Depth from Stereo. Sanja Fidler CSC420: Intro to Image Understanding 1/ 12

Size: px
Start display at page:

Download "Depth from Stereo. Sanja Fidler CSC420: Intro to Image Understanding 1/ 12"

Transcription

1 Depth from Stereo Sanja Fidler CSC420: Intro to Image Understanding 1/ 12

2 Depth from Two Views: Stereo All points on projective line to P map to p Figure: One camera Sanja Fidler CSC420: Intro to Image Understanding 2/ 12

3 Depth from Two Views: Stereo All points on projective line to P in left camera map to a line in the image plane of the right camera Figure: Add another camera Sanja Fidler CSC420: Intro to Image Understanding 2/ 12

4 Depth from Two Views: Stereo If I search this line to find correspondences... Figure: If I am able to find corresponding points in two images... Sanja Fidler CSC420: Intro to Image Understanding 2/ 12

5 Depth from Two Views: Stereo I can get 3D! Figure: I can get a point in 3D by triangulation! Sanja Fidler CSC420: Intro to Image Understanding 2/ 12

6 Stereo Epipolar geometry Case with two cameras with parallel optical axes General case Sanja Fidler CSC420: Intro to Image Understanding 3/ 12

7 Stereo Epipolar geometry Case with two cameras with parallel optical axes First this General case Sanja Fidler CSC420: Intro to Image Understanding 3/ 12

8 We assume that the two calibrated cameras (we know intrinsics and extrinsics) are parallel, i.e. the right camera is just some distance to the right of left camera. We assume we know this distance. We call it the baseline. Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

9 Pick a point P in the world Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

10 Points O l, O r and P (and p l and p r ) lie on a plane. Since two image planes lie on the same plane (distance f from each camera), the lines O l O r and p l p r are parallel. Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

11 Since lines O l O r and p l p r are parallel, and O l and O r have the same y, then also p l and p r have the same y: y r = y l! Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

12 So all points on the projective line O l p l project to a horizontal line with y = y l on the right image. This is nice, let s remember this. Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

13 Another observation: No point from O l p l can project to the right of x l in the right image. Why? Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

14 Because that would mean our image can see behind the camera... Sanja Fidler CSC420: Intro to Image Understanding 4/ 12

15 Since our points p l and p r lie on a horizontal line, we can forget about y l for a moment (it doesn t seem important). Let s look at the camera situation from the birdseye perspective instead. Let s see if we can find a connection between x l, x r and Z (because Z is what we want). [Adopted from: J. Hays] Sanja Fidler CSC420: Intro to Image Understanding 5/ 12

16 We can then use similar triangles to compute the depth of the point P [Adopted from: J. Hays] Sanja Fidler CSC420: Intro to Image Understanding 5/ 12

17 We can then use similar triangles to compute the depth of the point P Sanja Fidler CSC420: Intro to Image Understanding 5/ 12

18 We can then use similar triangles to compute the depth of the point P Sanja Fidler CSC420: Intro to Image Understanding 5/ 12

19 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

20 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching on line y r = y l. Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

21 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching on line y r = y l. Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

22 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

23 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

24 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

25 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

26 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

27 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

28 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

29 Version 2015: Can I do this task even better? Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

30 Version 2015: Train a classifier! How can I get ground-truth? Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

31 Version 2015: Train a Neural Network classifier! [J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 15] Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

32 Version 2015: Train a Neural Network classifier! To get the most amazing performance Figure: Performance on KITTI (metrics is error, so lower is better) Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

33 For each point p l =(x l, y l ), how do I get p r =(x r, y r )? By matching. Patch around (x r, y r )) should look similar to the patch around (x l, y l ). Sanja Fidler CSC420: Intro to Image Understanding 6/ 12

34 We get a disparity map as a result Sanja Fidler CSC420: Intro to Image Understanding 7/ 12

35 We get a disparity map as a result Sanja Fidler CSC420: Intro to Image Understanding 7/ 12

36 Depth and disparity are inversely proportional Sanja Fidler CSC420: Intro to Image Understanding 7/ 12

37 Smaller patches: more detail, but noisy. Bigger: less detail, but smooth Sanja Fidler CSC420: Intro to Image Understanding 7/ 12

38 You Can Do It Much Better... With Energy Minimization on top, e.g., a Markov Random Field (MRF) K. Yamaguchi, D. McAllester, R. Urtasun, E cient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation, ECCV2014 Paper: Code: Sanja Fidler CSC420: Intro to Image Understanding 8/ 12

39 You Can Do It Much Better... [K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014] Occlusion Hinge Coplanar Disparity)image Flow)image Sanja Fidler CSC420: Intro to Image Understanding 9/ 12

40 Look at State-of-the-art on KITTI Where Ours means: [K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014] How can we evaluate the performance of a stereo algorithm? Stereo Flow wsgm [Spangenberg,,et,al,,2013] AARBM [Einecke,,et,al,,2014] PR4Sceneflow [Vogel,,et,al,,2013] PCBP [Yamaguchi,,et,al,,2012] PR4Sf+E [Vogel,,et,al,,2013] StereoSLIC [Yamaguchi,,et,al,,2013] PCBP4SS [Yamaguchi,,et,al,,2013] Ours,(Stereo) VC4SF [Vogel,,et,al,,2014] Ours,(Joint) 2.83% 4.97% 4.86% 4.36% 4.04% 4.02% 3.92% 3.40% 3.39% 3.05% BTF4ILLUM [Demetz,,et,al,,2014] TGV2ADCSIFT [Braux4Zin,,et,al,,2013] NLTGV4SC [Ran_l,,et,al,,2014] MoMonSLIC [Yamaguchi,,et,al,,2013] PR4Sceneflow [Vogel,,et,al,,2013] PCBP4Flow [Yamaguchi,,et,al,,2013] PR4Sf+E [Vogel,,et,al,,2013] Ours,(Flow) Ours,(Joint) VC4SF [Vogel,,et,al,,2014] 6.52% 6.20% 5.93% 3.91% 3.76% 3.64% 3.57% 3.38% 2.82% 2.72% Error,>,3,pixels,(Non4Occluded) Error,>,3,pixels,(Non4Occluded) Autonomous driving dataset KITTI: Sanja Fidler CSC420: Intro to Image Understanding 10 / 12

41 From Disparity We Get... Depth: Once you have disparity, you have 3D Figure: K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014 Sanja Fidler CSC420: Intro to Image Understanding 11 / 12

42 From Disparity We Get... Money ;) Sanja Fidler CSC420: Intro to Image Understanding 11 / 12

43 Stereo Epipolar geometry Case with two cameras with parallel optical axes General case Next time Sanja Fidler CSC420: Intro to Image Understanding 12 / 12

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar Geometry for General Cameras Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar geometry Case with two cameras with parallel optical axes General case Now this Sanja

More information

Depth from Stereo. Dominic Cheng February 7, 2018

Depth from Stereo. Dominic Cheng February 7, 2018 Depth from Stereo Dominic Cheng February 7, 2018 Agenda 1. Introduction to stereo 2. Efficient Deep Learning for Stereo Matching (W. Luo, A. Schwing, and R. Urtasun. In CVPR 2016.) 3. Cascade Residual

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

Final Review CMSC 733 Fall 2014

Final Review CMSC 733 Fall 2014 Final Review CMSC 733 Fall 2014 We have covered a lot of material in this course. One way to organize this material is around a set of key equations and algorithms. You should be familiar with all of these,

More information

Computing the Stereo Matching Cost with CNN

Computing the Stereo Matching Cost with CNN University at Austin Figure. The of lefttexas column displays the left input image, while the right column displays the output of our stereo method. Examples are sorted by difficulty, with easy examples

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Efficient Deep Learning for Stereo Matching

Efficient Deep Learning for Stereo Matching Efficient Deep Learning for Stereo Matching Wenjie Luo Alexander G. Schwing Raquel Urtasun Department of Computer Science, University of Toronto {wenjie, aschwing, urtasun}@cs.toronto.edu Abstract In the

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Lecture 6 Stereo Systems Multi-view geometry

Lecture 6 Stereo Systems Multi-view geometry Lecture 6 Stereo Systems Multi-view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-5-Feb-4 Lecture 6 Stereo Systems Multi-view geometry Stereo systems

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

arxiv: v2 [cs.cv] 20 Oct 2015

arxiv: v2 [cs.cv] 20 Oct 2015 Computing the Stereo Matching Cost with a Convolutional Neural Network Jure Žbontar University of Ljubljana jure.zbontar@fri.uni-lj.si Yann LeCun New York University yann@cs.nyu.edu arxiv:1409.4326v2 [cs.cv]

More information

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Teesta suspension bridge-darjeeling, India Mark Twain at Pool Table", no date, UCR Museum of Photography Woman getting eye exam during

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) Readings Szeliski, Chapter 10 (through 10.5)

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by  ) Readings Szeliski, Chapter 10 (through 10.5) Announcements Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by email) One-page writeup (from project web page), specifying:» Your team members» Project goals. Be specific.

More information

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47 Flow Estimation Min Bai University of Toronto February 8, 2016 Min Bai (UofT) Flow Estimation February 8, 2016 1 / 47 Outline Optical Flow - Continued Min Bai (UofT) Flow Estimation February 8, 2016 2

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

Recognition. Topics that we will try to cover:

Recognition. Topics that we will try to cover: Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) Object classification (we did this one already) Neural Networks Object class detection Hough-voting techniques

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA 14, by Pizzoli, Forster, Scaramuzza [M. Pizzoli, C. Forster,

More information

Stereo Matching.

Stereo Matching. Stereo Matching Stereo Vision [1] Reduction of Searching by Epipolar Constraint [1] Photometric Constraint [1] Same world point has same intensity in both images. True for Lambertian surfaces A Lambertian

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Exam Window: 28th April, 12:00am EST to 30th April, 11:59pm EST Description As indicated in class the goal of the exam is to encourage you to review the material from the course.

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

S7348: Deep Learning in Ford's Autonomous Vehicles. Bryan Goodman Argo AI 9 May 2017

S7348: Deep Learning in Ford's Autonomous Vehicles. Bryan Goodman Argo AI 9 May 2017 S7348: Deep Learning in Ford's Autonomous Vehicles Bryan Goodman Argo AI 9 May 2017 1 Ford s 12 Year History in Autonomous Driving Today: examples from Stereo image processing Object detection Using RNN

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Object Detection. Sanja Fidler CSC420: Intro to Image Understanding 1/ 1

Object Detection. Sanja Fidler CSC420: Intro to Image Understanding 1/ 1 Object Detection Sanja Fidler CSC420: Intro to Image Understanding 1/ 1 Object Detection The goal of object detection is to localize objects in an image and tell their class Localization: place a tight

More information

Stereo: Disparity and Matching

Stereo: Disparity and Matching CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS2 is out. But I was late. So we pushed the due date to Wed Sept 24 th, 11:55pm. There is still *no* grace period. To

More information

Lecture 14: Computer Vision

Lecture 14: Computer Vision CS/b: Artificial Intelligence II Prof. Olga Veksler Lecture : Computer Vision D shape from Images Stereo Reconstruction Many Slides are from Steve Seitz (UW), S. Narasimhan Outline Cues for D shape perception

More information

Lecture 9 & 10: Stereo Vision

Lecture 9 & 10: Stereo Vision Lecture 9 & 10: Stereo Vision Professor Fei- Fei Li Stanford Vision Lab 1 What we will learn today? IntroducEon to stereo vision Epipolar geometry: a gentle intro Parallel images Image receficaeon Solving

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Cameras and Stereo CSE 455. Linda Shapiro

Cameras and Stereo CSE 455. Linda Shapiro Cameras and Stereo CSE 455 Linda Shapiro 1 Müller-Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html What do you know about perspective projection? Vertical lines? Other lines? 2 Image formation

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera > Can

More information

Rectification. Dr. Gerhard Roth

Rectification. Dr. Gerhard Roth Rectification Dr. Gerhard Roth Problem Definition Given a pair of stereo images, the intrinsic parameters of each camera, and the extrinsic parameters of the system, R, and, compute the image transformation

More information

7. The Geometry of Multi Views. Computer Engineering, i Sejong University. Dongil Han

7. The Geometry of Multi Views. Computer Engineering, i Sejong University. Dongil Han Computer Vision 7. The Geometry of Multi Views Computer Engineering, i Sejong University i Dongil Han THE GEOMETRY OF MULTIPLE VIEWS Epipolar Geometry The Stereopsis Problem: Fusion and Reconstruction

More information

A MULTI-RESOLUTION APPROACH TO DEPTH FIELD ESTIMATION IN DENSE IMAGE ARRAYS F. Battisti, M. Brizzi, M. Carli, A. Neri

A MULTI-RESOLUTION APPROACH TO DEPTH FIELD ESTIMATION IN DENSE IMAGE ARRAYS F. Battisti, M. Brizzi, M. Carli, A. Neri A MULTI-RESOLUTION APPROACH TO DEPTH FIELD ESTIMATION IN DENSE IMAGE ARRAYS F. Battisti, M. Brizzi, M. Carli, A. Neri Università degli Studi Roma TRE, Roma, Italy 2 nd Workshop on Light Fields for Computer

More information

Stereo matching. Francesco Isgrò. 3D Reconstruction and Stereo p.1/21

Stereo matching. Francesco Isgrò. 3D Reconstruction and Stereo p.1/21 Stereo matching Francesco Isgrò 3D Reconstruction and Stereo p.1/21 Structure of a stereo vision system Extract interesting point from each image Determine a set of matching points Compute the fundamental

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Geometry of Multiple views

Geometry of Multiple views 1 Geometry of Multiple views CS 554 Computer Vision Pinar Duygulu Bilkent University 2 Multiple views Despite the wealth of information contained in a a photograph, the depth of a scene point along the

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

Epipolar geometry. x x

Epipolar geometry. x x Two-view geometry Epipolar geometry X x x Baseline line connecting the two camera centers Epipolar Plane plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Stereo systems

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Lecture'9'&'10:'' Stereo'Vision'

Lecture'9'&'10:'' Stereo'Vision' Lecture'9'&'10:'' Stereo'Vision' Dr.'Juan'Carlos'Niebles' Stanford'AI'Lab' ' Professor'FeiAFei'Li' Stanford'Vision'Lab' 1' Dimensionality'ReducIon'Machine'(3D'to'2D)' 3D world 2D image Point of observation

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Jiahao Pang 1 Wenxiu Sun 1 Chengxi Yang 1 Jimmy Ren 1 Ruichao Xiao 1 Jin Zeng 1 Liang Lin 1,2 1 SenseTime Research

More information

Lecture 10 Dense 3D Reconstruction

Lecture 10 Dense 3D Reconstruction Institute of Informatics Institute of Neuroinformatics Lecture 10 Dense 3D Reconstruction Davide Scaramuzza 1 REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time M. Pizzoli, C. Forster,

More information

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16 Computer Vision I Dense Stereo Correspondences Anita Sellent Stereo Two Cameras Overlapping field of view Known transformation between cameras From disparity compute depth [ Bradski, Kaehler: Learning

More information

Depth Measurement and 3-D Reconstruction of Multilayered Surfaces by Binocular Stereo Vision with Parallel Axis Symmetry Using Fuzzy

Depth Measurement and 3-D Reconstruction of Multilayered Surfaces by Binocular Stereo Vision with Parallel Axis Symmetry Using Fuzzy Depth Measurement and 3-D Reconstruction of Multilayered Surfaces by Binocular Stereo Vision with Parallel Axis Symmetry Using Fuzzy Sharjeel Anwar, Dr. Shoaib, Taosif Iqbal, Mohammad Saqib Mansoor, Zubair

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1699: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 8, 2015 Today Review Projective transforms Image stitching (homography) Epipolar

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Stereo Correspondence with Occlusions using Graph Cuts

Stereo Correspondence with Occlusions using Graph Cuts Stereo Correspondence with Occlusions using Graph Cuts EE368 Final Project Matt Stevens mslf@stanford.edu Zuozhen Liu zliu2@stanford.edu I. INTRODUCTION AND MOTIVATION Given two stereo images of a scene,

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Subpixel accurate refinement of disparity maps using stereo correspondences

Subpixel accurate refinement of disparity maps using stereo correspondences Subpixel accurate refinement of disparity maps using stereo correspondences Matthias Demant Lehrstuhl für Mustererkennung, Universität Freiburg Outline 1 Introduction and Overview 2 Refining the Cost Volume

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Stereo imaging ideal geometry

Stereo imaging ideal geometry Stereo imaging ideal geometry (X,Y,Z) Z f (x L,y L ) f (x R,y R ) Optical axes are parallel Optical axes separated by baseline, b. Line connecting lens centers is perpendicular to the optical axis, and

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

Learning the Matching Function

Learning the Matching Function Learning the Matching Function L ubor Ladický ETH Zürich, Switzerland lubor.ladicky@inf.ethz.ch Christian Häne ETH Zürich, Switzerland chaene@inf.ethz.ch Marc Pollefeys ETH Zürich, Switzerland marc.pollefeys@inf.ethz.ch

More information

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth Common Classification Tasks Recognition of individual objects/faces Analyze object-specific features (e.g., key points) Train with images from different viewing angles Recognition of object classes Analyze

More information

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012 Stereo Vision A simple system Dr. Gerhard Roth Winter 2012 Stereo Stereo Ability to infer information on the 3-D structure and distance of a scene from two or more images taken from different viewpoints

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Kinect Device. How the Kinect Works. Kinect Device. What the Kinect does 4/27/16. Subhransu Maji Slides credit: Derek Hoiem, University of Illinois

Kinect Device. How the Kinect Works. Kinect Device. What the Kinect does 4/27/16. Subhransu Maji Slides credit: Derek Hoiem, University of Illinois 4/27/16 Kinect Device How the Kinect Works T2 Subhransu Maji Slides credit: Derek Hoiem, University of Illinois Photo frame-grabbed from: http://www.blisteredthumbs.net/2010/11/dance-central-angry-review

More information

Combining Stereo Disparity and Optical Flow for Basic Scene Flow

Combining Stereo Disparity and Optical Flow for Basic Scene Flow Combining Stereo Disparity and Optical Flow for Basic Scene Flow René Schuster, Christian Bailer, Oliver Wasenmüller, Didier Stricker DFKI German Research Center for Artificial Intelligence firstname.lastname@dfki.de

More information

Final project bits and pieces

Final project bits and pieces Final project bits and pieces The project is expected to take four weeks of time for up to four people. At 12 hours per week per person that comes out to: ~192 hours of work for a four person team. Capstone:

More information