminology for this presentation

More information